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Advanced Quantum Mechanics
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Exercise sheet 6 (Due: Monday November, 28th.)

6.1 The evolution of coherent states in a harmonic oscillator
One can de�ne coherent states |α〉 with respect to a bosonic annihilation operator a via

the relation a|α〉 = α|α〉 for all α ∈ C, or alternatively as |α〉 = e−
1
2
|α|2∑∞

n=0
αn√
n!
|n〉. Here

we shall investigate how coherent states evolve in a harmonic oscillator Hoscillator = ~ωa†a.
• Suppose that a complex number α evolves in time according to the di�erential equa-
tion

i~
d

dt
α(t) = ~ωα(t). (1)

Show that d
dt
|α(t)|2 = 0.

• One can generate (normalized) coherent states from the vacuum state in the following
way

|α〉 = e−
1
2
|α|2eαa

†|0〉. (2)

Show that if we put α = α(t) in (2) where α(t) satis�es (1), then
d
dt
|α(t)〉 = dα

dt
a†|α(t)〉.

• Finally, use the above results to show that |α(t)〉 satis�es Schrödinger's equation
i~ d

dt
|α(t)〉 = Hoscillator|α(t)〉.

(4 points)

Remark: Coherent states have the smallest possible simultaneous uncertainty in posi-
tion and momentum, and are in this sense as close to classical points in phase space as
one can get in quantum mechanics. By this exercise one can see that coherent state stay
coherent in the harmonic oscillator. Moreover, (1) gives the evolution of the correspond-
ing classical oscillator, if one interprets the real and complex part of α(t) as the position
and momentum. Hence, these minimum uncertainty wave-packages follow the trajectory
of the classical Harmonic oscillator.

6.2 The evolution of coherent states in a bosonic quantum �eld
In the previous exercise we investigated the evolution of coherent states in a single

bosonic mode that evolves as a harmonic oscillator. Here we shall make an analogous
construction for a (non-relativistic) bosonic quantum �eld. Let Ψ(~x) and Ψ†(~x) be the
�eld annihilation and creation operators (with Ψ(~x) =

∑
j ϕj(~x)aj for an orthonormal

basis ϕj and annihilation operators aj). We de�ne coherent states |φ〉 via the relation
Ψ(~x)|φ〉 = φ(~x)|φ〉 for all ~x ∈ R3, where φ(~x) is a complex-valued function. (Each complex
number α de�nes a coherent state on a single bosonic mode. Here we have in�nitely many
modes, and each complex-valued function φ de�nes a coherent �eld state.)

Here we shall investigate how coherent �eld states evolve under the Hamiltonian

H�eld =

∫ (
~2

2m
∇Ψ†(~x) · ∇Ψ(~x) + V(1)(~x)Ψ†(~x)Ψ(~x)

)
d3x, (3)

where m is the mass of the particles.

(a) Suppose that the complex-valued function φ(~x, t) evolves in time according to the
partial di�erential equation

i~
∂

∂t
φ(~x, t) =

(
− ~2

2m
∇2 + V(1)(~x)

)
φ(~x, t). (4)
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Show that ∂
∂t

∫
|φ(~x, t)|2 d3x = 0.

Hint: You can assume that φ(~x, t) is such that∫
∇2φ(~x, t)φ∗(~x, t) d3x = −

∫
∇φ(~x, t) · ∇φ∗(~x, t) d3x =

∫
φ(~x, t)∇2φ∗(~x, t) d3x. (3 points)

(b) One can generate (normalized) coherent �eld states from the vacuum state in the
following way

|φ〉 = e−
1
2

∫
|φ(~x)|2 d3xe

∫
φ(~x)Ψ†(~x) d3x|0〉. (5)

De�ne |φ(t)〉 as in (5) with φ(~x) = φ(~x, t), where φ(~x, t) satis�es (4). Show that ∂
∂t
|φ(t)〉 =∫ ∂φ(~x,t)

∂t
Ψ†(~x) d3x|φ〉.

Hint: If A(t) is an operator-valued function and if [dA
dt

(t), A(t)] = 0, then d
dt
eA(t) =

dA
dt
eA(t) = eA(t) dA

dt
. (3 points)

(c) De�ne |φ(t)〉 as in (5), where φ(~x) = φ(~x, t) satis�es (4). Show that |φ(t)〉 satis�es
the Schrödinger equation i~ ∂

∂t
|φ(t)〉 = H�eld|φ(t)〉, with H�eld as in (3).

Hint: You can assume that |φ〉 is such that∫
∇Ψ†(~x) · ∇Ψ(~x) d3x|φ(t)〉 = −

∫
Ψ†(~x)∇2Ψ(~x) d3x|φ(t)〉. (3 points)

Remark: The function φ(~x, t) can be regarded as a classical �eld that evolves ac-
cording to the �eld equation (4). (One can alternatively regard (4) as the single-particle
Schrödinger equation, but where the wave-function φ(~x, t) is not necessarily normalized to
1.) Analogous to coherent states in Harmonic oscillators, the coherent �eld states follow
the trajectory of the classical �eld φ(~x, t).

6.2 Single-body correlation functions
In statistical physics and condensed matter physics it is often useful to describe prop-

erties of systems in terms of correlation functions. Here we shall take a look at one of
these, namely the single-body (or single-particle) correlation function 〈φ|Ψ†(~x′)Ψ(~x)|φ〉,
which is some sense measures how much a state |φ〉 changes if we remove a particle from

one position ~x and put it at another position ~x′. Here we investigate the correlation func-
tion of the ground state of gases of non-interacting particles. For the sake of simplicity we
shall not consider R3 but assume that everything happens in R (and thus we write Ψ(x)
and Ψ†(x) for x ∈ R). For a single particle of mass m with Hamiltonian H = P 2/(2m),
which moves on an interval of length L with periodic boundary conditions, the eigenstates
are ϕk(x) = eikx/

√
L, with k = 2π l

L
, l ∈ Z.

(a) For a collection of identical particles (bosons or fermions) let |φ〉 be such that each
single-particle state ϕk is occupied by ñk quanta. (Hence, the state can be written

|φ〉 = Πk
a†
ñk

√
ñk!
|0〉.) Show that the single-body correlation function is 〈φ|Ψ†(x′)Ψ(x)|φ〉 =

1
L

∑
k e
−ik(x′−x)ñk. (2 points)

(b) For N non-interacting bosons, what would the correlation function 〈φ|Ψ†(x′)Ψ(x)|φ〉
be if |φ〉 is the ground state? (2 points)

(c) If |φ〉 is the ground state for N non-interacting (spinless) fermions, show that the

correlation function becomes 〈φ|Ψ†(x′)Ψ(x)|φ〉 = 1
L

sin(Nπ
L

(x′−x))

sin( π
L

(x′−x))
. It is enough that you do

the cases where N is odd. (The cases of even N get a bit annoying due to a degeneracy.)
Moreover, �x the average density ρ = N

L
and take the limit L→∞. What is the resulting

correlation function? (3 points)

Remark: Note that these correlations are only functions of the di�erence x′−x, which
is due to the fact that these systems are translation invariant.
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