Übungsaufgaben zur Vorlesung

Computerphysik

apl. Prof. Dr. R. Bulla

SS 2017

Blatt 8: Abgabetermin: Dienstag, der 27.06.2017, 12:00

Aufgabe 1: Gauß-Verfahren

(7 Punkte)

In der Vorlesung wurde gezeigt, wie mit Hilfe des Gauß-Verfahrens die $N \times N$ -Matrix A auf die obere Dreicksmatrix $A^{(N-1)}$ transformiert werden kann (siehe das Programm gauss1.j1). Das lineare Gleichungssystem $A\vec{x} = \vec{b}$ wird damit transformiert auf $A^{(N-1)}\vec{x} = \vec{b}^{(N-1)}$.

- a) Wie lautet die Gleichung, mit der iterativ aus $A^{(N-1)}\vec{x} = \vec{b}^{(N-1)}$ die Komponenten des Vektors \vec{x} bestimmt werden können? (2 Punkte)
- b) Erweitern Sie das Programm gauss 1. j 1 so, dass der Vektor \vec{x} entsprechend der Gleichung aus Teilaufgabe a) berechnet wird. Berechnen Sie auch zur Probe das Produkt $A\vec{x}$. Hinweis: die Matrixelemente von A und die Komponenten von \vec{b} können zufällig gewählt werden. (3 Punkte)
- c) Lösen Sie das folgende lineare Gleichungssystem:

$$x_1 - 2x_2 + 2x_3 = 1 ,$$

$$2x_1 + x_2 - 4x_3 = 0 ,$$

$$-x_1 - x_2 + 2x_3 = 3$$
,

mit Hilfe des Programms aus Teilaufgabe b). (2 Punkte)

Aufgabe 2: harmonischer Oszillator – Hamiltonmatrix

(7 Punkte)

Der Hamiltonoperator des verschobenen harmonischen Oszillators hat die Form

$$H = \hbar\omega(a^{\dagger}a + \frac{1}{2}) + \theta(a + a^{\dagger}) , \qquad (1)$$

das entsprechende Potential lautet $V(x) = \frac{1}{2}m\omega^2 x^2 + \theta x \sqrt{2m\omega/\hbar}$.

a) Geben Sie das Spektrum der Eigenenergien von H an. Hinweis: das Spektrum ist bis auf die Verschiebung des Minimums des Potentials gegeben durch das Spektrum des nicht-verschobenen harmonischen Oszillators. (2 Punkte)

Im folgenden werden $\hbar = 1$, $\omega = 1$, und m = 1 gesetzt.

- b) Schreiben Sie ein Programm, welches die Hamiltonmatrix \bar{H} mit $(\bar{H})_{mn} = \langle m|H|n\rangle$, m, n = 0, 1, ..., N-1, für beliebige θ und N belegt (Struktur der Matrix: siehe Seite 33 im Vorlesungsskript). (2 Punkte)
- c) Erstellen Sie je einen Plot der Eigenwerte E_n für N=10 und N=12 in Abhängigkeit von θ ($0 \le \theta \le 2$), inklusive der exakten Eigenenergien. Diskutieren Sie die Unterschiede zwischen den Spektren der Eigenwerte in diesen beiden Plots. (3 Punkte)

Aufgabe 3: harmonischer Oszillator – Eigenfunktionen

(7 Punkte)

Die Eigenfunktionen des quantenmechanischen harmonischen Oszillators lauten

$$\psi_n(x) = \pi^{-1/4} \frac{1}{\sqrt{2^n n!}} H_n(x) e^{-\frac{1}{2}x^2}.$$

Dabei wurden $\hbar = 1$, m = 1 und $\omega = 1$ gesetzt. Für die Hermite-Polynome $H_n(x)$ gelten die Rekursionsgleichungen:

$$H_0(x) = 1$$
,
 $H_1(x) = 2x$,
 $H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$.

- a) Schreiben Sie ein Programm, welches iterativ die Hermite-Polynome $H_n(x)$ berechnet (201 Stützstellen im Intervall [-5,5], also $\Delta x=0.05$). Berechnen Sie damit die ersten fünf Eigenfunktionen $\psi_n(x)$ $(n=0,1,\ldots,4)$ und stellen Sie diese zusammen mit dem Potential $V(x)=\frac{1}{2}x^2$ in einem Plot dar (in der üblichen Darstellung: $\psi_n(x) \to \bar{\psi}_n(x) = \psi_n(x) + E_n$). (3 Punkte)
- b) Schreiben Sie ein Programm, welches die Matrixelemente der Matrix D mit $D_{m,n}=(\psi_m,\psi_n)$ für $m,n=0,1,\ldots,4$ berechnet. Das Skalarprodukt (\ldots,\ldots) ist dabei definiert als

$$(\psi_m, \psi_n) = \int_{-\infty}^{\infty} \mathrm{d}x \, \psi_m^*(x) \psi_n(x) \ .$$

Hinweise: i) Verwenden Sie für die Integration die Trapezregel und schränken Sie den Integrationsbereich auf das Intervall [-5,5] ein; ii) für die exakten Eigenfunktionen gilt $(\psi_m, \psi_n) = \delta_{m,n}$. (4 Punkte)