Computational Many-Body Physics

apl. Prof. Dr. R. Bulla

SS 2020

Sheet 5

Exercise 1: Kitaev clusters

Kitaev clusters are quantum spin models defined by the Hamiltonian

$$
H=-J \sum_{i j \alpha} J_{i j}^{\alpha} S_{i}^{\alpha} S_{j}^{\alpha},
$$

$(i, j=1, \ldots, N, \alpha=x, y, z)$ with each spin of the cluster connected to exactly three spins with different couplings $(x, y$, or $z)$, see section 2.1 in the script. In the following, the couplings $J_{i j}^{\alpha}$ of the Kitaev cluster can be set to 1 .
For a given N, various different Kitaev clusters can be constructed (and the number of possible clusters increases with N, of course).
a) Show that, for $N=6$, one can construct two different Kitaev clusters which have a different spectrum of eigenenergies.

One of the Kitaev clusters that can be constructed for $N=8$ can be visualized as a cube, with the eight spins of the cluster corresponding to the corners of the cube, and the twelve links corresponding to the edges. This particular Kitaev cluster has a non-degenerate ground state.
b) Show that the spin correlations in the ground state of the Kitaev cube are only non-zero for nearest neighbour sites (this turns out to be a general property of all Kitaev clusters).

Exercise 2: Entanglement entropy for the one-dimensional Heisenberg model

Here we consider the one-dimensional Heisenberg model with open boundary conditions:

$$
H=-\sum_{i=1}^{N-1} J_{i} \vec{S}_{i} \cdot \vec{S}_{i+1}
$$

For an even number of sites N and $J_{i}<0$ (the anti-ferromagnetic case), the groundstate of this model is non-degenerate. The focus in this exercise is on the entanglement entropy S_{e}, for which the system is divided in two parts (A and B), with parts A and B comprising sites $1, \ldots, M_{A}$ and $M_{A}+1, \ldots, N$, respectively.
a) Calculate the entanglement entropy for the ground state of the Heisenberg model for $N=10$ and $J_{i}=-1$ (the homogeneous case) as a function of M_{A}.
b) Compare the result from a) with the maximal values of S_{e} that can be achieved for the entanglement between parts A and B.
c) For $J_{i}=-1, N=6$, and $M_{A}=3$, the entanglement entropy $S_{e}=0.711 \ldots$ is much lower than the maximal value $S_{e, \max }=3 \ln (2)=2.079 \ldots$. Find a set of J-values (with $-1 \leq J_{i}<0, i=1, \ldots, 5$), such that $S_{e}>1.5$.

