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We develop a statistical theory of probabilistic sequence alignments derived from

a `thermodynamic' partition function at �nite temperature. Such alignments are

a generalization of those obtained from information-theoretic approaches. Finite-

temperature statistics can be used to characterize the signi�cance of an alignment

and the reliability of its single element pairs.

1 Introduction

The standard algorithms of Needleman-Wunsch 1 and of Smith-Waterman 2

align sequences by maximizing a score function that favors matching element

pairs over mismatches and gaps. Maximum-score alignments are an accurate

measure of similarity for closely related sequences. With increasing evolution-

ary distance, however, they tend to become sensitive to the choice of scoring

parameters and therefore less reliable. One is thus lead to ask: How `likely' is

the maximum-score alignment compared to its alternatives?

In this paper, we develop the theory of probabilistic alignments derived

from a thermodynamic partition function. These are called �nite-temperature

alignments. The theory is a generalization of the scaling approach to maximum-

score alignments discussed in a number of recent publications3;4;5;6;7. The par-

tition function formalism has also been used in other recent work 8;9. Finite-

temperature alignments have two key applications: (i) estimating the reliability

of the single element pairs in an alignment and (ii) assessing the relative signif-

icance of di�erent high-score local alignments. The latter are found e�ciently

using a new algorithm called the ridge path algorithm.

A probabilistic notion of alignment is also inherent to information-theoretic

approaches. (The conceptual relationship between Bayesian statistics and sta-

tistical mechanics has recently been discussed in the related context of protein

potentials 10.) The known maximum-likelihood 11;12;13 and Bayesian mini-

mum message length alignments 14;15 can be regarded as special cases of �nite-

temperature alignments, which are obtained by minimization of a suitable

entropy function. It is shown, however, that minimum-entropy alignments do

not have maximal accuracy (in a sense to be de�ned below). This caveat to-
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Figure 1: (a) One possible local alignment of two sequences Q and Q0 with elements

taken from a 4-letter alphabet and numbered by i and j, respectively. The aligned

subsequences are shown in boldface, with 4 pairings (three matches, one mismatch)

and one gap. (b) Unique representation of this alignment as directed path A (thick

line) on an alignment grid with coordinates t = i+ j � 1 and r = j � i. The vertices

of this graph are labeled by even values of t+ r. The diagonal bonds represent site

pairs (i; j) and are labeled by odd values of t+ r. The alignment length is L = 9.

wards the application of Bayesian statistics is expected to be important in a

wider context of related problems.

2 The de�nition of �nite-temperature alignments

A local alignment of two sequences Q = fQig (i = 1; : : : ; N) and Q0 =

fQ0jg (j = 1; : : : ; N 0) is de�ned as an ordered set of pairings (i; j) and of

gaps (i;�) and (�; j) involving the elements of two contiguous subsequences

fQi1 ; : : : ; Qi2g and fQ0j1 ; : : : ; Q0j2g; see Fig. 1(a). Its length is de�ned as the

total number of aligned elements, L � i2�i1+j2�j1 < N+N 0. An alignment

can be uniquely represented as a directed path A on the two-dimensional grid

of Fig. 1(b) 1. Using the coordinates r � i� j and t � i+ j � 1, this path is

the graph of a single-valued function r(t) for t = i1+ i2; i1+ i2+1; : : : ; i2+ j2.

An alignment A with N+ matches (Qi = Q0j), N� mismatches (Qi 6= Q0j), and

Ng gaps has length L = N+ +N� + 2Ng. The simplest scoring functions are

linear in N+, N�, and Ng. Any such function can be written in the normal

form 7;5

S(A) = �L+
p
c� 1N+ � 1p

c� 1
N� � Ng (1)

with two adjustable parameters, the gap cost  and the score gain per aligned

element, �. (The prefactors of N+ and N� are such that for two letters Qi and

Q0j chosen randomly from a c-letter alphabet, the pairing (Qi; Q
0
j) has score

average 2� and variance 1.)



A �nite-temperature alignment is a probability distribution

P (A) = 1

Z
exp[S(A)=� ] : (2)

over all alignment pathsA. The form of Eq. (2) is �xed by the requirement that

the probability of disjoint pieces of an alignment should be multiplicative while

the score is additive. The normalization factor Z =
P
A
exp[S(A)=� ] is called

the partition function of alignment 8;9;3, and F � � logZ is the free energy.

A �nite-temperature alignment thus has three parameters. The average gap

frequency and length of the paths are controlled by  and �, respectively, while

� governs the relative weight of paths with di�erent scores. (In the language

of statistical mechanics, P (A) de�nes a Gibbs ensemble at temperature � for

directed paths A with line tension  and chemical potential �.)

A �nite-temperature alignment contains any element pair (Qi; Q
0
j) with

a �nite probability �(r = j � i; t = i + j � 1). This is determined by the

sum Z(r; t) �P
A:(r;t)2A exp[S(A)=� ] over all paths passing through the point

(r; t). The normalization of the alignment probabilities is somewhat arbitrary

since we are interested only in the relative importance of two di�erent site

pairs (r; t) and (r0; t0), which is given by the ratio �(r; t)=�(r0; t0). The local

free energy F (r; t) � � logZ(r; t) can be computed by a simple generalization

of the Smith-Waterman dynamic programming algorithm; see Appendix A.

The limit value S(r; t) � lim�!0 F (r; t) is the maximum score of any path

containing the point (r; t). Finite-temperature alignment thus reduces to the

usual Smith-Waterman alignment for � ! 0; see also Appendix A.

3 The statistics of �nite-temperature alignments

Alignment statistics describes averages (denoted by overbars) over an ensemble

of sequence pairs (Q;Q0) with well-de�ned mutual correlations. This ensem-

ble should not be confused with the Gibbs ensemble P (A) de�ning a �nite-

temperature alignment for a given sequence pair. The �nite-temperature statis-

tics of this paper involves a double average over sequence pairs and alignment

paths. We have performed extensive numerical work for various sequence en-

sembles and alignment parameters. Here we summarize our main �ndings;

details can be found elsewhere 16.

Consider �rst �nite-temperature alignments for pairs of Markov sequences

Q and Q0 without mutual correlations (i.e, each letter Qi and Q0j is drawn

independently from a c-letter alphabet). The properties of these alignments

are determined by which paths contribute most to the partition function Z,

or equivalently, to the local sums Z(r; t). Due to the `chemical potential' term



�L in the scoring function (1), we expect longer paths dominate over shorter

ones for large �, but are exponentially suppressed for su�ciently small �. This

is indeed the case. For pairs of sequences of equal length N !1, we �nd the

asymptotic behavior of the average local free energy

F (r; t) ' [� � �c(; �)] � 2N for � > �c(; �)

F (r; t) ! F0(; �; �) for � < �c(; �)
(3)

with a parameter-dependent threshold value �c(; �) < 0. This determines

the average length of alignment paths, L = @F=@�. In the global alignment

regime (� > �c(; �)), the entire sequences are aligned, i.e., L ' 2N . In the

local alignment regime (� < �c(; �)), L reaches a �nite limit L0(; �; �) �
@F0(; �; �)=@�. There is a continuous phase transition between the two

regimes; that is, F0 and L0 diverge as � approaches the threshold value �c from

below. The relations (3) have a �nite zero-temperature limit describing the

well-known phases of maximum-score Smith-Waterman alignments 2;4;5;6. The

local alignment regime has the characteristic score S0(; �) � lim�!0 F0(; �; �).

Figs. 2(a,b) show an example of the free energy `landscape' F (r; t) and of

the corresponding alignment probabilities �(r; t) � exp[F (r; t)=� ] in the local

alignment regime at �nite � . Both F (r; t) and �(r; t) are seen to be small

(of order F0) at many points of the alignment grid, with disconnected islands

of larger values forming around locally signi�cant paths. Free-energy islands

persist for � = 0. In this limit, they can be de�ned by the condition S(r; t) > 0,

and their statistics has recently been characterized in detail 17.

We now turn to the detection of sequence similarity by �nite-temperature

alignments. Consider pairs of Markov sequences Q, Q0 with mutually cor-

related subsequences Q̂ and Q̂0 of approximately equal length N̂ = N̂ 0; the

remainder of Q and Q0 has no correlations. The `daughter' sequence Q̂0 is

obtained from its `ancestor' Q̂ by a simple Markov evolution process 7 with

substitution probability p and insertion/deletion probability ep. A particular

outcome of this process is uniquely represented by the sequences Q and Q0

together with a speci�c path 3 on the alignment grid called the evolution path

E . This path is of length LE = N̂+N̂ 0. The ancestor elements Qi that are nei-

ther deleted nor substituted de�ne, together with the corresponding daughter

elements Q0j , the conserved pairs (Qi; Q
0
j). These are contained in the path E .

In Figs. 2(c,d), we show a �nite-temperature alignment for this case. The

free energy landscape develops a larger island around the evolution path E .
Consequently, the alignment probability �(r; t) is now concentrated around

that path, and so are the points of maximal local free energy, F (r; t) = Fmax.

Clearly, this `correlation island' can only be detected if the alignment parame-

ters are chosen in the local alignment regime such that the randomly generated



r

20

40

60
t

1
2

3

4

F

r

20

40

60
t

(a)

4

4

4

0

-30

30 30
r

20

40

60
t

0

2

4
F

r

20

40

60
t

(c)

4

4

4

-30

0

t

r

(b)

-35 350

460

440

420

400

t

r

(d)

-35 0 35

460

440

420

400

Figure 2: (a,b) The free energy landscape F (r; t) and the alignment probability �(r; t)

for a pair of mutually uncorrelated sequences in the local alignment regime, shown

only in a part of the alignment grid. Typical values of F (r; t) are of order F0.

(c,d) The same for a pair of sequences with mutual correlations. The leading score

`island' lies around the evolution path and has a free energy maximum Fmax � F0.
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Figure 3: Parameter dependence of the alignment accuracy for a pair of mutually

correlated sequences with evolution parameters p = 0:1; ep = 0:1 and evolution paths

of length LE = 950. (a) The �delity f , (b) the relative length L=LE , and (c) the

average signi�cance ratio s as a function of � for various values of � and  = �(�).

(d,e) The relative maxima f�(�) and s�(� ).

islands are signi�cantly smaller. This is measured by the signi�cance ratio

s � Fmax=F0 : (4)

How can the accuracy of such alignments be quanti�ed and optimized?

For a given element pair (Qi = Q0j), we can ask whether it is a conserved

pair or a random match. For the alignment distribution P , we de�ne the

weighed �delity f � P
c �(r; t)=

P
m �(r; t), where

P
m runs over all matches

(i; j) of the alignment grid and
P

c over the conserved matches only. This

de�nition is statistically equivalent to other �delity measures used previously

for maximum-score alignments 3;6.

The alignment data have a strong parameter dependence. In Figs. 3(a,b),

this is exempli�ed for the dependence of the �delity f and the length L on

� at �xed  and � . For small �, f is at its relative maximum and L < LE ;

typical alignment paths are close to the evolution path but are too short.

For larger �, f is small and L > LE , indicating that the paths are too long.

There is a unique intermediate point where f is still maximal and L = LE ,

i.e., where the alignment and the the evolution path match best. This point

is very close to the point where the signi�cance ratio s reaches its relative

maximum; see Fig. 3(c). The same is true for the relative maxima f�(�) and



s�(�) optimized over both � and . This de�nes optimal parameter values

�(�) and ��(�) (which, of course, also depend on the sequence characteristics

given here by p and ep). f�(�) and s�(�) are always found to be decreasing

functions of � as shown in Figs. 3(d,e). Hence, the global maxima are attained

at parameter values � = 0, � � �(� = 0), �� � ��(� = 0). We draw two

important conclusions: (a) Alignments can be optimized by maximization of the

signi�cance ratio s. (b) The optimal alignment is always a zero-temperature

(maximum-score) alignment. For � = 0, the signi�cance ratio becomes s =

Smax=S0. The zero-temperature optimization has been discussed in detail in a

previous publication 6. The scaling theory of alignment explains theoretically

why the alignment accuracy and s have a common parameter dependence.

4 Minimum-entropy alignments and information theory

In this section, we compare the signi�cance optimization of alignments with

alternative approaches grounded upon Bayes' principle14;15. For simplicity, we

limit ourselves to sequences with mutual correlations over the entire length (i.e.,

Q̂ = Q and Q̂0 = Q0) and N = N 0 � 1. We can then choose global alignments

with an arbitrary value of � > �c(; �) (e.g., � = 0) and have to optimize

only  and � . In the framework of Bayesian statistics, the Markov evolution

process is a probabilistic machine producing sequence pairs (Q;Q0) as data

with a frequency distribution Ze(Q;Q
0). This distribution is characterized by

the evolution parameters, here p and ep. Finite-temperature alignments with

di�erent , � are regarded as hypotheses about this process. These are gauged

by their message length, which is de�ned as (minus) the joint log-probability

of data (Q;Q0) and hypothesis (; �). For a parameter-independent `prior'

probability of the hypothesis, the relevant part of the message length is (minus)

the log-probability of the data under a given hypothesis. This probability

(or likelihood) is given by a suitably normalized alignment partition function

Z;� (Q;Q
0) � Z;�(Q;Q

0)=N (details can be found elsewhere 16).

The Bayesian statistical analysis results in a `posterior' distribution over

the hypotheses, in this case, over  and � . In particular, we can de�ne `best'

parameters (e; �e) from a `minimum entropy' principle for the ensemble aver-

age logZ;� =
P

Q;Q0 Ze(Q;Q
0) logZ;� (Q;Q

0). Indeed, the di�erence

�logZ;� + logZe =
X
Q;Q0

Ze(Q;Q
0) log

� Ze(Q;Q
0)

Z;� (Q;Q0)

�
(5)

is just the relative entropy or Kullback-Leibler divergence of the probability

distributions Z;� and Ze. It reaches its minimum 0 if and only if the two
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Figure 4: Parameter dependence of the likelihood Z;� (Q;Q0) for a given pair of

long sequences. The sequences are generated by a Markov evolution process with

parameters p = 0:80 and ep = 0:072 and alphabet size c = 4. The function � logZ;�

has its unique minimum at the point (e = 3:5; �e = 3:6) given by (6).

distributions are equal: Ze;�e(Q;Q
0) = Ze(Q;Q

0) for all Q;Q0. This �xes the

local weights exp(s�=�e) and exp(�e=�e) of matches, mismatches, and gaps

in terms of the substitution and insertion/deletion frequencies, i.e., in terms of

the evolution parameters p; ~p (cf. Appendix A). The relations can be written

in the form

e = �e log
h1� 2epep

�
1� p+

p

c

�i�pc� 1

�e =
cp
c� 1

"
log
h c(1� p)

p
+ 1

i#�1
: (6)

Minimization of the message length can, in principle, be used to infer a pri-

ori unknown evolution parameters from a single sequence pair (Q;Q0) (see also

the discussion in previous papers 11;12;13). The reason is that logZ;� (Q;Q
0)

is self-averaging, i.e., it converges to the ensemble average logZ;� with prob-

ability 1 in the limit of long sequences. This is illustrated in Fig. 4, where

� logZ;� (Q;Q
0) is shown for a given pair of sequences generated with evolu-

tion parameters p; ep. There is indeed a unique minimum at the point (e; �e)

given by (6). The procedure can be extended to infer also the type of muta-

tions 14;15.

Bayesian statistics thus focuses on the evolution process rather than on the

conserved element pairs. The posterior distribution over alignment parame-

ters, however, does not reproduce the point (� < e; � = 0) of maximal �delity

and signi�cance ratio. In particular, the minimummessage length alignment is

not the most accurate one. Reconstructing the evolution characteristics is not

equivalent to �nding sequence similarities. Indeed, the two extremization prin-

ciples are quite di�erent. Maximizing logZ � F=� �xes the local Boltzmann



factors, while maximizing s = F=F0 involves the nonlocal statistics of the ran-

dom free energy islands contained in F0. How the latter can be incorporated

into the framework of information theory is still an open problem.

5 Local reliability and ridge scores

While �nite-temperature alignments do not improve the overall accuracy of the

optimal maximum-score alignment A�, they are very useful in quantifying the

reliability of its site pairs, as we discuss qualitatively in the sequel. A number

of di�erent approaches to this problem are discussed in the literature18;19;20;21.

In an alignment with parameters �, ��, and � > 0, the dominant paths

are A� and subleading paths with small random deviations from A�. How-

ever, since A� itself has small random deviations from the evolution path E ,
the leading suboptimal paths are nearly as good approximations to E . The

reliability of a site pair (r; t) 2 A� depends on the number of such alternative

paths passing through di�erent points (r0; t). This in turn is related to the

alignment probability at some temperature �c, the characteristic scale for the

decrease of f�(�) and s�(�) to signi�cantly below the zero-temperature values.

We �nd �c � S0(
�; ��) in accordance with scaling theory 16.

As an example of such a reliability estimate, consider two correlated se-

quences Q̂ and Q̂0 with Q̂0 containing a repeat (i.e., a subsequence and an

adjacent copy of it) of length n. The conserved element pairs then fall in two

disconnected groups as shown in Fig. 5(a). For n not too large compared to the

length of the groups, the optimal path A� interpolates between both groups

and thus contains spurious matches (Fig. 5(b)). The �nite-temperature align-

ment at � = �c clearly exhibits this region of unreliable site pairs; see Fig. 5(c).

In other cases, the optimal path A� may contain only one group of the

conserved pairs, while the optimal path A0 covering the other group has a much
smaller score; see the example of Figs. 5(d,e). The second and possible further

groups are then usually found by declumping 22;23. This procedure involves

partially rerunning the dynamic programming algorithm for each subleading

alignment to be found. Here we proceed di�erently, noting that both A� and
A0 satisfy the ridge condition S(r; t) = max(S(r � 1; t); S(r; t); S(r + 1; t)) for

all of their points (r; t). More generally, we de�ne for arbitrary alignent paths

A the ridge score

R(A) �
8<
:

S(A) if S(r; t) = max(S(r � 1; t); S(r; t); S(r + 1; t))

for all (r; t) 2 A with t+ r even

0 otherwise.

(7)

The local score maxima R(r; t) � maxA:(r;t)2AR(A) can be computed by a
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Figure 5: Local reliability and ridge paths for a pair of mutually correlated sequences

Q̂ and Q̂0 with a repeat of length n = 10 in Q̂0. (a) The positions of the conserved

element pairs (Qi; Q
0

j) fall into two disconnected groups. The repeat elements are

located at the lower end of the left group and at the upper end of the right group.

(b) The optimal alignment path A� interpolates between both groups. (c) The �nite-

temperature alignment with parameters � = 1:0 � �0,  = 1:0 � �(�), � = �0:44 �
��(�) exhibits the unreliable site pairs between the two groups of conserved elements.

(d) A case similar to (a). (e) Here the optimal alignment A� covers only one group

of the conserved pairs. (f) The ridge path algorithm �nds both groups.

modi�ed dynamic programming algorithm in a single run, as described in Ap-

pendix B. We �nd they give directly all signi�cant disjoint paths 16. In the

example shown, both A� and A0 are found; see Fig. 5(f).
We conclude that �nite-temperature alignments together with the ridge

path algorithm are useful methods to identify all signi�cant local alignments of

given sequences. These in turn are the building blocks to construct statistically

well-de�ned longer or global alignments.
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Appendix A: The �nite-temperature algorithm

The local free energy F (r; t) can be decomposed as

F (r; t) =

�
F 0(r; t) + F 00(r; t) if t+ r even

F 0(r; t� 1) + F 00(r; t+ 1) + 2� + s(r; t) if t+ r odd
: (8)

Even values of t+ r belong to vertices of the alignment grid and odd values to site

pairs (i; j). The restricted free energies F 0(r; t) and F 00(r; t) are de�ned at vertices.

F 0(r; t) = logZ0(r; t) is given by the partition function Z0(r; t) of all paths with initial

point at some t0 � t and endpoint (r; t), and F 00(r; t) refers to the paths with initial

point (r; t) and endpoint at some t00 � t. The match/mismatch scores

s(r; t) =

�
s+ �

p
c� 1 if Q(r+t+1)=2 = Q0

(t�r)=2

s� � �1=
p
c� 1 if Q(r+t+1)=2 6= Q0

(t�r)=2

(9)

are de�ned for site pairs. F 0(r; t) can be obtained from the `forward' recursion

F
0
(r; t) = 
� (F

0
(r�1; t�1)+��; F 0(r+1; t�1)+��; F 0(r; t�2)+2�+s(r; t)) (10)

with


� (x1; x2; x3) = � log
�
e
x1=� + e

x2=� + e
x3=� + 1

�
; (11)

and F 00(r; t) from the analogous `backward' recursion. The last term on the r.h.s. of

(11) is the contribution of a path starting at (r; t) and having length L = 0.

In the zero-temperature limit, the local free energy reduces to the local score

maximum; S(r; t) � lim�!0 F (r; t) = maxA:(r;t)2A S(A). The forward/backward

decomposition is still of the form (8). The forward recursion (10) for S0(r; t) �
lim�!0 F

0(r; t) reduces to the usual Smith-Waterman algorithm, i.e.,


0(x1; x2; x3) = max(x1; x2; x3; 0) : (12)

Appendix B: The ridge path algorithm

The local ridge score maximum R(r; t) has a forward/backward decomposition of the

form (8), with the forward score R0(r; t) de�ned as the maximal ridge score (7) of all

paths starting at some t0 � t and ending at (r; t). We use the recursion

R
0
(r; t) = (13)8<
:


0(R
0(r� 1; t� 1) + � � ;R0(r + 1; t� 1) + � � ;R0(r; t� 2) + 2� + s(r; t))

if S(r; t) = max(S(r � 1; t); S(r; t); S(r + 1; t))

0 otherwise,

which requires previous computation of the scores S(r; t) according to Appendix A.

The backward score R00(t) is obtained in an analogous way.
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