Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 2 (Due: Monday October, 31st)

2.1 Angular momentum, singlet and triplet states

Angular momentum is in classical mechanics described as a vector $\vec{j} = (j_x, j_y, j_z)$ pointing in the direction of the rotation axis. In quantum mechanics we do instead describe angular momentum via a vector of operators $\vec{J} = (J_x, J_y, J_z)$. For spin-half systems these angular momentum operators take the form

$$J_x = \frac{1}{2}\hbar\sigma_x, \quad J_y = \frac{1}{2}\hbar\sigma_y, \quad J_z = \frac{1}{2}\hbar\sigma_z.$$

The Pauli operators σ_x , σ_y , σ_z are often expressed in terms of their matrix representations (the Pauli matrices) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ with respect to the eigenbasis basis $\{|\uparrow\rangle, |\downarrow\rangle\}$ of σ_z , where the two orthonormal eigenvectors $|\uparrow\rangle$ and $|\downarrow\rangle$ correspond to the eigenvalues +1 and -1, respectively.

(a) Show that the Pauli operators can be written as

$$\sigma_x = |\uparrow\rangle\langle\downarrow| + |\downarrow\rangle\langle\uparrow|, \quad \sigma_y = -i|\uparrow\rangle\langle\downarrow| + i|\downarrow\rangle\langle\uparrow|, \quad \sigma_z = |\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|.$$
(2 points)

(b) Suppose now that we have *two* spin-half systems with Pauli-operators σ_{1x} , σ_{1y} , σ_{1z} and σ_{2x} , σ_{2y} , σ_{2z} , respectively. Show that

$$\sigma_{1x} \otimes \sigma_{2x} + \sigma_{1y} \otimes \sigma_{2y} = 2|\uparrow\downarrow\rangle\langle\downarrow\uparrow| + 2|\downarrow\uparrow\rangle\langle\uparrow\downarrow|$$

(3 points)

Remark: We have here used a compact notation where, e.g., $|\uparrow\uparrow\rangle$ is the same as $|\uparrow\rangle_1|\uparrow\rangle_2$, which also can be written $|\uparrow\rangle_1 \otimes |\uparrow\rangle_2$. Consequently, $|\uparrow\downarrow\rangle\langle\downarrow\uparrow|$ can be rewritten as $|\uparrow\rangle_1\langle\downarrow|\otimes|\downarrow\rangle_2\langle\uparrow|$.

(c) For two angular momentum operators $\vec{J_1} = (J_{1x}, J_{1y}, J_{1z})$ and $\vec{J_2} = (J_{2x}, J_{2y}, J_{2z})$, the total angular momentum operator is given by $\vec{J} = \vec{J_1} \otimes \hat{I_2} + \hat{I_1} \otimes \vec{J_2}$. Show that for two spin-half systems it is the case that

$$\vec{J}^2 = \frac{3}{2}\hbar^2 \hat{1}_1 \otimes \hat{1}_2 + \frac{1}{2}\hbar^2 \sigma_{1z} \otimes \sigma_{2z} + \hbar^2 (|\uparrow\downarrow\rangle\langle\downarrow\uparrow| + |\downarrow\uparrow\rangle\langle\uparrow\downarrow|).$$

(3 points)

(d) Show that the "singlet state"

$$|\psi_{0,0}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle),$$

and the "triplet states"

$$|\psi_{1,1}\rangle = |\uparrow\uparrow\rangle, \quad |\psi_{1,0}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \quad |\psi_{1,-1}\rangle = |\downarrow\downarrow\rangle,$$

are simultaneous eigenvectors of the two operators \vec{J}^2 and $J_z = J_{1z} \otimes \hat{1}_2 + \hat{1}_1 \otimes J_{2z}$, and determine the corresponding eigenvalues. (4 points)

2.2 Density operators and the Bloch representation

Density operators generalize the notion of quantum states, such that instead of being represented by normalized vectors in a Hilbert space, they correspond to Hermitian positive semidefinite operators with trace 1 on the Hilbert space. The familiar case when the state can be represented by a vector $|\psi\rangle$, is in the language of density operators written as $\rho = |\psi\rangle\langle\psi|$, and such states are referred to as "pure", while all other states are referred to as "mixed".

(a) For the Pauli operators, defined in exercise 2.1, show that

•
$$\operatorname{Tr}(\sigma_j) = 0, \quad j \in \{x, y, z\},$$

•
$$\operatorname{Tr}(\sigma_j \sigma_k) = 2\delta_{j,k}, \quad j,k \in \{x,y,z\}.$$

(4 points)

Remark: The set of linear operators on a finite-dimensional Hilbert space does itself form a Hilbert space (often called the Hilbert-Schmidt space) if one equips it with the inner product $(A, B) = \text{Tr}(A^{\dagger}B)$. The set of operators $\{\hat{1}, \sigma_x, \sigma_y, \sigma_z\}$ forms an orthogonal (but not normalized) basis of the Hilbert-Schmidt space on a two-dimensional Hilbert space. Via this observation one can understand the Bloch-representation, that is the focus of the next exercise, simply as a basis expansion of vectors.

(b) The state of a single spin-half system (a "qubit") can be described via the Blochrepresentation

$$\rho = \frac{1}{2}(\hat{1} + \vec{n} \cdot \vec{\sigma}),$$

where $\vec{n} \in \mathbb{R}^3$ and $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$. Show the following:

- The Bloch-vector is given by $\vec{n} = \text{Tr}(\vec{\sigma}\rho)$
- $\operatorname{Tr}(\rho^2) = \frac{1}{2}(1+|\vec{n}|^2)$
- $\|\vec{n}\| \leq 1$ for all quantum states, and $\|\vec{n}\| = 1$ for pure states. Hence, the Bloch vectors lie inside a sphere of radius 1, where the pure states lie on the surface.
- Suppose that $\rho_1 = |\psi_1\rangle\langle\psi_1|$ and $\rho_2 = |\psi_2\rangle\langle\psi_2|$ for normalized vectors $|\psi_1\rangle$, $|\psi_2\rangle$, where these are orthogonal $\langle\psi_1|\psi_2\rangle = 0$. What is the relation between the corresponding Bloch-vectors \vec{n}_1 and \vec{n}_2 ?

Hint: Use the fact that $Tr(\rho^2) \leq 1$ for all density operators, with $Tr(\rho^2) = 1$ if and only if ρ is pure. (4 points)