## Advanced Statistical Mechanics (WS 2019/20) Problem Set 7

## Problem 7: Correlations in two dimensions

In this problem set we are going to compute the correlation function for the XY model in two dimensions. This provides us a nice excuse to review some useful calculations for Gaussian distributions.
(a) We first warm up with a simple calculation about one-dimensional gaussian densities. Let $Z(\gamma)$ be defined as

$$
\begin{equation*}
Z(\gamma)=\int \mathrm{e}^{-\frac{x^{2}}{2 \sigma^{2}}+\gamma x} \mathrm{~d} x=Z(0)\left\langle\mathrm{e}^{\gamma x}\right\rangle_{\gamma=0} \tag{1}
\end{equation*}
$$

Compute $Z(\gamma)$ and show that every moment of the gaussian distribution $\mathcal{N}\left(0, \sigma^{2}\right)$ can be computed by the taking its derivatives. For this reason, $\left\langle\mathrm{e}^{\gamma x}\right\rangle$ is called the moment generating function.
(b) We now move to higher dimensions. Let $\vec{x} \in \mathbb{R}^{d}$, with a multivariate Gaussian distribution defined by $p(x) \propto \mathrm{e}^{-\vec{x}^{T} \Pi \vec{x}}$ where $\Pi$ is a positive definite symmetric matrix. We now want to compute the moment generating function in $d$ dimensions, $Z(\vec{\gamma}) / Z(0)$, with $\vec{\gamma} \in \mathbb{R}^{d}$. By using the transformation: $\vec{x}=\vec{y}+\vec{v}$, with a suitable $\vec{v}$, show that

$$
\begin{equation*}
Z(\vec{\gamma})=Z(0) \mathrm{e}^{\frac{1}{2} \vec{\gamma}^{T} \Sigma \vec{\gamma}} \tag{2}
\end{equation*}
$$

where $\Sigma=\Pi^{-1}$. In the same way as in (a), show that every moment can be calculated by computing the partial derivatives of Eq. (2). In particular, compute $\left\langle x_{i} x_{j}\right\rangle_{\gamma=0}$
(c) Let us move to even higher dimensions. We study the infinite-dimensional spaces of scalar functions in $\mathbb{R}^{2}$, where we extend the objects that we already know in finite dimensions.

$$
\begin{cases}\vec{x}^{T} \vec{y} \rightarrow \int_{\mathbb{R}^{d}} \varphi(r) \psi(r) & \text { Scalar product }  \tag{3}\\ \Pi \vec{x} \rightarrow \int_{\mathbb{R}^{d}} \Pi\left(r, r^{\prime}\right) \varphi\left(r^{\prime}\right) \mathrm{d} r^{\prime} & \text { Matrix-vector product } \\ \vec{x}^{T} \Pi \vec{x} \rightarrow \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(r) \Pi\left(r, r^{\prime}\right) \varphi\left(r^{\prime}\right) \mathrm{d} r \mathrm{~d} r^{\prime} & \text { Quadratic form }\end{cases}
$$

In addition, the role of the identity is played by the Dirac-delta function in virtue of its definition $\varphi(x)=\int_{\mathbb{R}^{d}} \delta(x-y) \varphi(y)$. We need only a final step in order to compute our correlation functions. If we integrate by parts, we see that the Hamiltonian $\mathcal{H}=\kappa \int_{r}(\nabla \varphi(r))^{2}$ can be written as $-\kappa \int_{r} \varphi(r) \nabla^{2} \varphi(r)$, which is effectively a quadratic form defined by the linear operator $\nabla^{2}$. We say that the probability of the field $\varphi(r)$ is given by

$$
\begin{equation*}
P[\varphi(r)] \propto \mathrm{e}^{-\kappa \int \varphi \nabla^{2} \varphi} \tag{4}
\end{equation*}
$$

In order to repeat the calculation in (b) we need to find its inverse $G\left(r, r^{\prime}\right)$, defined by:

$$
\begin{equation*}
-\kappa \nabla^{2} G\left(r-r^{\prime}\right)=\delta\left(r-r^{\prime}\right) \tag{5}
\end{equation*}
$$

where we have expressed $G\left(r, r^{\prime}\right)=G\left(r-r^{\prime}\right)$ due to the translational invariance of the problem. Use Gauss' Theorem in a sphere of radius $R$ centered in $r^{\prime}$ to show that $G\left(r-r^{\prime}\right)$ in $d$ dimensions decays as $R^{-(d-2)}$ and that in the case of $d=2, G(R)=-\frac{1}{2 \pi \kappa} \log \left(\frac{R}{a}\right)+$ const.
(d) All the ingredients necessary to compute the spin-spin correlation functions are now ready. Compute the value of $\left\langle\mathrm{e}^{i\left(\varphi\left(r_{1}\right)-\varphi\left(r_{2}\right)\right.}\right\rangle$ and from there deduce the spin-spin correlation $\left\langle S\left(r_{1}\right) \cdot S\left(r_{2}\right)\right\rangle$. Hint: You may want to use the relation $\varphi\left(r_{i}\right)=\int_{r} \delta\left(r-r_{i}\right) \varphi(r)$, considering this as a scalar product.

To be discussed on: Mon, December 16
Course information: http://www.thp.uni-koeln.de/~lassig/teaching.html

