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Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 10 (Due: Monday January, 9th.)

10.1 A reminder about special relativity
The time and space coordinates for one and the same event do generally depend

on the relative speed of the observers, and the relation is determined by the Lorentz
transformation. Suppose that observer S assigns coordinates (ct, x, y, z) to a particular
event. If observer S ′ moves with speed v in the x-direction relative to observer S, then S ′

assigns the coordinates (ct′, x′, y′, z′) given by

t′ =
(
t− vx

c2

)
γ(v), x′ = (x− vt)γ(v), y′ = y, z′ = z, γ(v) =

1√
1− v2

c2

.

(a) Students A and B sleep happily in their beds on Tuesday morning. We assume that
their beds are not moving relative to each other (and are not subject to any signi�cant
accelerations). They live 5 kilometers apart, and in their frame of reference their alarm
clocks go o� with a time-di�erence of 5µs. Student C is very eager to reach a lecture on
advanced quantum mechanics, and is already traveling at speed v relative to A and B.
Moreover, it so happens that C travels parallel to the line joining A and B. From the
perspective of C, the two alarm-clocks go o� at the same time. What is the speed v?
What is the distance between A and B according to C?

Hint: A and B share the same (inertial) frame of reference, and from their point of view
the two events have the space-time coordinates (ct1, x1, y1, z1) and (ct2, x2, y2, z2), where
you can choose these such that y1 = y2 and z1 = z2. Hence, their beds lie along the x-axis.
C moves in the x-direction, and assigns the coordinates (ct′1, x

′
1, y
′
1, z
′
1) and (ct′2, x

′
2, y
′
2, z
′
2)

to these two events. Although C indeed is eager, we still assume v < c. Nevertheless, the
speed is not particularly realistic for the public transport system of Cologne. (4 points)

(b) The energy momentum-relation for a particle with rest mass m and momentum p is

E~p =
√
c2p2 +m2c4, p = ‖~p‖. (1)

You may also recall that the apparent mass m̃(v) and the momentum p of a particle from
the point of view of an observer moving with the speed v relative to the particle are

m̃(v) = γ(v)m, p = m̃(v)v = γ(v)mv. (2)

• Since the speed is limited by c, does this mean that the magnitude p of the momen-
tum also has to be bounded? What happens with the total energy E~p as v approaches
c?

• Use (1) and (2) to show that E~p = γ(v)mc2.

• A Kaon K0 decays into a π+ and a π− meson. The rest energy of the Kaon is
E0
K0 ≈ 498MeV, and the rest energy of the pions are E0

π± ≈ 140MeV. (The rest
energy of a particle is E0 = mc2 where m is the rest mass. The π+ and π− mesons
are anti-particles of each other, and have the same rest mass.) Approximately what
fraction of the speed of light will the π-mesons have in the center of mass frame?

(3 points)
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10.2 The Klein-Gordon equation for a free particle
In the lecture you showed that the Klein-Gordon equation can be decomposed into

two coupled equations that are �rst-order in time

i~∂tφ = − ~2

2m
∇2(φ+ χ) +mc2φ, i~∂tχ =

~2

2m
∇2(φ+ χ)−mc2χ. (3)

(a) Make an ansatz of the form[
φ(~p, t)
χ(~p, t)

]
= e−

i
~ (Et−~p·~r)

[
a
b

]
, E ∈ R, a, b ∈ C,

in (3) and show that this leads to an eigenvalue problem of the form M [ ab ] = E [ ab ] for a
2× 2 matrix M . Determine M , and �nd its eigenvalues, and argue why we should expect
to get these eigenvalues. (4 points)

(b) Determine the eigenvectors of M , and combine this with (a) to write down the cor-
responding solutions to (3) as

Ψ±(~p, t) =

[
φ(~p, t)
χ(~p, t)

]
±

=N e−
i
~ (±E~pt−~p·~r)

[
mc2 ± E~p
mc2 −±E~p

]
,

where E~p is as de�ned in (1), and N is a normalization factor that we do not bother to
determine. (2 points)

(c) We can conclude from (a) and (b) that the free Klein-Gordon equation has two types
of plane-wave solutions. One class where the energy is positive, and one where the energy
is negative. Often these are (somewhat vaguely) associated to particles and anti-particles.
A rather relevant question is how these solutions behave in the low energy limit, i.e.,
when speeds are not relativistic. In particular one can note that the two components of

the vector
[
mc2±E~p

mc2−±E~p

]
determines the relative weight between φ and χ in the solutions

Ψ±.

• What are the weights of the two components φ and χ for the positive and negative
plane-waves Ψ+ and Ψ− in the case when the momentum is zero?

• Expand E~p up to the �rst order in p2

m2c2
. You will get two energy terms. Interpret

these two terms.

• What happens to

[
mc2 ± E~p
mc2 −±E~p

]
in the limit of small p2

m2c2
. What does that mean for

the relative weight of φ and χ in the solutions Ψ±?

• What happens to the relative weight between φ and χ for very high speeds, i.e.,
when E~p >> mc2?

(4 points)

(d) Argue that the evolution of positive energy states in the non-relativistic regime (i.e. for

small p2

m2c2
) is approximately governed by a Schrödinger equation. In other words, show

that we in the non-relativistic limit regain what we are used to from standard non-
relativistic quantum mechanics.

Hint: Consider the results in (c) for this regime. Which terms in (3) are going to be
large, and which are going to be small? Be bold and only consider the equation for the
dominant term, and put the small things to zero in that equation. Note that this problem
to its very nature is rather hand-wavy, so we do not expect any particularly rigorous
arguments. (3 points)
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