Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 1 (Due: Monday October, 24th.)

1.1 Useful relations

We will in this course often have to work with expressions that involve commutation, or functions of operators. Here we show some relations that can be quite useful. In the following [A, B] = AB - BA is the commutator, and $\{A, B\} = AB + BA$ is the anti-commutator.

(a) Show that

•
$$[AB, C] = A[B, C] + [A, C]B,$$

• $[AB, C] = A\{B, C\} - \{A, C\}B.$

(2 points)

(2 points)

(2 points)

(2 points)

(b) Let U be a unitary operator. Show that $U[A, B]U^{\dagger} = [UAU^{\dagger}, UBU^{\dagger}]$. (2 points) (c) Suppose that $[A, B] = z\hat{1}$, where z is a complex number. Show that

$$[A, B^n] = znB^{n-1}, \quad n = 1, 2, \dots$$

Hint: Use induction and exercise 1.1(a).

(d) Let $[A, B] = z\hat{1}$ and let f be a function with a well defined Taylor expansion. Show that

$$[A, f(B)] = zf'(B),$$

where f' denotes the derivative of f.

Remark: This result implies that if [A, B] = 0, then [A, f(B)] = 0.

(e) Let U be a unitary operator and f be a function with a well defined Taylor expansion. Show that

$$Uf(A)U^{\dagger} = f(UAU^{\dagger})$$

for all operators A.

1.2 The Schrödinger picture and the Heisenberg picture

The state of a quantum system evolves according to Schrödinger's equation $i\hbar \frac{d}{dt}|\psi\rangle = H|\psi\rangle$, for a time-independent Hamiltonian H. The solution can be written as $|\psi(t)\rangle = U(t)|\psi(0)\rangle$ for the initial state $|\psi(0)\rangle$, and the unitary evolution operator $U(t) = e^{-itH/\hbar}$. It follows that the expectation value of an observable A evolves like $\langle A \rangle(t) = \langle \psi(t)|A|\psi(t)\rangle$. This way of describing the evolution is often referred to as the "Schrödinger picture", where the observables are time-independent, while the states evolve. In the "Heisenberg picture" it is instead the observables that evolve, as $A^H(t) = U(t)^{\dagger}AU(t)$, and the states that are time-independent. The equivalence of the Schrödinger and Heisenberg picture follows by the relation

$$\langle A \rangle(t) = \langle \psi(t) | A | \psi(t) \rangle = \langle \psi(0) | U(t)^{\dagger} A U(t) | \psi(0) \rangle = \langle \psi(0) | A^{H}(t) | \psi(0) \rangle.$$

(a) Show that the evolution operator U(t) and the Hamiltonian H commute. Next, use this to show that the Hamilton operator looks the same in the Schrödinger picture as does in the Heisenberg picture. In other words, show that $H^H = H$.

Hint: Think of exercise 1.1(d).

(2 points)

(b) Show that the observables in the Heisenberg picture obey Heisenberg's equation of motion

$$i\hbar \frac{d}{dt}A^{H} = -[H, A^{H}].$$

(4 points)

(c) A quantum particle of mass m is moving in a one-dimensional potential V(x) that has a well defined Taylor series. This is described by the Hamilton operator $H = \frac{1}{2m}P^2 + V(X)$, where X and P are the position and momentum operators. Derive the equations of motion of the position and momentum operator in the Heisenberg picture, i.e., derive the equations for X^H and P^H .

Hint: The position and momentum operator satisfy the canonical commutation relation $[X, P] = i\hbar \hat{1}$. Think of the various properties that we proved in exercise 1.1. Could some of those be used? (4 points)