Übungsaufgaben zur Vorlesung

Theoretische Physik I

apl. Prof. Dr. R. Bulla

WS 2019/20

Blatt 6: Abgabetermin: Dienstag, der 19.11.2019, 10:00

Aufgabe 1: Zweikörperproblem - Gesamtdrehimpuls

(5 Punkte)

Der Gesamtdrehimpuls des Zweikörperproblems ist definiert als

$$\vec{L} = \sum_{i=1}^{2} \vec{l_i} = \sum_{i=1}^{2} \vec{r_i} \times \vec{p_i} ,$$

wobei hier der Bezugspunkt $= \vec{0}$ gesetzt wurde.

a) Zeigen Sie, dass sich \vec{L} folgendermaßen in Schwerpunkt- und Relativanteil zerlegen lässt:

 $\vec{L} = \vec{R} \times \vec{P} + \mu \vec{r} \times \dot{\vec{r}} .$

Dabei sind \vec{R} und $\vec{r} = \vec{r}_1 - \vec{r}_2$ die Schwerpunkt- und Relativkoordinaten, \vec{P} der Schwerpunktimpuls und $\mu = m_1 m_2 / M$ die reduzierte Masse. (4 Punkte)

b) Falls keine äußeren Kräfte auf die beiden Körper wirken, ist der Schwerpunktimpuls eine Erhaltungsgröße. Was folgt daraus für den Schwerpunktanteil des Gesamtdrehimpulses? (1 Punkt).

Aufgabe 2: Zweikörperproblem - Gesamtenergie, effektives Potential (10 Punkte)

- a) Wie lautet die Gesamtenergie eines Zweikörperproblems (Massen m_1 und m_2), die über das Gravitationspotential miteinander wechselwirken? (1 Punkt)
- b) Zeigen Sie, dass sich die Gesamtenergie in einen Schwerpunkt- und einen Relativanteil zerlegen lässt. Hinweis: für die Energie der Relativbewegung ergibt sich:

 $E_{\rm rel} = \frac{1}{2}\mu(\dot{\vec{r}})^2 - Gm_1m_2\frac{1}{r} .$

(3 Punkte)

c) Die Energie der Relativbewegung entspricht der Energie eines eindimensionalen Systems (mit Koordinate r) in einem effektiven Potential U(r). Geben Sie dieses effektive Potential an. Hinweise: in Polarkoordinaten gilt $\dot{\vec{r}} = \dot{r}\vec{e}_r + r\dot{\varphi}\vec{e}_{\varphi}$; aus der Drehimpulserhaltung folgt $\dot{\varphi} = l/(\mu r^2)$. (2 Punkte)

1

- d) Für $l \neq 0$ hat das effektive Potential genau ein Minimum bei $r = r_0$. Geben Sie r_0 und $U(r_0)$ an und skizzieren Sie U(r). (2 Punkte)
- e) Der Fall $E_{\rm rel} = U(r_0)$ entspricht der Ruhelage der Radialbewegung. Geben Sie für diesen Fall die Bahn $\vec{r}(t)$ an. (2 Punkte)

Aufgabe 3: Keplerproblem - Parabeln und Ellipsen

(6 Punkte)

In der Vorlesung wurde gezeigt, dass die Winkelabhängigkeit der Radialkomponente der Relativkoordinate des Keplerproblems gegeben ist durch

$$r(\varphi) = \frac{k}{1 + \varepsilon \cos(\varphi)} \ . \tag{1}$$

- a) Betrachten Sie zunächst den Fall $\varepsilon=1$. Zeigen Sie, dass für diesen Fall Gleichung (1) in kartesischen Koordinaten einer Gleichung für eine Parabel entspricht. Bestimmen Sie die Schnittpunkte der Bahn mit der x- und y-Achse. (2 Punkte)
- b*) Zeigen Sie, dass Gleichung (1) für $0 < \varepsilon < 1$ in kartesischen Koordinaten auf folgende Form gebracht werden kann:

$$\frac{(x+e)^2}{a^2} + \frac{y^2}{b^2} = 1$$
, mit $a = \frac{k}{1-\varepsilon^2}$, $b^2 = \frac{k^2}{1-\varepsilon^2}$, $e = \frac{\varepsilon k}{1-\varepsilon^2}$.

Dies entspricht einer Ellipsengleichung mit den Halbachsen a,b und der linearen Exzentrizität e (Abstand des Brennpunkts zum Mittelpunkt der Ellipse). (4 Punkte)

Aufgabe 4: Newtonsche Mechanik

(2 Punkte)

Gegeben ist ein Dreikörperproblem in Dimension d=3, in dem die drei Körper über die Gravitationskraft miteinander wechselwirken. Es sollen keine äußeren Kräfte wirken. Als konkretes Beispiel betrachten wir das System Sonne (S) - Erde (E) - Mond (M), mit den Koordinaten und Impulsen $\vec{r_i}$, $\vec{p_i}$, i=S,E,M.

a) Welche der folgenden Größen ist eine Erhaltungsgröße?
$$\Box \vec{r}_{\rm S} + \vec{r}_{\rm E} + \vec{r}_{\rm M}, \ \Box \ \vec{p}_{\rm S} + \vec{p}_{\rm E} + \vec{p}_{\rm M}, \ \Box \ \vec{r}_{\rm S}, \ \Box \ \vec{p}_{\rm E} + \vec{p}_{\rm M}.$$

b) Für die Dimension des Phasenraums
$$d_{\rm P}$$
 dieses Systems gilt: $\Box d_{\rm P} = dN = 9, \ \Box d_{\rm P} = 2dN = 18, \ \Box d_{\rm P} = 2(d+N) = 12, \ \Box d_{\rm P} = d^N = 27.$