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Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 11 (Due: Monday January, 16th.)

11.1 Equation of continuity for the Dirac equation

In the lecture we discussed the Dirac equation, which can be written in the form

i~
∂

∂t
Ψ = −i~cαj∂jΨ +mc2βΨ,

where we apply the summation convention, and where α1, α2, α3, and β are 4×4 matrices
as de�ned in the lecture, and where one should keep in mind that Ψ is a spinor (it
is a column vector with four components). We de�ne the density ρ = Ψ†Ψ and the

current ~j = cΨ†~αΨ, which means (j1, j2, j3) = (cΨ†α1Ψ, cΨ†α2Ψ, cΨ†α3Ψ). Show that
∂ρ
∂t

+∇ ·~j = 0. (4 points)

11.2 The algebra of the Pauli matrices

(a) Show that the Pauli-operators (see e.g. exercise 2.1) satisfy the following commutation
relations

[σj, σk] = 2i
∑
l

εjklσ
l (1)

and the following anti-commutation relations

{σj, σk} = 2δjk1̂. (2)

Hint: One can more or less simultaneously prove (1) and (2) by using the properties
of the Pauli operators. What is (σj)2, σ1σ2, and σ2σ1? These results can be combined to
obtain all other products σjσk, which in turn yield the commutator and anti-commutator.
Recall that the Levi-Civita symbol (or the completely anti-symmetric tensor) is de�ned
such that ε123 = ε312 = ε231 = 1, ε213 = ε132 = ε321 = −1, and is zero for all other values
of the indices. (4 points)

(b) Show that

(~a · ~σ)(~b · ~σ) = ~a ·~bI2 + i~σ · (~a×~b). (3)

Hint: Make use of (1) and (2). How can one express the �triple product� ~c · (~a×~b) in
terms of the Levi-Civita symbol? (2 points)
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11.3 The algebra of the gamma matrices
In the lecture we de�ned the gamma matrices (or Dirac matrices) γ0, γ1, γ2, γ3 in terms

of the α and β matrices. (It seems advisable to look this up in the lecture notes.) The
purpose of this exercise is to complement the derivations in the lecture. Show that

{γµ, γν} = 2gµνI4, (4)

where I4 is the 4 × 4 identity matrix, and where gµν is such that g00 = 1, g11 = g22 =
g33 = −1, and is zero otherwise. (4 points)

Remark: The relation in (4) means that the gamma-matrices forms an example of a
Cli�ord algebra.

11.4 Angular momentum and the Dirac equation
The non-relativistic Hamiltonian of a free particle (i.e. H = ~p2/(2m)) commutes with

the (orbital) angular momentum operator ~L = ~r × ~p (like it would for any rotationally
symmetric system). Here we shall see that this is not the case for the Dirac Hamiltonian,
and that we are more or less forced to include spin in order to regain conservation of
angular momentum.

(a) Show that the orbital angular momentum operator ~L = ~r× ~p does not commute with

the Dirac Hamiltonian H = c~α · ~p+ βmc2. (Recall that ~L can be written component-wise

as Ll =
∑

j,k εljkrjpk. To show that [H, ~L] 6= 0 you have to show that at least one of the

components of ~L does not commute with H.) (2 points)

(b) Let us now introduce the operator ~Σ = [ ~σ ~σ ], with components

Σj =

[
σj

σj

]
, j = 1, 2, 3,

with σ1, σ2, and σ3 being the Pauli matrices.

• Show that the Dirac Hamiltonian H does commute with ~L+ ~
2
~Σ.

• What is the physical interpretation of the operator ~S = ~
2
~Σ, and of the operator

~L+ ~
2
~Σ?

(4 points)
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