Computational Many-Body Physics

apl. Prof. Dr. R. Bulla

SS 2020

Sheet 4 - please submit your solutions via e-mail to Chae-Yeun Park until Monday, July 6, 2020, 12:00.

Exercise 1: Spin correlations of the one-dimensional Heisenberg model

(11 points)

Here we focus on the isotropic Heisenberg model in dimension d = 1 with open boundary conditions

$$H = -J \sum_{i=1}^{N-1} \vec{S}_i \cdot \vec{S}_{i+1} ,$$

with J = -1 (the antiferromagnetic case). We are interested in the spin correlations between sites 1 and n, $\chi_{1n} = \langle \vec{S_1} \cdot \vec{S_n} \rangle$, for both zero and finite temperature.

- a) Calculate $\chi_{1n} = \langle \psi_g | \vec{S}_1 \cdot \vec{S}_n | \psi_g \rangle$ for the ground state $|\psi_g \rangle$ of a Heisenberg chain with N = 10 sites and n = 1, ..., 10. Note that for an even number of sites N, the ground state of the antiferromagnetic Heisenberg chain is non-degenerate. (5 points)
- b) Calculate the temperature dependence of the spin correlation

$$\chi_{1n}(T) = \frac{1}{Z} \sum_{l} \langle l | \vec{S}_1 \cdot \vec{S}_n | l \rangle e^{-\beta E_l} ,$$

with $Z = \sum_{l} e^{-\beta E_{l}}$ the partition function, $\beta = 1/(k_{\rm B}T)$ ($k_{\rm B}$ can be set to 1), and $|l\rangle$ the eigenstates of H with eigenenergies E_{l} , for temperatures T = 0.5, 2, and 10. (4 points)

c) Show numerically that, in the limit $T \to 0$, the finite-temperature spincorrelation $\chi_{1n}(T)$ of part b) corresponds to the zero-temperature spincorrelation of part a). (2 points)

Exercise 2: Reduced density matrix

(4 points)

Consider a two-site system (with sites A and B) with a two-dimensional basis for each site: $\{|i\rangle\} = \{|\uparrow\rangle_A, |\downarrow\rangle_A\}$ for site A and $\{|j\rangle\}$ for site B accordingly. A given state $|\psi\rangle$ can be expressed in this basis as

$$|\psi\rangle = \sum_{i=1}^{2} \sum_{j=1}^{2} \psi_{ij} |i\rangle |j\rangle .$$
(1)

Here we want to calculate the reduced density matrices ρ for the following three states:

$$\begin{aligned} |\psi\rangle_1 &= |\uparrow\rangle_A |\downarrow\rangle_B ,\\ |\psi\rangle_2 &= \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A |\downarrow\rangle_B - |\downarrow\rangle_A |\uparrow\rangle_B\right) ,\\ |\psi\rangle_3 &= \frac{1}{2} \left(|\uparrow\rangle_A + |\downarrow\rangle_A\right) \left(|\uparrow\rangle_B + |\downarrow\rangle_B\right) \end{aligned}$$

a) Write the states $|\psi\rangle_i$ (i = 1, 2, 3) in the form given by eq. (1), i.e. determine the matrix $\bar{\psi}$ with matrix elements $(\bar{\psi})_{ij} = \psi_{ij}$. (1 point)

The reduced density operator $\hat{\rho}$ is defined as

$$\hat{\rho} = \operatorname{Tr}_B\left(|\psi\rangle\langle\psi|\right) = \sum_{j=1}^2 \langle j|\psi\rangle\langle\psi|j\rangle ,$$

with the matrix elements $\rho_{ii'} = \langle i | \hat{\rho} | i' \rangle = \sum_j \psi_{ij} \psi_{i'j}$.

b) Calculate the reduced density matrices (i.e. the matrix elements $\rho_{ii'}$) for the states $|\psi\rangle_i$ (i = 1, 2, 3). (3 points)

The entanglement between sites A and B can be directly calculated from these reduced density matrices (see the following exercise).

Exercise 3: Reduced density matrix and entanglement entropy

(11 points)

With the definition of the reduced density matrix given in the previous exercise, we can now proceed with calculating the entanglement entropy $S_{\rm e}$:

$$S_{\mathrm{e}} = -\mathrm{Tr}_{\mathrm{A}}\left[\hat{\rho}_{\mathrm{A}}\ln\hat{\rho}_{\mathrm{A}}\right] = -\sum_{\alpha} w_{\alpha}\ln w_{\alpha} \; ,$$

with w_{α} the eigenvalues of the reduced density matrix. The entanglement entropy is a measure of the entanglement between subsystems A and B of a quantum system; this can now be tested on the three states $|\psi\rangle_i$, i = 1, 2, 3, given in exercise 2.

a) Calculate the entanglement entropy $S_{\rm e}$ for the states $|\psi\rangle_i$. (1 point)

We now extend the analysis to larger systems, in particular one-dimensional spin systems with a bi-partitioning into parts A and B as shown in the figure:

The number of sites in parts A (B) is M_A (M_B), with $M_A + M_B = M$. The state of the total system in expressed in the standard basis $\{|l\rangle\}$, $l = 1, \ldots, 2^M$, with $\{|l\rangle\} = \{|\downarrow\downarrow,\ldots\downarrow\rangle, |\uparrow\downarrow\ldots\downarrow\rangle, \ldots\}$:

$$\psi\rangle = \sum_{l=0}^{2^M - 1} a_l |l\rangle \; .$$

- b) Consider a random state $|\psi\rangle_{\rm r}$ with \bar{a}_l random numbers in the range [-1, 1], and $a_l = \bar{a}_l / \sqrt{\sum_l \bar{a}_l^2}$. Calculate $S_{\rm e}$ for different values of $M_{\rm A}$ and M = 10. (4 points)
- c) The following state has a much simpler structure:

$$|\psi\rangle_{\rm afm} = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\uparrow\downarrow\ldots\rangle - |\downarrow\uparrow\downarrow\uparrow\ldots\rangle\right) \;.$$

Calculate $S_{\rm e}$ for different values of $M_{\rm A}$ and M = 10. (3 points)

d) In the following state, site 1 is entangled with site 5:

$$|\psi\rangle_{1-5} = \frac{1}{2^{(M-1)/2}} \left(|\uparrow\rangle_1|\downarrow\rangle_5 - |\downarrow\rangle_1|\uparrow\rangle_5\right) \prod_{i=2}^4 \left(|\uparrow\rangle_i + |\downarrow\rangle_i\right) \prod_{i=6}^M \left(|\uparrow\rangle_i + |\downarrow\rangle_i\right) \ .$$

How does this entanglement show up in the entanglement entropy $S_{\rm e}$ as a function of $M_{\rm A}$ (M = 10)? (3 points)