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Institut für Theoretische Physik, Universität zu Köln, Zülpicherstrasse 77, 50937 Köln, Germany
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Time-dependent selection causes the adaptive evolution of new
phenotypes, and this dynamics can be traced in genomic data. We
have analyzed polymorphisms and substitutions in Drosophila, using
a more sensitive inference method for adaptations than the standard
population-genetic tests. We find evidence that selection itself is
strongly time-dependent, with changes occurring at nearly the rate of
neutral evolution. At the same time, higher than previously estimated
levels of selection make adaptive responses by a factor 10–100 faster
than the pace of selection changes, ensuring that adaptations are an
efficient mode of evolution under time-dependent selection. The rate
of selection changes is faster in noncoding DNA, i.e., the inference of
functional elements can less be based on sequence conservation than
for proteins. Our results suggest that selection acts not only as a
constraint but as a major driving force of genomic change.

Phenotypic adaptations build on genomic sequence substitutions
driven by a positive fitness effect. The distribution of these

fitness differences (selection coefficients) has been debated since
the advent of neutral theory (1–6). Coding DNA evolves under
considerable constraint, i.e., nonsynonymous substitutions take
place at a lower rate than synonymous changes (7). This shows that
selection on protein evolution is predominantly negative. However,
there is also evidence that the nonsynonymous substitutions that do
occur are in part driven by positive selection (8–10). The evolu-
tionary role of noncoding DNA is less clear. A particularly intrigu-
ing idea is that phenotypic evolution is due in a large part to changes
in gene regulation, whereas proteins evolve more slowly (11, 12).
This hypothesis lacks quantitative evidence so far, but a number of
recent studies have found fitness effects in noncoding DNA.
Transcription factor binding sites in bacteria are under substantial
selection for functionality (13), and putative regulatory regions in
eukaryotes also show substantial selective constraints (14, 15).
Evidence of positive selection has been reported for intergenic
DNA in Drosophila (16, 17), albeit with near-neutral selection
coefficients (17). Inference methods rely on various implicit as-
sumptions, and they differ considerably in the inferred strength of
selection and in its contribution to genomic change (6).

Our phenotypic concept of adaptation contains more than the
mere presence of positive selection. Migration of a population
followed by adaptation to a new habitat, the conquest of an
ecological niche in coevolution, incipient sympatric speciation
driven frequency-dependent selection: in all these examples, fitness
itself is time-dependent, and the adaptive evolution of new func-
tions is the response to this change.

Including the dynamics of selection into a quantitative picture of
genome evolution is the purpose of this paper. To illustrate our
rationale, let us first consider the case of static fitness, where
intuition suggests that evolution reaches a balance between advan-
tageous and deleterious substitutions. This point can be made more
precise: the long-term dynamics of substitutions leads to an evolu-
tionary equilibrium, where the probability of a (fixed, haplotype)
sequence state a depends exponentially on its Malthusian fitness fa
(scaled by the effective population size). This simple form of
equilibrium, originally derived for a two-allele model (18), applies
to arbitrary sequence spaces and genomic fitness landscapes (19).
It is characterized by detailed balance: the likelihood of any
substitution (i.e., the product of initial state probability and sub-
stitution rate) between sequence states with a scaled fitness differ-
ence f � fb � fa equals the likelihood of the corresponding backward

process, which involves a fitness difference (�f). Hence, on average
every deleterious substitution is offset by an advantageous muta-
tion, the average fitness remains constant, and there are no
adaptations. Now consider a simple switch in the genomic fitness
function: at a single position of the sequence, the selection coeffi-
cients f of all point mutations change sign. If the magnitude of
selection is substantial, the most likely genomic state before the
switch is fixation of the fittest nucleotide. After the switch, this state
becomes suboptimal, which gives rise to an adaptive substitution to
the new fitness optimum. This point is generic: adaptation in a
time-dependent fitness landscape involves a surplus of advanta-
geous substitutions compared to equilibrium. Thus, we define
adaptation as a pure nonequilibrium phenomenon, i.e., more
restrictively than in much of the literature, where any substitution
with a positive fitness effect is counted as an adaptation. However,
our definition is in tune with the phenotypic view of adaptation
sketched above and has a conceptual advantage to be made precise
below: it provides an unambiguous statistical distinction of adaptive
substitutions and near-neutral background changes. The adaptive
surplus in substitutions can be traced in genomic data, which allows
us to infer the dynamics of selection together with the genome’s
adaptive response.

The quantitative analysis of this joint evolution process is based
on a statistical model of time-dependent selection: point mutations
at individual positions have fitness effects f(t) � ��, which ran-
domly and independently change sign at a rate �. Thus, selection is
characterized by two parameters, the strength � and the fluctuation
rate �. The latter governs the relative weight of positive and negative
selection: higher values of � generate a larger function of sites under
positive selection, as shown by the above example. In this picture,
populations evolve under two stochastic forces: genetic drift and
selection switches. The classical work on fluctuating selection by
Wright, Kimura, Ohta, Gillespie, and others (2, 20–26) was aimed
at describing ecological changes such as seasonality or frequency-
dependent selection. For these micro-evolutionary fluctuations, the
correlation time of selection does not exceed the characteristic time
scale of genetic drift given by the effective population size, 1�� �
N (2). Here we focus on macro-evolutionary fluctuations with much
longer correlation times of the order of the mutation time scale,
1�� � 1�� �� N, as discussed by Gillespie (26) and Cutler (27) as
an explanation for the overdispersion of the molecular clock. We
obtain analytical solutions for the joint statistics of polymorphisms
and substitutions, which depends on the strength and fluctuation
rate of selection. Based on these solutions, we infer time-dependent
selection and the resulting adaptation by a systematic Bayesian
procedure. From a computational point of view, our method is a
model-based scoring system for hybrid intra- and interspecies
sequence alignments. As we show by explicit benchmarking, it is
more sensitive than the classical population-genetic tests for adap-
tation (8, 28), which address partial aspects of the polymorphism
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and substitution frequencies. Hence, time dependence is not just an
additional facet of selection but a crucial part of its quantitative
inference.

Applying this method to sequence data from Drosophila, we find
evidence for genome-wide selection with substantial amplitudes
(2N�0 � 1) and fluctuation rates of the order of the neutral
mutation rate (� � �). As will be discussed below, it is both
characteristics together that establish adaptations as a major driving
force of genomic evolution.

Theory of Fluctuating Selection
Mutation-Selection-Drift Model. We first consider a single-locus
model with two alleles a and b and denote by x the population
frequency of allele b, various generalizations will be discussed later.
In the diffusion approximation, the time-dependent haplotype
frequency distribution p(x, t) obeys the Fokker–Planck equation

ṗ�x, t� � ��2N��1	2x�1 � x� � f0�t�	x�1 � x�

� �0	�1 � 2 x�
p�x, t� [1]

describing reproductive fluctuations (genetic drift) in a population
of effective size N, selection with a Malthusian fitness difference 2N
f0(t) � fb(t) � fa(t) between the two alleles, and mutations with a
rate �0 per individual per generation (assumed to be equal for
forward and backward changes). We consider a simple model of
time-dependent selection,

f0�t� � �0��t�, [2]

with constant magnitude �0 and fluctuating direction �(t) � �1,
which follows a Poisson process with rate �0. This process defines
a statistical ensemble given by the average and the covariance

��t� � 0, ��t���t�� � e�2�0�t�t�� [3]

of the variables �(t). Measuring time in units of the diffusion scale
2N introduces the rescaled evolutionary parameters f(t) � 2N f0(t),
� � 2�0N, � � 2�0N, and � � 2�0N.

Stationary Evolution Under Constant Selection. First recall well
known results for time-independent selection, f(t) � � (29). The
Kimura equation (Eq. 1) has the form of a continuity equation, ṗ �
�	Jp with the rescaled probability current J � �	x(1 � x) 
�x(1 � x)  �(1 � 2x). Two normalized and linearly independent
stationary solutions pa(x) (a � �1), which are eigenfunctions of J,
can be defined by the boundary conditions that p(x) remain finite
at x � 1 and p�(x) remain finite at x � 0. Asymptotically for small
�, these solutions take the form

pa�x; �� �
1

Za
�x�1 � x�
�1��1 � e��x��1a��2�
 , [4]

up to terms of order �2, with normalization factors Za given in terms
of hypergeometric functions [see supporting information (SI) Ap-
pendix]. Their current eigenvalues define the Kimura–Ohta substi-
tution rates for these processes, i.e., Jpa(x) � auapa(x) with

ua �
a��

1 � e�a� . [5]

A generic normalized stationary solution p(x) of Eq. 1 can be
written as a linear combination

p�x� � �p�x� 	 ��p��x� [6]

with 0 � �a � 1 and �  �� � 1. Evolutionary equilibrium defines
the unique stationary solution peq(x) with a vanishing substitution
current, Jpeq(x) � 0, i.e., there is detailed balance between forward

and backward substitutions. The equilibrium distribution, given
exactly for all values of � by peq(x) � [x(1 � x)]�1�e�x�Zeq with a
normalization factor Zeq (30), has the form (Eq. 6) with

�a
eq �

1
1 	 ea� �

u�a

u 	 u�
. [7]

Quasistationary Evolution. For time-dependent solutions of Eq. 1, no
generic closed form exists even in the case of constant selection. For
� �� 1, however, an important simplification arises due to a
separation of dynamical regimes, which is illustrated in Fig. 1. From
an arbitrary initial distribution p(x, t � 0), the frequency distribu-
tions describing forward and backward processes reach their sta-
tionary shapes p(x) and p�(x) within an initial time regime of order
2N generations (i.e., of order 1 in our rescaled time units); see Fig.
1a. For larger values of t, the distribution takes the quasistationary
form (Eq. 6) with time-dependent coefficients �a(t) (a � �1) up to
correction terms of order exp(�t); see Fig. 1b. The long-term
dynamics of substitutions is given by the rate equations

d
dt

�a � u�a��a � ua�a [8]

and governs the approach to equilibrium,

�a�t� � �a
eq � C exp���u 	 u�� t
 . [9]

Fig. 1. Allele frequency evolution under constant and fluctuating selection.
The distribution p(x, t) of a two-allele Fisher–Wright model involving muta-
tions, selection, and genetic drift with parameters � � 0.025, � � 4, and a
discretization value N � 400 (shown as dots) is obtained by numerical
propagation using the exact continuous time Master equation. (a) Initial
regime (t 
 1) for constant selection: From an initially monomorphic allele-a
population, the solution p(x, t) (shown here for t � 0.2, 0.4, 0.6, 0.8, 1.0,
bottom to top) builds up the spectrum of ‘‘forward’’ polymorphisms towards
the stationary shape p	 (x) (solid line) as given by Eq. 4. (b) Quasistationary
regime (t � 1) for constant selection: The solution p(x, t) (shown here for
�t � 0.05, 0.45, 0.80) follows the quasistationary form (thin lines) in excellent
approximation and approaches the equilibrium distribution peq(x) (thick line)
for large values of �t. (c) Quasistationary evolution of the coefficient function
� 	 (t) for constant selection (dashed line) and fluctuating selection with � �
0.5 (solid line), which follows Eq. 9 in each interval of constant selection for a
given realization of switching events (shown as vertical lines).
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Evolution Under Fluctuating Selection. In the full model given by Eqs.
1–3, allele frequencies evolve under two stochastic forces: genetic
drift and selection fluctuations. The joint statistics of both processes
is very complicated in general (2). The problem becomes again
tractable in the quasistationary approximation, which can be ap-
plied if � �� 1 and � �� 1, i.e., if selection fluctuations are
macro-evolutionary. This is demonstrated in Fig. 1c for the coef-
ficient function �(t), which follows Eq. 9 in each interval of
constant selection for a given fluctuation history �(t). Generalizing
Eq. 6, we define the joint probability �a

(t) (a,  � �1) of allele a
and the direction of selection �(t) � . These probabilities follow the
quasistationary evolution equations

d
dt

�a
 � u�a��a

 	 ��a
� � �ua 	 ���a

 � �
a�,�

Uaa�
��a�

� [10]

defining the 4 � 4 rate matrix U. Given initial probabilities at an
earlier time t0, we obtain

�a
�t� � Taa�

� � t � t0��a�
�� t0� [11]

with the transition matrix T(t � t0) � exp[(t � t0)U]. In the
following, we focus on key properties of this process relevant for
cross-species sequence comparisons.

Nonequilibrium Stationarity. The asymptotic limit of Eq. 11 defines
a nonequilibrium stationary state, which describes the long-term
average over selection fluctuations and genetic drift for a family of
genomic loci evolving independently. The approach to stationarity
is governed by the rate u  u� as in Eq. 9. In the data discussed
below, it is much faster than for neutral evolution due to substantial
levels of selection, with u  u� � ��. The statistics of the
stationary state depends on two scaled selection parameters, the
strength � and the fluctuation rate in units of the neutral mutation
rate, � � ���. The stationary allele probabilities counted in their
contemporary direction of selection are given by the asymptotic
state probabilities limt3 � �a

 � ��a� with

�� a���, �� �
u�a� 	 �

u 	 u� 	 2�
[12]

and should be compared with the equilibrium probabilities (Eq. 7)
for constant selection. They determine the efficiency of the
genomic response to time-dependent selection as measured by the
degree of adaptation

���, �� �
�f � f�

fmax � f�
�

u � u�

u 	 u� 	 2�
, [13]

where �f is the average fitness of the genomic nucleotide, f� is the
average fitness of a random nucleotide, and fmax � f�a is the fitness
of the preferred nucleotide. Sequence turnover takes place at an
average substitution rate

utot�� , � , �� � �� u 	 �� �u� �
2uu� 	 ��u 	 u��

u 	 u� 	 2�
.

[14]

The rate of adaptations is given as the surplus of advantageous
substitutions over deleterious ones,

uad�� , � , �� � �� u � �� �u� �
��u � u��

u 	 u� 	 2�
, [15]

and these produce an average fitness flux, i.e., a gain in fitness

���, �, �� � �uad �
���u � u��

u 	 u� 	 2�
[16]

per unit of time. We can thus decompose the sequence turnover
into near-neutral substitutions due to genetic drift and adaptive
substitutions generated by fluctuating selection. The fraction of
adaptive substitutions at selection amplitude � � 0 is

�̃��, �� �
uad

u tot
�

��u � u��

2uu� 	 ��u 	 u��
. [17]

Cross-Species Correlations. The time-dependent transition proba-
bilities (Eq. 11) determine genomic correlations between species
due to their common ancestry, which depend on their divergence
time t. The joint probability of states a,  and a�, � for two species
is a sum over the states a�, � of their last common ancestor,

gaa�
� ��, �, �, t� � �

a�,�

Taa �
 � � t�Ta�a �

 � � t��� a���, [18]

assuming stationarity of the ancestor states and subsequent diver-
gent evolution with independent selection fluctuations along the
two branches of the phylogeny. Unlike the standard notion of
derived alleles, we do not make any ad hoc assumption that the
outgroup carries the ancestral or the preferred nucleotide, which
would introduce a bias in the predicted frequencies. The cross-
species correlations between allele frequencies at orthologous loci
are then given by the joint distribution

q�x, x�� � �
a,a�,,���1

gaa�
�pa�x, ��pa��x�, ����. [19]

To analyze genomic polymorphism data, we have to compute the
expected allele frequency distributions in a finite sample of indi-
viduals randomly drawn from a population (31). For two species
with divergence time t, the joint probability Q(k, k��m, m�) of finding
k alleles b (k � 0, 1, . . . , m) in a random sample of m individuals
of the first species and k� alleles b (k� � 0, 1, . . . , m�) at the
orthologous locus in a random sample of m� individuals of the
second species is

Q�k, k��m, m�� � �
a,a�,,���1

gaa�
�Ma

�k, m�Ma�
��k�, m��,

[20]

where Ma
(k, m) are the binomial moments of the elementary

stationary distributions (Eq. 4),

Ma
�k, m� � �m

k � �
0

1

xk�1 � x�m�kpa�x, ��dx, [21]

given in terms of hypergeometric functions (see SI Appendix). To
leading order in t and in the limit of neutral evolution, the
expressions (Eq. 20) reduce to the well known sampling formulae
of ref. 31. Here we use the full time-dependence of (Eq. 18), which
allows for multiple substitutions at the same site, since the short-
time approximation can produce a spurious signal of selection.

Data Analysis
Sequence Data and Alignments. We have aligned 271 Drosophila
melanogaster sequence fragments, which are scattered across the X
chromosome and are sampled from 12 individuals of a Zimbabwe
population (17, 32, 33), to a single Drosophila simulans outgroup
sequence. The aligned loci are binned into five broad genomic
categories: 4-fold synonymous sites and nonsynonymous substitu-
tions in protein coding DNA, intergenic regions, introns, and
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UTRs, similarly to the classification in ref. 17. In each category, we
count k-fold single-nucleotide polymorphisms for k � 1, . . . , 11
(i.e., positions where k ingroup sequences differ from the nucleotide
of the outgroup sequence at the orthologous position) as well as
conserved positions (k � 0) and point substitutions within the
sample (k � 12). Normalizing these counts per unit sequence length
then defines the frequency distributions Q̂(k) (k � 0, . . . , 12), which
are stable with respect to alignment changes and, in particular, do
not overestimate the number of substitutions (for details and count
tables, see SI Appendix). These genomic distributions can be
compared to symmetrized pair probabilities Q(k) � Q(k, 0�m, m�) 
Q(m � k, m��m, m�) with m � 12 and m� � 1 as given in ref. 20.

Bayesian Inference of Evolutionary Parameters. In a given genomic
category, the distribution Q(k) has to be averaged over an a priori
unknown distribution �(�) of selection amplitudes,

Q�k��, �, �, t� � �
0

�

����Q�k��, �, �, t�d�. [22]

To infer this distribution, we use simple parameterizations which
contain the average level of selection �ave � � � �(�)d� and the
fraction of selected sites cs � �2

� �(�)d� (with the threshold 2
chosen by convention) as independent parameters, see SI Appendix.
The likelihood scoring function is then defined as

s�k��, �, �, t� � log 	Q�k �� , � , � , t�
Q0�k ��4f, t� 
 , [23]

where we choose as reference distribution Q0 the best neutral model
for 4-fold synonymous sites. (This choice does not influence our
inferences, which are based on score differences.) A sequence
category consisting of L independent loci with allele counts k1, . . . ,
kL has the total score

S � �
r�1

L

s�kr��, �, �, t� � L �
k�0

m

Q̂�k�s�k��, �, �, t�. [24]

We then infer cs, �ave, �, and � for each genomic category and the
common parameter t by maximizing S summed over all categories
(see ref. 34 for a similar approach). Confidence intervals follow
from sampling of the Bayesian posterior probability.

Model Discrimination, P Values. For a set of allele counts k1, . . . , kL
drawn from a distribution Q(k��, �, �, t), any other model Q� has
a likelihood given by the corresponding difference of scores (Eq.
24), P � exp[��(S � S�)], with � � 1 for independent counts and
a � � 1 for the actual datasets due to the partial linkage of loci (see
SI Appendix). In particular, we can quantify the evidence for
adaptive evolution by the P value of the best equilibrium model Q�,
which is obtained by maximizing S� with the constraint � � 0. The
resulting score difference per locus, �s � (S � S�)�L, is shown in
Fig. 2a as a function of the parameters � and � of the input model
Q. This can be compared with the analogous score difference �sMK
of a McDonald–Kreitman (MK) test, which is based on the overall
frequencies of polymorphisms Qp � �k�1

m�1 Q(k) and of substitutions
Qs � Q(m), and on their counterparts Q0

p, Q0
s in a neutral reference

class, see Fig. 2b and SI Appendix for details. The increase in
statistical power is significant: (i) The full score difference �s is
positive and, thus, produces evidence for adaptation for all param-
eters �, � � 0, whereas the MK test does not infer adaptations in
the region where QsQ0

p�QpQ0
s � 1 and hence �sMK � 0. (ii) �s is

always higher than �sMK, which implies that the same P value is
reached with (sometimes considerably) less loci. (iii) Our method
correctly reconstructs the fraction �̃ of adaptive substitutions as
given by Eq. 17, whereas estimate �̃MK � 1 � QpQ0

s�QsQ0
p (6, 9)

based on the MK test leads to a systematic underestimation; see Fig.
2 c and d. As shown in SI Appendix, there is a similar difference in
statistical power compared to all inferences based only on the poly-
morphism spectrum, such as Tajimas D test and its variants (28).

Demographic Effects. The history of a population enters the allele
frequency data through a time-dependent population size N(t) �
N�(t) (where N is today’s effective population size), leading to
deviations from equilibrium even for stationary selection. These
demographic effects have been studied extensively for different
Drosophila populations in the recent literature (32, 33, 35, 36). In
particular, reduced population sizes for D. melanogaster in the past
can lead to an increased number of substitutions, and recent
variations in population size will also influence the polymorphism
spectrum. As an alternative model to fluctuating selection, we
consider the evolution under time-independent selection (� � 0)
and a bottleneck on the ingroup branch with strength �b, initial time
ti, and duration tf � ti (0 � ti � tf � t). The corresponding
distributions Q(k��, �, t, ti, tf, �b) have a selection-dependent
increase in the substitution frequency. These distributions are
obtained numerically, older bottlenecks (tf � t � 1) can also be
treated analytically using the quasistationary approximation (Eq. 8)
with scaled selection coefficients �(t) � ��(t). The demography is
shared between the different genomic categories and is hence
treated with global parameters in the maximum-likelihood analysis
(for further details, see SI Appendix).

Fig. 2. Inference of adaptive evolution under fluctuating selection. (a)
Statistical evidence for adaptation, as given by the likelihood score difference
per locus, �s, between the input model and the best equilibrium (� � 0) model
as a function of the input selection parameters � and � (input � and t as in the
Drosophila data sets below). Contours from bottom to top: 0 (thick line), 5 �
10�4, 5 � 10�3, 0.01, 0.015 (thin lines). (b) Analogous score difference �sMK�L
based on the McDonald–Kreitman test. Contours as in a, no-inference region
(�SMK � 0) marked by stripes. (c) Fraction of adaptive changes �̃(�, �) as given
by Eq. 17, which is correctly reconstructed by the full maximum-likelihood
procedure for a sufficiently large number of loci. Contours from bottom to
top: 0 (thick line), 0.1, 0.3, 0.7, 0.9 (thin lines). (d) Estimated fraction �̃MK (9)
using the McDonald–Kreitman test, which leads to a systematic underestima-
tion. Contours as in c, no-inference region (�̃MK � 0) marked by stripes.
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Linkage Between Loci, Hitchhiking. The sequence data originate
from a number of different contiguous fragments. Loci on different
fragments can be assumed independent, but loci on the same
fragment are partially linked. These correlations can confound the
inference of selection through hitchhiking effects, by which a locus
under sufficiently strong positive selection influences the polymor-
phism spectrum at nearby loci, which are not under positive
selection themselves (37). The characteristic length of reduced
variance due to a hitchhiking event is � � ���, where � is the
recombination rate per 2N generations. The expected distance
from a polymorphic site to the nearest adaptive change taking place
during the lifetime of the polymorphism is � � 1�cs�. A scaling
argument then suggests that the importance of hitchhiking is
measured by the average ratio

� �
�

�
�

�ave�

�
�

�

�
, [25]

which can be estimated from our inferred values of � and inde-
pendent values of �. This is discussed in SI Appendix, where we show
by a simulation of partially linked loci that hitchhiking may lead to
an underestimation of some selection parameters but leaves the
conclusions unaffected. In the same way, we verify numerically that
other features not explicitly contained in our model, such as
differences in neutral mutation rates and four-allele loci, do not
confound our parameter inference.

Results and Discussion
Fluctuating Selection in Drosophila. The model distributions ob-
tained from Eq. 20 produce a good fit to the observed distributions
Q̂(k) in all genomic categories (see Fig. 3). As expected, the
frequency distribution of 4-fold synonymous sites in coding DNA is
near-neutral (�ave � 1). In all other categories, we find substantial
levels of selection affecting a substantial fraction of sites. The
average selection strength over all sites in one category ranges from

�ave � 14 in intronic regions to �ave � 100 for replacement
substitutions in coding DNA (see Table 1). The fractions of selected
sites are cs � 0.6, but these may be overestimated due to the possible
presence of hitchhiking (37, 38) (see SI Appendix). The Bayesian
posterior yields likelihood values P � 10�37 for neutral evolution,
indicating that the presence of selection is statistically significant.
Perhaps more surprisingly, the evolution is not only far from
neutrality but also far from equilibrium. The inferred fluctuation
rates of selection are of the same order of magnitude as the neutral
mutation rates (0.1 � � � 0.5). Hence, the fitness function at
individual genomic sites is not static: it evolves at the same tempo
as nucleotide changes, resembling more a seascape than a land-
scape. Because fluctuations at different sites are independent, these
rates translate into a number of selection switches of order one per
year in the Drosophila genome. The time-dependence of selection
is statistically significant, with likelihood values P � 10�17 for any
model with static selection (� � 0) at equilibrium and P � 10�10

with only demographic deviations from equilibrium by a time-
dependent effective population size, see Fig. 3 and SI Appendix.

Genetic Drift and Adaptations. If genomic evolution is driven by
fluctuations in reproduction and selection, can we disentangle the
effects of these two stochastic forces? At a given selection amplitude
�, Eq. 17 provides an unambiguous decomposition of the observed
sequence divergence into drift-generated background changes and
adaptations. Background substitutions are mostly near-neutral, and
they have selection coefficients f � � and f � �� with equal
frequencies, because advantageous changes merely compensate
deleterious ones. For � � 0, there is a surplus of substitutions with
f � �, signaling the adaptive response to time-dependent selec-
tion. Averaging over the inferred distribution of selection ampli-
tudes in a genomic category, we find substantial fractions of
adaptive changes, �̃ave � uad,ave�utot,ave � 0.6, again with a caveat
due to possible hitchhiking. Yet, it appears that adaptations and
background changes contribute to genomic evolution in compara-

Fig. 3. Polymorphisms and substitutions in D. melanogaster. Genomic categories are shown. (a) Four-fold synonymous sites in coding DNA (squares), and
nonsynonymous changes in coding DNA (diamonds). (b) Intergenic regions. (c) Introns. (d) UTRs. Data points indicate frequency distributions Q̂(k) (dots) of
conserved positions (k � 0), k-fold polymorphisms (k � 1, . . . , 11), and substitutions (k � 12) per unit sequence length, relative to a reference distribution
Q0(k) obtained as the best neutral fit for 4-fold synonymous sites. Maximum-likelihood model distributions Q(k) shown as lines to guide the eye:equilibrium
model (� � 0) (short-dashed lines) and demographic model (with a 100-fold reduced D. melanogaster population size between speciation and 0.65 of divergence
time and time-independent selection, � � 0) (long-dashed lines), producing a poor joint fit to all genomic categories (P � 10�17 and P � 10�10, respectively).
Fluctuating-selection model, with parameters given in Table 1, produces a good joint fit to all genomic categories (solid lines).

Table 1. Selection parameters and adaptive response

4-Fold synonymous Nonsynonymous Intergenic Intronic UTRs

�ave 1.4 [0, 5] 115 [52, �200] 17 [9, 27] 14 [6, 34] 40 [14, 84]
� 0.0 [0.0, 2.8] 0.12 [0.06, 0.27] 0.27 [0.15, 0.46] 0.44 [0.23, 0.83] 0.38 [0.20, 0.93]
� 0.0 [0.0, 0.78] 1.0 [0.99, 1.0] 0.97 [0.90, 0.99] 0.94 [0.78, 0.98] 0.98 [0.89, 0.99]
� 0.0 [0.0, 0.13] 0.37 [0.17, 0.82] 0.15 [0.07, 0.22] 0.18 [0.07, 0.30] 0.50 [0.19, 0.88]

�ave, average magnitude of selection scaled by effective population size; �, fluctuation rate of selection in units
of the neutral mutation rate; �, degree of adaptation given by Eq. 13; �, fitness flux per site given by Eq. 16;
brackets indicate 90% confidence interval, from sampling of the Bayesian posterior distribution.
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ble measure, a salomonic note in the neutralist–selectionist debate.
Moreover, both classes are strongly intertwined: neutral changes
can open new paths for subsequent adaptations.

Evolvability by Adaptation. For all genomic categories in D. mela-
nogaster except 4-fold degenerate sites, we find average levels of
selection �ave about an order of magnitude higher than previously
reported values (17, 31, 34, 39), due to the increased statistical
sensitivity of our method discussed above. These substantial levels
are crucial for adaptations to be an efficient mode of evolution
under time-dependent selection: fitness changes occur at about the
rate of neutral evolution, but adaptive responses are faster by a
factor ���. For example, a selection change in either D. melano-
gaster or D. simulans at the time of speciation �3 million years ago
will have generated an adaptive differentiation between today’s
lineages in �60% of the affected sites with � � 20 but in �10% of
weakly selected sites (� � 2). Evolvability by adaptation can be
quantified by the degree of adaptation at stationarity, �, which is
defined in (Eq. 13). Selected sites in all of the genomic categories
in D. melanogaster except 4-fold synonymous sites have values � �
0.9 (see Table 1), due to their substantial average values of �. This
justifies our conclusion that the deviations from equilibrium in the
observed distributions Q̂(k) are due to ongoing selection fluctua-
tions in a nonequilibrium steady state, rather than just a poorly
adapted genomic state approaching equilibrium in a static local
fitness function. The time-dependence of selection implies a fitness
cost due to temporary misadaptation (23). Thus, the high values of
� imply that most of the selection switches readily trigger an
adaptive response, resulting in a number of adaptive substitution of
order one per year in the Drosophila genome. Importantly, evolv-
ability by adaptation does not require evolutionary tuning of the
neutral mutation rate to the fluctuation rate of selection, provided
selection amplitudes are sufficiently high.

Fitness Flux Quantifies Adaptations. The relative contribution of
genomic categories to phenotypic adaptations can be estimated on
the basis of their fitness flux, i.e., the expected fitness gain per unit
time. This weighted measure is more appropriate than the mere
number of changes, since substitutions differ by orders of magni-
tude in their fitness effects and, hence, in their putative phenotypic
consequences. According to Eq. 16, the fitness flux � per unit
sequence length is proportional to the selection parameters � and
� for strong selection, but the contribution of weakly advantageous
substitutions is suppressed: these either happen too slowly (if f � �)
or are too unstable against reversal (if f � 1). All genomic categories
of the Drosophila except 4-fold synonymous sites are well above this
threshold and have comparable values of � (see Table 1). Hence,
the total flux in noncoding DNA, obtained by multiplying � with
the number of sites in those categories, may indeed outweigh that

of protein evolution, as suggested previously for the numbers of
adaptive changes (17). Notably, the fitness flux in UTRs and
intergenic DNA results from more frequent changes with a lower
value of f each than for replacement changes in coding DNA, where
selection is stronger but more static. This may point to the role of
regulation in the adaptive differentiation between species.

Fitness Is Correlated Between Sites and in Time. The time-
dependence of selection can be put in perspective by comparison
with known evolution models, which are related to the fluctuating-
selection model. For � � 0, individual sites evolve independently
under time-independent selection. If a substitution at a given site
has selection coefficient f, its backward substitution has selection
coefficient (�f), i.e., the fitness effects of subsequent substitutions
at the same site are correlated. On the other hand, the evolution of
long genomic sequences is often described by the infinite-sites
model, regarding any two subsequent substitutions as independent
and neglecting correlations between their selection coefficients f.
This approximation is justified to the extent that fitness correlations
between subsequent substitutions at the same site have decayed,
either because of external fluctuations or due to in-between sub-
stitutions at other sites that have a fitness effect on the site in
question (epistasis). This is precisely what the fluctuation param-
eter � measures in the generic case: the fitness changes at a given
site driven by external causes or by the coupled evolution of the
remainder of the genome. Fitness interactions changing the direc-
tion of selection for substitutions at a given site, so-called sign
epistasis (41), occur in a number of observations and models of
protein, RNA, and regulatory evolution (19, 40, 42–46). Thus, the
higher values of � in UTRs, intronic and intergenic DNA shown in
Table 1 are in accordance with the expected ubiquity of sign
epistasis in regulatory sequences (13, 19). Our analysis relates
epistasis to temporal fitness correlations at individual genomic sites.
It suggests that sign epistasis may be pervasive, indicating a genome-
wide rugged fitness landscape.

Genomic evolution emerges as a complex stochastic process,
shaped jointly be the driving force of time-dependent selection,
fitness interactions between sites, and the ongoing background of
near-neutral changes. Much more remains to be learned about the
interplay of these evolutionary forces: in a large and strongly
coupled system, one external signal can trigger an avalanche of
subsequent compensatory responses, which build up an evolution-
ary innovation. This dynamics seems now within reach of genomic
sequence analysis.
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