Universität zu Köln Institut für Biologische Physik Prof. Michael Lässig Dr. Fernanda Pinheiro Denny Trimcev Matthijs Meijers

Advanced Statistical Mechanics (WS 2019/20) Problem Set 8

Problem 8: Diffusion in a quadratic potential

Here, we consider the relaxation of a diffusion process towards equilibrium:

$$\frac{\partial}{\partial t}P(x,t) = \frac{D}{2}\frac{\partial^2}{\partial x^2}P(x,t) - \frac{\partial}{\partial x}[v(x)P(x,t)]$$
(1)

with a deterministic velocity field $v(x) = -\Gamma \frac{d}{dx}U(x)$ and potential

$$U(x) = \frac{1}{2}x^2.$$
 (2)

(a) Show that the equilibrium distribution is a Gaussian distribution

$$P_{\rm eq}(x) = \frac{1}{\sqrt{2\pi\Delta_{\rm eq}}} \exp\left[-\frac{1}{2\Delta_{\rm eq}}(x-\mu_{\rm eq})^2\right],\tag{3}$$

and calculate its mean μ_{eq} and variance Δ_{eq} .

- (b) Let the initial distribution at time t = 0 be Gaussian with mean μ_0 and variance Δ_0 . Show that the time-dependent solution $P_t(x) \equiv P(x,t)$ of the diffusion equation for t > 0 is also Gaussian and calculate the time-dependent mean $\mu(t)$ and variance $\Delta(t)$. Sketch the results for the following cases:
 - (i) $\mu_0 = \mu_{eq}, \Delta_0 \ll \Delta_{eq},$
 - (ii) $\mu_0 = \mu_{eq}, \Delta_0 \gg \Delta_{eq},$
 - (iii) $\mu_0 > \mu_{eq}, \Delta_0 = \Delta_{eq}.$

Hint: Assume that $P(x,t_1)$ at a given time t_1 is Gaussian distributed. Consider a small timestep δt and show that at time $t_2 = t_1 + \delta t$ the distribution $P(x,t_2)$ is in first order of δt of the form $A(t_1) \exp[B(x,t_1,t_2)]$, where $B(x,t_1,t_2)$ is quadratic in x. B can hence be written as $-(x - \mu(t_2))^2/2\Delta(t_2) + C(t_1,t_2)$. Express $\mu(t_2)$ and $\Delta(t_2)$ as functions of $\mu(t_1)$ and $\Delta(t_1)$. From that follow differential equations for $\mu(t)$ and $\Delta(t)$, which you have to solve. Check, if $P(x,t_2)$ is normalized properly.

(c) Calculate the Shannon entropy of time-dependent solution (minus its equilibrium value)

$$\mathcal{S}(t) - S_{\rm eq} \equiv \mathcal{S}(P(t)) - \mathcal{S}(P_{\rm eq}), \tag{4}$$

the expectation value of the energy (minus its equilibrium value)

$$\mathcal{U}(t) - \mathcal{U}_{eq} \equiv \int dx \, U(x) P(x,t) - \int dx \, U(x) P_{eq}(x), \tag{5}$$

and the resulting free entropy (minus its equilibrium value)

$$\Phi(t) - \Phi_{\rm eq} \equiv (\mathcal{S}(t) - S_{\rm eq}) - \beta(\mathcal{U}(t) - \mathcal{U}_{\rm eq})$$
(6)

with $\beta = 2\Gamma/D$. Discuss the behaviour for all three observables for the cases given in (b).

Remark: $1/\beta$ is the constant temperature of the reservoir, with which the system is in contact. In this diffusive problem the motion is over-damped, i.e. the kinetic energy is in equilibrium during the whole process and the dynamics only depend on the potential energy U.

To be discussed on: Mon, January 13th

Course information: http://www.thp.uni-koeln.de/~lassig/teaching.html