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Advanced Quantum Mechanics

Prof. Dr. J. Krug, Dr. J. Åberg

Exercise sheet 5 (Due: Monday November, 21st.)

5.1 Conservation of particle-number for one- and two-body Hamiltonians

We know from the lectures that a Hamiltonian for identical particles that contains
single-particle terms, as well as two-particle terms, can be written on the form

H =
∑
jk

Tjka
†
jak +

∑
jkmn

Fjk,mna
†
ja
†
kanam.

In this exercise we will show that Hamiltonians of this form always commute with the
total number operator, in both the bosonic and fermionic case. This means that the
particle number is conserved, i.e., the dynamics induced by H does not change the total
number of particles in the system.

(a) If aj, a
†
j are bosonic annihilation and creation operators, show that

[a†jak, a
†
lal] =a†jalδk,l − a

†
lakδl,j,

[a†ja
†
kanam, a

†
lal] =a†ja

†
kanalδm,l + a†ja

†
kamalδn,l − a

†
la
†
janamδl,k − a

†
la
†
kanamδl,j

Hint: Use the relation [AB,C] = A[B,C] + [A,C]B from exercise 1.1(a) as well as the
analogous relation [A,BC] = B[A,C]+[A,B]C, and then apply the bosonic commutation
relations. (3 points)

(b) Show that the total number operator N =
∑

l a
†
lal commutes with H in the bosonic

case. (3 points)

(c) If aj, a
†
j are fermionic annihilation and creation operators, show that

[a†jak, a
†
lal] =a†jalδk,l − a

†
lakδl,j,

[a†ja
†
kanam, a

†
lal] =a†ja

†
kanalδm,l − a†ja

†
kamalδn,l + a†la

†
janamδl,k − a

†
la
†
kanamδl,j.

Hint: Use [AB,C] = A[B,C] + [A,C]B, [A,BC] = B[A,C] + [A,B]C, and [AB,C] =
A{B,C}−{A,C}B (see exercise 1.1(a)), as well as the fermionic commutation relations.

(3 points)

(d) Show that the total number operator N =
∑

l a
†
lal commutes with H also in the

fermionic case. (3 points)

5.2 Finding the spectrum of a Hamiltonian by transformation of annihilation
and creation operators

Consider a single bosonic mode, with annihilation and creation operators a, a†, on
which we de�ne the Hamiltonian

H = ~ω(a†a+
1

2
1̂) +

1

2
~(∆∗a†a† + ∆aa),

where ω > |∆|. We wish to �nd the spectrum of this Hamiltonian.
In exercise 4.2 we introduced the Bobogliubov transformation in the special case of a

single pair of bosonic annihilation and creation operators a, a†. We found that the pair
b, b†, de�ned by b = Aa+Ba†, are also bosonic annihilation and creation operators if and
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only if |A|2 − |B|2 = 1. Find such a transformation to bosonic b, b† with real numbers ω̃
and q, such that

H = ~ω̃b†b+ ~q1̂,

and use this to determine the spectrum of H. (4 points)

Remark: Hamiltonians of this type occur for example in quantum optics (related to
something called �single mode squeezing�) and we shall later see a generalization of this
type of Hamiltonian (and a generalization of this type of transformation) when we discuss
weakly interacting bosons.

5.3 Continuity equation for the particle density

Suppose that we have a Hamiltonian of the form

H =

∫
~2

2m
∇Ψ†(~x) · ∇Ψ(~x) d3x+

∫
V(1)(~x)Ψ†(~x)Ψ(~x) d3x

+
1

2

∫ ∫
Ψ†(~x)Ψ†(~x′)V(2)(~x, ~x′)Ψ(~x′)Ψ(~x) d3x d3x′,

(1)

where the �rst term describes the kinetic energy, the second term the single-particle
potential, and the third describes pairwise interactions. As we know from the lecture, one
can de�ne the particle density n(~x) = Ψ†(~x)Ψ(~x), which is the operator that measures
the density of particles at point ~x. One can also de�ne a current density operator by

~j(~x) =
~

2im
[Ψ†(~x)∇Ψ(~x)−

(
∇Ψ†(~x)

)
Ψ(~x)].

Show that systems governed by Hamiltonians of the form (1) satisfy the following conti-
nuity equation

d

dt
n(~x, t) = −∇ ·~j(~x, t),

where n(~x, t) and ~j(~x, t) are the particle density and the current density operator in the
Heisenberg picture. You can take the Heisenberg equation of motion of the �eld operator
as the starting point of the proof. (The equation of motion of the �eld operator was
derived in the lecture.) (4 points)

Remark: Just a reminder of some standard notation from vector calculus.

• For a function f(~x), the gradient is ∇f(~x) =
(
∂f
∂x

(~x), ∂f
∂y

(~x), ∂f
∂z

(~x)
)
.

• For a vector-�eld ~F (~x) =
(
Fx(~x), Fy(~x), Fz(~x)

)
, the divergence is

∇ · ~F (~x) = ∂Fx

∂x
(~x) + ∂Fy

∂y
(~x) + ∂Fz

∂z
(~x).

• The Laplacian is ∇2f(~x) = ∇ · ∇f(~x) = ∂2f
∂x2 (~x) + ∂2f

∂y2
(~x) + ∂2f

∂z2
(~x).

As compared to �standard� vector calculus, the functions we are dealing with here are
operator-valued (like Ψ(~x) and Ψ†(~x)), and similarly the components of the vector-�elds

are operator-valued (such as ~j(~x)).

Page 2 of 2


