Advanced Statistical Mechanics (WS 2019/20) Problem Set 4

Problem 5: Block spin renormalization of the 1d Ising model.

One of the main ideas of the renormalization group is to express the parameters of a coarse-grained Hamiltonian in terms of the parameters of the original Hamiltonian for the same system. This coarsegraining process is performed such that the long-range physics is left unaltered. In this problem, we coarse-grain the 1d Ising chain in the absence of an external magnetic field. We choose a specific procedure with a coarse-graining factor $b=3$, i.e., we coarse-grain groups of three neighboring spins, $\left\{s_{i-1}, s_{i}, s_{i+1}\right\}$, to a single new spin $s_{j}^{\prime}=s_{i}$ at the midpoint position (see figure).

(a) Write the partition function of the system as a product of Boltzmann factors $e^{J s_{i} s_{i+1}}$, where J is the reduced coupling constant (measured in units of $k_{B} T$). Note there are three factors, containing the spin products $s_{2} s_{3}, s_{3} s_{4}$, and $s_{4} s_{5}$, between the two midpoint spins $s_{1}^{\prime} \equiv s_{2}$ and $s_{2}^{\prime}=s_{5}$.
(b) Using the coarse-graining rule defined above, write this triple product in terms of the corresponding new spins $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ by performing the sum over the original spins in between, $s_{3}, s_{4}= \pm 1$. Hint: Use $e^{k s_{i} s_{j}}=\cosh \left(k\left(1+s_{i} s_{j} \tanh k\right)\right)$.
(c) Generalize the result of (b) to write the entire partition function of the coarse-grained system, $Z=\sum_{\left\{s^{\prime}\right\}} e^{-H^{\prime}\left(\left\{s^{\prime}\right\}\right)}$ with a new Hamiltonian $H^{\prime}\left\{s^{\prime}\right\}$ depending only on the coarse-grained spins $\left\{s^{\prime}\right\}$,

$$
\begin{equation*}
H^{\prime}\left(s^{\prime}\right)=N g\left(J, J^{\prime}\right)-J^{\prime} \sum_{i} s_{i}^{\prime} s_{i+1}^{\prime} . \tag{1}
\end{equation*}
$$

Compute the new coupling constant $J^{\prime}(J)$ and the function $g\left(J, J^{\prime}\right)$. Give an interpretation of g.
(d) Defining $x \equiv \tanh (J)$ and $x^{\prime} \equiv \tanh \left(J^{\prime}\right)$, find the relation between x and x^{\prime}. This relation tells us how the nearest-neighbour coupling constant of the Hamiltonian changes under the coarse-graining procedure. What is the physical interpretation of the limits $x \rightarrow 0^{+}$and $x \rightarrow 1^{-}$?
(e) Suppose we iterate the procedure: $x \rightarrow x^{\prime} \rightarrow x^{\prime \prime} \ldots$, etc. What are the two fixed points of this dynamics? Are they stable or unstable? Give a physical interpretation.

To be discussed on: Mon, November 25th
Course information: http://www.thp.uni-koeln.de/~lassig/teaching.html

