Computational Many-Body Physics

apl. Prof. Dr. R. Bulla

SS 2020

Sheet 4 - please submit your solutions via e-mail to Chae-Yeun Park until Monday, July 6, 2020, 12:00.

Exercise 1: Spin correlations of the one-dimensional Heisenberg model

(11 points)

Here we focus on the isotropic Heisenberg model in dimension $d=1$ with open boundary conditions

$$
H=-J \sum_{i=1}^{N-1} \vec{S}_{i} \cdot \vec{S}_{i+1}
$$

with $J=-1$ (the antiferromagnetic case). We are interested in the spin correlations between sites 1 and $n, \chi_{1 n}=\left\langle\vec{S}_{1} \cdot \vec{S}_{n}\right\rangle$, for both zero and finite temperature.
a) Calculate $\chi_{1 n}=\left\langle\psi_{\mathrm{g}}\right| \vec{S}_{1} \cdot \vec{S}_{n}\left|\psi_{\mathrm{g}}\right\rangle$ for the ground state $\left|\psi_{\mathrm{g}}\right\rangle$ of a Heisenberg chain with $N=10$ sites and $n=1, \ldots, 10$. Note that for an even number of sites N, the ground state of the antiferromagnetic Heisenberg chain is non-degenerate. (5 points)
b) Calculate the temperature dependence of the spin correlation

$$
\chi_{1 n}(T)=\frac{1}{Z} \sum_{l}\langle l| \vec{S}_{1} \cdot \vec{S}_{n}|l\rangle e^{-\beta E_{l}}
$$

with $Z=\sum_{l} e^{-\beta E_{l}}$ the partition function, $\beta=1 /\left(k_{\mathrm{B}} T\right)\left(k_{\mathrm{B}}\right.$ can be set to 1$)$, and $|l\rangle$ the eigenstates of H with eigenenergies E_{l}, for temperatures $T=0.5,2$, and 10. (4 points)
c) Show numerically that, in the limit $T \rightarrow 0$, the finite-temperature spincorrelation $\chi_{1 n}(T)$ of part b) corresponds to the zero-temperature spincorrelation of part a). (2 points)

Exercise 2: Reduced density matrix

(4 points)

Consider a two-site system (with sites A and B) with a two-dimensional basis for each site: $\{|i\rangle\}=\left\{|\uparrow\rangle_{A},|\downarrow\rangle_{A}\right\}$ for site A and $\{|j\rangle\}$ for site B accordingly. A given state $|\psi\rangle$ can be expressed in this basis as

$$
\begin{equation*}
|\psi\rangle=\sum_{i=1}^{2} \sum_{j=1}^{2} \psi_{i j}|i\rangle|j\rangle \tag{1}
\end{equation*}
$$

Here we want to calculate the reduced density matrices ρ for the following three states:

$$
\begin{aligned}
|\psi\rangle_{1} & =|\uparrow\rangle_{A}|\downarrow\rangle_{B} \\
|\psi\rangle_{2} & =\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}-|\downarrow\rangle_{A}|\uparrow\rangle_{B}\right), \\
|\psi\rangle_{3} & =\frac{1}{2}\left(|\uparrow\rangle_{A}+|\downarrow\rangle_{A}\right)\left(|\uparrow\rangle_{B}+|\downarrow\rangle_{B}\right) .
\end{aligned}
$$

a) Write the states $|\psi\rangle_{i}(i=1,2,3)$ in the form given by eq. (1), i.e. determine the matrix $\bar{\psi}$ with matrix elements $(\bar{\psi})_{i j}=\psi_{i j}$. (1 point)

The reduced density operator $\hat{\rho}$ is defined as

$$
\hat{\rho}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{j=1}^{2}\langle j \mid \psi\rangle\langle\psi \mid j\rangle,
$$

with the matrix elements $\rho_{i i^{\prime}}=\langle i| \hat{\rho}\left|i^{\prime}\right\rangle=\sum_{j} \psi_{i j} \psi_{i^{\prime} j}$.
b) Calculate the reduced density matrices (i.e. the matrix elements $\rho_{i i^{\prime}}$) for the states $|\psi\rangle_{i}(i=1,2,3)$. (3 points)

The entanglement between sites A and B can be directly calculated from these reduced density matrices (see the following exercise).

Exercise 3: Reduced density matrix and entanglement entropy

(11 points)

With the definition of the reduced density matrix given in the previous exercise, we can now proceed with calculating the entanglement entropy S_{e} :

$$
S_{\mathrm{e}}=-\operatorname{Tr}_{\mathrm{A}}\left[\hat{\rho}_{\mathrm{A}} \ln \hat{\rho}_{\mathrm{A}}\right]=-\sum_{\alpha} w_{\alpha} \ln w_{\alpha}
$$

with w_{α} the eigenvalues of the reduced density matrix. The entanglement entropy is a measure of the entanglement between subsystems A and B of a quantum system; this can now be tested on the three states $|\psi\rangle_{i}, i=1,2,3$, given in exercise 2 .
a) Calculate the entanglement entropy S_{e} for the states $|\psi\rangle_{i}$. (1 point)

We now extend the analysis to larger systems, in particular one-dimensional spin systems with a bi-partitioning into parts A and B as shown in the figure:

A

The number of sites in parts $\mathrm{A}(\mathrm{B})$ is $M_{\mathrm{A}}\left(M_{\mathrm{B}}\right)$, with $M_{\mathrm{A}}+M_{\mathrm{B}}=M$. The state of the total system in expressed in the standard basis $\{|l\rangle\}, l=1, \ldots, 2^{M}$, with $\{|l\rangle\}=\{|\downarrow \downarrow \ldots \downarrow\rangle,|\uparrow \downarrow \ldots \downarrow\rangle, \ldots\}:$

$$
|\psi\rangle=\sum_{l=0}^{2^{M}-1} a_{l}|l\rangle
$$

b) Consider a random state $|\psi\rangle_{\mathrm{r}}$ with \bar{a}_{l} random numbers in the range $[-1,1]$, and $a_{l}=\bar{a}_{l} / \sqrt{\sum_{l} \bar{a}_{l}^{2}}$. Calculate S_{e} for different values of M_{A} and $M=10$. (4 points)
c) The following state has a much simpler structure:

$$
|\psi\rangle_{\mathrm{afm}}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow \uparrow \downarrow \ldots\rangle-|\downarrow \uparrow \downarrow \uparrow \ldots\rangle)
$$

Calculate S_{e} for different values of M_{A} and $M=10$. (3 points)
d) In the following state, site 1 is entangled with site 5 :

$$
|\psi\rangle_{1-5}=\frac{1}{2^{(M-1) / 2}}\left(|\uparrow\rangle_{1}|\downarrow\rangle_{5}-|\downarrow\rangle_{1}|\uparrow\rangle_{5}\right) \prod_{i=2}^{4}\left(|\uparrow\rangle_{i}+|\downarrow\rangle_{i}\right) \prod_{i=6}^{M}\left(|\uparrow\rangle_{i}+|\downarrow\rangle_{i}\right) .
$$

How does this entanglement show up in the entanglement entropy S_{e} as a function of $M_{\mathrm{A}}(M=10)$? (3 points)

