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Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 12 (Due: Monday January, 23rd.)

12.1 The Klein paradox
When a non-relativistic quantum particle impinges on a potential step it gets re�ected

if the kinetic energy is lower than the height of the potential, although the wave function
has an exponentially decaying tail that extends into the classically forbidden region. Simi-
larly, a Schrödinger particle can tunnel through a potential barrier, but the tunneling rate
diminishes very rapidly with increasing height and width of the barrier. Oddly enough,
the Dirac equation appears to have solutions where the transmission remains non-zero
even though the barrier height goes to in�nity, and this is often referred to as the Klein
paradox. In this exercise we are going to see a hint of this for the solutions of the Dirac
equation for a potential step.

We consider a potential V (z) = 0 for z < 0 and V (z) = V0 for z > 0. For a particle of
rest mass m we wish to �nd stationary solutions with a well de�ned total energy E. As
an ansatz we divide the wave-function into ψz<0 for the region z < 0 and ψz>0 for z > 0,
and for ~p = (0, 0, p), ~q = (0, 0, q) and p > 0 we let

ψz< 0(z) =eipzU
(1)
+ (p) + Ae−ipzU

(1)
+ (−p),

ψz> 0(z) =BeiqzU
(1)
+ (q),

(1)

z > 00z < 0

V0

where U
(1)
+ is one (of the four) spinors associated to the solutions of the free Dirac particle

that we determined in the lecture, and where A and B are yet undetermined coe�cients.

(a)

• Interpret eipzU
(1)
+ (p) and e−ipzU

(1)
+ (−p) in physical terms (in terms of direction of

motion, positive or negative energy, helicity).

• Argue that it must be the case that q2 = 1
c2

(E − V0)2 −m2c2.

• For which values of the energy E is q a real number, and for which values is it
imaginary?

• Relate the cases of real and imaginary q to plane-waves and decaying solutions in
the region z > 0. (In the imaginary case, we need to choose a suitable sign.) For
a �xed total energy E, argue that the solution becomes a plane-wave in the region
z > 0 for all su�ciently large V0.

(4 points)

(b) Our guess in (1) contains the undetermined coe�cients A and B. We determine these
by demanding that the solution is continuous at z = 0, i.e., we assume that ψz<0(0) =
ψz>0(0). Show that

A =
1− η
1 + η

, B =
2

1 + η
, where η =

q

p

E +mc2

E − V0 +mc2
.

(2 points)
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(c) From exercise 11.1 we can recall the de�nition of the current density ~j = (j1, j2, j3).
Here we are interested in the z-component of the current of the incoming, re�ected, and
transmitted components of the above solution. Show that for both imaginary and real q
it is the case that these currents balance each other, such that j3in + j3

re�
= j3trans, where

one should keep in mind to keep the signs of the j3s. (3 points)

(d) From (c) we see that the currents balance as one would expect. However, things are
still odd. Show that if V0 > E + mc2 and q > 0, then |j3

re�
| > |j3in|, and j3trans < 0. In

other words, show that the re�ected current is larger than the incoming current, and the
transmitted current is negative. This lead Klein to choose q < 0. In this case, show that

lim
V0→+∞

|j3
re�
|

|j3
in
|

=
E − cp
E + cp

. (2)

(3 points)

12.2 Symmetries of the free Dirac-particle
In the lectures we showed that the Dirac equation for a free particle is invariant under

charge conjugation, parity, and time-reversal. Here we shall see this in action on speci�c
solutions of the Dirac equation.

(a) With the de�nition of the gamma-matrices given in the lecture as the starting point,
show that

γ0 =

[
I2 0
0 −I2

]
, γj =

[
0 σj

−σj 0

]
, j = 1, 2, 3,

where I2 is the 2×2 identity matrix, and σ1 ≡ σx, σ
2 ≡ σy, σ

3 ≡ σz are the Pauli-operators.
Moreover, we de�ne the gamma-matrix γ5 = iγ0γ1γ2γ3. Show that

γ5 =

[
0 I2
I2 0

]
.

(3 points)

(b) We de�ne the action of the charge conjugation C, parity P , and time-reversal T on a
spinor Ψ(~r, t) by

C[Ψ](~r, t) = iγ2Ψ∗(~r, t), P [Ψ](~r, t) = γ0Ψ(−~r, t), T [Ψ](~r, t) = γ1γ3Ψ∗(~r,−t). (3)

The free-particle Dirac-equation is invariant under all these three operations. This means
that if Ψ is a solution, then C[Ψ], P [Ψ], and T [Ψ] are also solutions.

In the lecture we determined the positive-helicity, positive-energy, free particle Dirac
spinor, for a plane-wave moving in the z-direction. Here we denote this by

ψ↑+(p, z, t) = e−
i
~ (E~pt−pz)U

(1)
+ (~p) = e−

i
~ (E~pt−pz)


1
0
cp

E~p+mc2

0

 . (4)

Calculate C[ψ↑+](p, z, t), P [ψ↑+](p, z, t), and T [ψ↑+](p, z, t), and express the results in
terms of the other plane-wave solutions, where you choose the appropriate positive or
negative helicity, energy, and momentum. (5 points)

Remark: In the lecture we did strictly speaking de�ne the time-reversal as γ1γ3Ψ∗(~r, t),
which maps a solution of the Dirac-equation, to a solution of the time-reversed Dirac
equation. However, in (3) we have incorporated the coordinate transformation t 7→ −t,
and as a result γ1γ3Ψ∗(~r,−t) is a solution of the original equation.
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