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Abstract. We study the stochastic dynamics of sequences evolving by single-
site mutations, segmental duplications, deletions, and random insertions. These
processes are relevant for the evolution of genomic DNA. They define a
universality class of non-equilibrium 1D expansion–randomization systems with
generic stationary long-range correlations in a regime of growing sequence
length. We obtain explicitly the two-point correlation function of the sequence
composition and the distribution function of the composition bias in sequences
of finite length. The characteristic exponent χ of these quantities is determined
by the ratio of two effective rates, which are explicitly calculated for several
specific sequence evolution dynamics of the universality class. Depending on the
value of χ, we find two different scaling regimes, which are distinguished by the
detectability of the initial composition bias. All analytic results are accurately
verified by numerical simulations. We also discuss the non-stationary build-up
and decay of correlations, as well as more complex evolutionary scenarios, where
the rates of the processes vary in time. Our findings provide a possible example
for the emergence of universality in molecular biology.
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1. Introduction

Universality classes with long-range correlations are a hallmark of systems with many
degrees of freedom throughout physics. In equilibrium condensed matter systems, they
mark critical points or phases with a particular symmetry. Out of equilibrium, power-
law correlations are more generic but the classification of universality classes becomes
more difficult. Well-known examples are surface growth, reaction–diffusion systems, and
self-organized criticality.

A striking example of long-range correlations in a biological system has been found
in the base pair composition of genomic DNA more than a decade ago [1]–[3]. Since
then, the composition correlations of DNA have been studied extensively by a variety
of different methods, and nowadays it is well established that long-range correlations
appear in the genomes of many species [4]–[9]. The form of these correlations, however,
is much more complex than simple power laws. Within one chromosome, there is often a
variety of different scaling regimes and effective exponents, and sometimes no clear scaling
at all.

Despite the ubiquity of long-range correlations in genomes, little is known about
their origin. A likely dynamical scenario is that they are generated by the stochastic
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processes of molecular sequence evolution. In [10], we have studied a minimal evolutionary
dynamics producing long-range correlations that can be compared to DNA sequence data
in a quantitative way. This dynamics incorporates local processes including single-site
mutations, duplications and deletions of existing segments of the sequence, and insertions
of random segments. It is inspired by a model introduced by Li in 1989 [11, 12]. We have
proved the emergence of long-range correlations in this dynamics: the correlation function
of the generated sequences decays as C(r) ∝ r−α for large r, and we have obtained an
exact expression for the decay exponent α.

In the first part of this paper (sections 2–5), we present a more detailed calculation of
the expectation value of the two-point correlation function and the finite-size distribution
function of the sequence composition bias. We show that these quantities exhibit
consistent scaling and that their functional forms are given mathematically as solutions
of simple differential equations. The resulting power-law behaviour can be expressed in
terms of a single basic exponent χ, the scaling dimension of the local composition bias.
This exponent is determined by just two effective parameters, which are simple functions
of the rates of the elementary processes. As a function of χ, we find two distinct scaling
regimes. In the strong-correlation regime (χ < 1/2), the ancestral composition bias can
be detected in arbitrarily long sequences; in the weak-correlation regime (χ > 1/2), this
is possible only up to a characteristic sequence length.

In the second part of the paper (sections 6 and 7), we analyse various generalizations
of the sequence evolution model introduced in [10] and demonstrate that they
form a consistent universality class of non-equilibrium processes with generic long-
range correlations. These processes are biased segmental insertions as well as
mutations with biased rates, which break the Z2 symmetry of the original model.
The purpose of this generalization is two-fold. On the one hand, the extended
model is biologically more accurate, since there is strong evidence for the presence
of Guanine–Cytosine content biased segmental insertion processes [13], as well as
biased mutation rates [14] during evolutionary history. Taking into account these
processes proves crucial for practical data analysis. On the other hand, the model
conceptually delineates what are the essential ingredients of this non-equilibrium
universality class. Long-range correlations emerge from the interplay of processes
producing correlations on short scales, exponential growth of sequence length, and local
randomization processes. The universal scaling behaviour is distinguished from the
symmetry breaking caused by biased mutation processes. Furthermore, we generalize
the scaling picture to dynamical aspects of the build-up and decay of correlations
in time. We conclude with a discussion of the role of universality in a biological
context.

2. Sequence evolution model

The stochastic evolution model generates sequences S = (s1, . . . , sN) of variable length
N(t). For simplicity, their letters are taken from a binary alphabet; sk = ±1. The
elementary evolutionary steps are single-site mutations, duplications and deletions of
existing sequence segments of arbitrary lengths, and insertion of random segments. In
fact, these processes are assumed to be the major local processes acting on genomic DNA
sequences during evolutionary history [15]. Formally, the dynamics of the processes canbe
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defined by

(· · · , s, · · ·) → (· · · ,−s, · · ·) mutation rate µ

(· · · , (s)�, · · ·) → (· · · , (s)�, (s)�, · · ·) duplication rate δ�

(· · · , s, · · ·) → (· · · , s, (x)�, · · ·) insertion rate γ+
�

(· · · , (s)�, · · ·) → (· · · , · · ·) deletion rate γ−
� ,

(1)

where (s)� denotes an existing sequence segment of length � ≥ 1, and (x)� is a segment of
length � with uniformly distributed random letters xi = ±1. Note that by convention we
do not allow insertion of random segments prior to the first sequence element. Duplication
and insertion events introduce a new sequence segment next to an existing one and shift
all subsequent letters � positions to the right, thereby increasing the sequence length by �.
Conversely, deletions shorten the length by �. We will restrict all processes to a maximum
range �max, i.e., all rates δ�, γ+

� , and γ−
� are zero for � > �max. Repeatedly running the

processes over a time t produces a statistical ensemble of sequences; the corresponding
averages are denoted by 〈· · ·〉(t). This ensemble is characterized by the rates of the
processes and by the initial sequence. If we focus on scales much larger than �max, the
statistical properties of the generated sequences will then turn out to be determined by
just two effective parameters, the asymptotic growth rate λ and the effective mutation
rate µeff , defined by

λ = δeff + γ+
eff − γ−

eff (2)

µeff = µ + 1
2
γ+

eff . (3)

Both are simple functions of the cumulative rates of the ‘microscopic’ processes,

δeff =
�max∑

�=1

�δ�, γ+
eff =

�max∑

�=1

�γ+
� , and γ−

eff =
�max∑

�=1

�γ−
� . (4)

The implementation of a numerical simulation of this dynamics is described in section 6.4.
We use the simulations to verify analytically derived results of the following sections.

3. Sequence growth and average composition

3.1. Average sequence length

Running the processes defined in (1) on sequences will change their lengths N(t). The
dynamics of 〈N〉(t) averaged over an ensemble of sequences is

∂

∂t
〈N〉(t) =




〈N〉(t)∑

�=1

�σ(δ� − γ−
� ) +

�max∑

�=1

�γ+
�



 〈N〉(t). (5)

The finite size correction factor σ = 1 − (� − 1)/〈N〉(t) accounts for the fact that in a
sequence of length N(t) there are only N(t) − � + 1 possibilities to duplicate or delete a
segment of length �. Using the initial condition N(t = 0) = N0, the solution of (5) in the
asymptotic regime, 〈N〉(t) � �max, is then given by

〈N〉(t) = N0 exp(λt) (6)

with the asymptotic growth rate λ, as defined in (2).
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3.2. Average composition bias

The average composition of a sequence element sk is measured by the expectation value
〈sk〉(t), and in the following we will show that any initial bias decays due to mutations
and random insertions. 〈sk〉(t) can be written as the difference

〈sk〉(t) = P+
k (t) − P−

k (t), (7)

where P +
k (t) and P−

k (t) denote the probabilities of finding sk = +1 or sk = −1 at time t.
The master equations for P±

1 (t) of the first sequence site s1 are given by

∂

∂t
P±

1 (t) = µ[P∓
1 − P±

1 ] +
�max∑

�=1

γ−
� [P±

� − P±
1 ]. (8)

Omitting deletion and starting with a single site S(t = 0) = (+1), we obtain

〈s1〉(t) = exp(−2µt). (9)

If one additionally allows deletion, any initial bias of s1 will even decay faster.
Sequence sites sk at positions k > 1 are also affected by duplications and insertions,

and the master equations for the probabilities P±
k (t) take the form

∂

∂t
P±

k (t) = µ [P∓
k − P±

k ] +

�max∑

�=1

min(k − 1, �) γ+
� (1/2 − P±

k )

+

k−2∑

�=1

(k − l − 1) γ+
� [P±

k−l − P±
k ] +

k−1∑

�=1

(k − l) δ� [P±
k−l − P±

k ]

+
�max∑

�=1

k γ−
� [P±

k+l − P±
k ]. (10)

The different mechanisms contributing to ∂P±
k (t)/∂t are illustrated in figure 1. Any bias

at site sk is again diminished due to single-site mutations, as specified by the first term on
the rhs of (10), but also by insertions of random segments (xi, . . . , xi+�−1) of length � at
positions i = k− �+1, . . . , k, which effectively randomize sk (second term). Additionally,
there is a ‘shift’ of composition bias from preceding sequence positions sk−� due to
insertions of random segments (xi, . . . , xi+�−1) of length � at positions i = 2, . . . , k−� (third
term), or duplications of existing sequence segments (si, . . . , si+�−1) with i = 1, . . . , k − �
(fourth term). Transport of bias from sites sk+� to sk, on the other hand, occurs due to
deletion of existing segments (si, . . . , si+�−1) with i = 1, . . . , k (last term).

In order to reveal the large-distance asymptotics of this dynamics for k � �max and in
large sequences with N(t) � �max, we carry out a continuum limit of (10), i.e., we replace
the discrete index k by a continuous variable and write 〈s(k, t)〉 ≡ 〈sk〉(t). Using (7) we
obtain a differential equation describing the asymptotic dynamics,

∂

∂t
〈s(k, t)〉 = −2µeff〈s(k, t)〉 − λk

∂

∂k
〈s(k, t)〉, (11)

with the asymptotic growth rate λ and the effective mutation rate µeff defined in (2)
and (3). The transport of composition bias due to the net exponential expansion of the
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Figure 1. Illustration of the different mechanisms contributing to ∂P±
k (t)/∂t.
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Figure 2. Average composition bias 〈sk〉(t). (a) Decay of 〈sk〉(t) in time for
k = 1, 2, 5, 10. Rates of the processes are: µ = 1.0, δ1 = 4.0, γ+

5 = 0.2, γ−
2 = 0.5.

The red line is the analytic lower bound on the rate of convergence (13).
(b) Stationary 〈sk〉 with fixed 〈s1〉 = +1 at different rates of the elementary
processes: (1) µ = 1.0, δ3 = 15.0, γ+

2 = 1.0, γ−
7 = 1.0; (2) µ = 1.0, δ1 =

16.0, γ+
2 = 1.0, γ−

1 = 2.0; (3) µ = 1.0, δ2 = 6.0, γ+
3 = 2.0, γ−

4 = 0.5; (4) µ =
1.0, δ1 = 4.0, γ+

2 = 1.0, γ−
4 = 0.5. Red lines denote the corresponding analytic

asymptotics (14). All ensemble averages were obtained by averaging over 106

simulated sequences.

sequences thereby gets incorporated in a dilatation operator of the functional form k∂/∂k;
all finite size effects vanish in this regime. Equation (11) has a solution of the form

〈s(k, t)〉 = e−2µeff tS(ke−λt), (12)

where S(x) is a scaling function. This solution describes two different regimes of the
expectation value, depending on the boundary condition chosen. (a) With fixed initial
condition s1(t = 0) = 1, we have for any fixed k

〈s(k, t)〉 ∝ exp(−2µefft), (13)

as shown in figure 2(a) for different values of k and a given set of process rates. Thus,
〈s(k, t)〉 = 0 for all k in the limit t → ∞. (b) With fixed boundary condition 〈s1〉 = +1
for all t (i.e., suppressing mutations of the first element), we obtain a power-law decay of
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the composition bias along the sequence,

〈s(k)〉 ∝ k−χ with χ =
2µeff

λ
. (14)

Numerical verification of the asymptotics (14) for this type of dynamics is presented in
figure 2(b), where we show the measured 〈sk〉 in ensembles of sequences with different sets
of rates using the simulation algorithm described in section 6.4.

4. Stationary two-point correlations

4.1. Master equation

The dynamics of the composition correlation function C(k, r, t) = 〈sksk+r〉(t) between two
sequence positions sk and sk+r can be derived by writing it as

C(k, r, t) = Peq(k, r, t) − Pop(k, r, t), (15)

where Peq/op(k, r, t) denote the joint probabilities of simultaneously finding two equal
or opposite symbols, respectively, at sequence positions k and k + r and time t. For
simplicity, we start with a restricted sequence evolution model where all processes are
limited to single-sequence sites (�max = 1). The master equation for Peq(k, r, t) in the
single-site model takes the form

∂

∂t
Peq(k, r, t) = 2µ [Pop(k, r) − Peq(k, r)] (16a)

+ 1/2 γ+
1 [Pop(k, r) − Peq(k, r)] (16b)

+ 1/2 γ+
1 [Pop(k − 1, r) − Peq(k − 1, r)] (16c)

+ 1/2 γ+
1 [Peq(k − 1, r) − Peq(k, r)] (16d)

+ [(r − 1)γ+
1 + rδ1] [Peq(k, r − 1) − Peq(k, r)] (16e)

+ rγ−
1 [Peq(k, r + 1) − Peq(k, r)] (16f )

+ [(k − 2)γ+
1 + (k − 1)δ1] [Peq(k − 1, r) − Peq(k, r)] (16g)

+ kγ−
1 [Peq(k + 1, r) − Peq(k, r)]. (16h)

The different mechanisms contributing to ∂Peq(k, r, t)/∂t are illustrated in figure 3 and
will now be discussed in order. Equation (16a) describes the change in Peq(k, r, t) due to
mutation of any of the two sites (therefore two possibilities) in a pair of equal or opposite
symbols at positions k and k + r. Equation (16b) treats the insertion of a random site
at position k + r, which in half of the cases will switch a pair of equal symbols sk = sk+r

to opposing symbols sk = −sk+r, while two opposing symbols might be switched to equal
symbols, accordingly. A similar contribution arises from a random insertion at position
k. However, such an event can be regarded as duplication of sk−1 with a successional
mutation of the newly introduced element sk in half of the cases. If such a mutation
occurs, the event is equivalent to (16b) with the difference that contributions of this
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Figure 3. Illustration of the different mechanisms contributing to the dynamics
of Peq(k, r, t). Effectively mutational events are those that randomize either sk, or
sk+r. ‘Expansion’ or ‘contraction’ transport of joint probability from Peq(k, r±1)
to Peq(k, r) occurs due to duplication, insertion, or deletion events at sequence
positions between sk and sk+r. ‘Horizontal’ shift from Peq(k ± 1, r) to Peq(k, r)
takes place if a duplication, insertion, or deletion occurs at sequence positions
prior to sk.

processes to ∂Peq(k, r, t)/∂t do now depend on the joint probabilities Peq/op(k − 1, r, t)
(16c). In the other half of the cases, where the newly inserted random element sk

is equal to sk−1, the process causes a shift of joint probability from Peq(k − 1, r, t) to
Peq(k, r, t) (16d). Transport of joint probability at distance r − 1 to such at distance r
takes place if a random site is inserted at sequence positions k +1, . . . , k + r− 1, or if any
site sk, . . . , sk+r−1 is duplicated (16e). On the other hand, deletion of any sk+1, . . . , sk+r

produces a transport of joint probability from distance r + 1 to r (16f ). Despite this
‘expansion’ and ‘contraction’ transport of joint probability from distances r + 1 or r − 1
to r at fixed k, there is also a ‘horizontal’ shift along the sequence: insertion of a random
site at positions 2, . . . , k − 1 or duplication of any site s1, . . . , sk−1 shifts joint probability
Peq(k − 1, r, t) to Peq(k, r, t) (16g), while deletion of an s1, . . . , sk shifts Peq(k + 1, r, t) to
Peq(k, r, t) (16h).

Since we are interested in a stationary solution of this dynamics, we have to consider
the limit t → ∞. It has already been shown in section 3.2 that asymptotically 〈sk〉(t) → 0
for large t at all k. Furthermore, all processes are acting homogeneously along the
sequence, and therefore we expect the joint probabilities also to be independent of k
in the long-time limit, i.e., Peq/op(k, r) = Peq/op(k ± 1, r) (verification is given by our
numerical simulations). Equation (16) then simplifies to

∂

∂t
Peq(r, t) = (2µ + γ+

1 ) [Pop(r) − Peq(r)]

+ [(r − 1)γ+
1 + rδ1] [Peq(r − 1) − Peq(r)]

+ rγ−
1 [Peq(r + 1) − Peq(r)]. (17)

By exchanging Peq and Pop, we can state an equivalent equation for Pop(r, t). Using (15),
we obtain the dynamics of the correlation function C(r, t) for large t

∂

∂t
C(r, t) = −(4µ + 2γ+

1 ) C(r)

+ [(r − 1)γ+
1 + rδ1] [C(r − 1) − C(r)]

+ rγ−
1 [C(r + 1) − C(r)]. (18)
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This equation for the dynamics of C(r, t) in the single-letter model (�max = 1) is valid
for all distances r in the limit t → ∞. A corresponding dynamics can, in principle,
be obtained analogously for the general model with �max > 1, although it will be more
complicated due to finite size effects coming into play for r < �max. However, for large
distances r � �max, these finite size effects can be neglected, and the asymptotic dynamics
of C(r, t) in the general segmental model is then given by

∂

∂t
C(r, t) = −4µeff C(r)

+
�max∑

�=1

[(r − �)γ+
� + (r − � + 1)δ�] [C(r − �) − C(r)]

+

�max∑

�=1

rγ−
� [C(r + �) − C(r)] (19)

with the effective mutation rate µeff , as defined in (3). Note that the dynamics (18) of
the single-letter model is a special case of the general dynamics (19) with �max = 1.

4.2. Stationary solutions

In the following, we will derive analytic solutions of the stationary correlations C(r) in
our model. We start with the special case of only single-site duplications and mutations
(µ, δ1 > 0, all other rates are zero). In this case, the solution of the dynamics (19) in the
stationary state, ∂C(r, t)/∂t = 0, obeys the recursion equation

C(r) =
r

α + r
C(r − 1) with α =

4µ

δ1
. (20)

Using C(0) ≡ 1, the recursion can easily be solved, yielding

C(r) =

r∏

n=1

n

α + n
. (21)

Introducing the gamma function and the beta function, defined by

Γ(x) =

∫ ∞

0

e−ttx−1 dt, B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
, (22)

C(r) can finally be rewritten in the form

C(r) =
Γ(r + 1)Γ(1 + α)

Γ(r + 1 + α)
= αB(r + 1, α). (23)

To investigate the asymptotic regime, we evaluate the asymptotic behaviour of B(r, α)
for r � 1 which, in general, is given by

B(r, α) ∝ Γ(α) r−α

[
1 − α(α − 1)

2r

(
1 + O

(
1

r

))]
. (24)

Applying this asymptotics to equation (23) we obtain

C(r) ∝ r−α. (25)
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Figure 4. Single-site duplication–mutation model. (a) Stationary composition
correlation C(r) at different rates of the elementary processes; numerical results
(circles) and the analytic form (23) (lines) for µ = 1.0, δ1 varying. C(r) is
averaged along the sequence. (b) Power spectra of simulated sequences for
µ = 1.0 and δ1 varying: numerical results (circles) with the analytically predicted
P (f) ∝ f−β in those cases where δ1 ≥ 5 (lines). The dynamics of the sequences
was simulated until they reached a length of N = 227 ≈ 108. All data sets were
obtained by averaging over 100 runs.

Hence, we have proven the existence of long-range correlations in the simplified single-site
duplication–mutation model. The exponent α is determined by a simple balance between
the randomization processes (mutations) and the expansion processes (duplications) which
create correlations between neighbouring sites and transport these correlations to larger
distances due to an overall expansion of the system.

We have performed extensive Monte Carlo simulations of this model using the
algorithm presented in section 6.4. Figure 4(a) shows the numerical C(r) for the
duplication–mutation dynamics with various rates of δ1 and µ, which is in excellent
agreement with the analytic expression (23).

For reasons of comparability with former studies [11, 12], we also calculated power
spectra of the simulated sequences. In the stationary state, the power spectrum P (f) is
the Fourier transform of the correlation function C(r). In our case, the large distance
asymptotics of the correlation function is given by C(r) ∝ r−α, and the power spectrum
will therefore also decay algebraically, i.e., P (f) ∝ f−β with the exponent β = 1−α [16].
The resulting data are shown in figure 4(b). Due to the fact that C(r) ∝ r−α does only
hold in the limit of r � 1, the analytically estimated scaling P (f) ∝ f−β is present at
lower frequencies, but crosses over to a different behaviour at higher ones. At values of
α > 1, C(r) decays below the fluctuation threshold ∆C = 1/

√
N(t) [17], before the

scaling gets established, thus obviating the appearance of positive exponents β. In those
cases, we measure a flat power spectrum in the low-frequency part as one expects for a
random sequence. The finite size deviations of C(r) at very large r show up in the very
low-frequency part of the power spectra, too.

Obviously, one cannot expect the stationary C(r) of the general model to be described
by a similar simple expression as has been obtained for the single-site duplication–
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Figure 5. Stationary C(r) at different rates of the elementary processes for
the general model with various segmental processes present: numerical results
(circles) with the analytic asymptotics (27) (lines) for µ = 1.0 and varying rates
of the other processes (rates not specified in the plot are zero).

mutation dynamics in (23). Consider, for example, a segmental duplication process,
copying segments of length �1 = 50. In case this is the only duplication process present,
it will introduce a peak in C(r) at a distance corresponding to its segment length r = �1.
If there is an additional duplication processes present, for example one with �2 = 1, the
peak in C(r) established by the first duplication process will be shifted to larger distances
by the second process. The functional form of C(r) will thus show complex behaviour on
short scales reflecting the ‘microscopic’ details of the elementary processes (see figure 5).
But what about the large-distance asymptotics of C(r) for r � �max? In this regime,
the dynamics of C(r, t) is given by equation (19). Carrying out a continuum limit, the
difference equation (19) can again be written as a simple differential equation,

∂

∂t
C(r, t) = −4µeffC(r, t) − λr

∂

∂r
C(r, t). (26)

The stationary solution of equation (26) immediately yields the power-law decay

C(r) ∝ r−α with α = 2χ =
4µeff

λ
. (27)

Hence, on macroscopic distances r � �max our model universally produces long-range
correlations in the sequences, irrespective of the microscopic details of the individual
processes. The decay exponent α depends on only two effective parameters which are
simple functions of the rates of the processes. Using these analytic results, we furthermore
can qualitatively classify the four different types of process according to whether they
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increase α, or decrease it. Duplications are the only processes with ∂α/∂δ� < 0, since
they raise the growth rate λ, but have no effectively mutational influence on large scales.
All other processes, in contrast, will lead to larger values of α and thus to faster decaying
correlations along the sequence by an increase of their rates.

To verify these analytic results, we show the measured correlation functions C(r) of
simulated sequences with all sorts of different processes present in figure 5. While on
short scales the correlations reveal the microscopic details of the particular processes, in
the asymptotic regime long-range correlations are ubiquitous. Their functional form is
accurately described by our analytics (27) with the effective rates (2) and (3).

5. Finite-size distribution of the composition bias

Up to this point, we have discussed correlation functions, which are defined as averages
over an ensemble of sequences generated by the same stochastic dynamics. What can
we say about the data of a single sequence, i.e., a single realization of the stochastic
process? To address this question, we now consider the distribution of the composition
bias evaluated in finite sequence intervals k, . . . , k + L − 1 of length L,

m =
1

L

k+L−1∑

k′=k

sk′. (28)

Generalizing equations (11) and (26), we obtain the following differential equation for the
distribution function P (m, L, t),

∂

∂t
P (m, L, t) = −λL

∂

∂L
P (m, L, t)

+ 2µeff
∂

∂m
[mP (m, L, t)] +

2µeff

L

∂2

∂m2
P (m, L, t), (29)

which is valid again in a continuum approximation for L � 1. The three terms on the rhs
describe, in order, the transport of the composition bias due to the exponential dilatation
of the sequence, its dissipative decay, and its stochastic fluctuations. Notice that the
last two terms are caused by the same basic mutation process and are therefore both
proportional to µeff .

We limit ourselves here to evaluating the equilibrium distribution P (m, L)
asymptotically for large values of L. The solution of (29) defines different parameter
regimes.

(i) Strong correlation regime (χ < 1/2). The large-L asymptotics is determined by
balancing dilatation and deterministic decay, i.e., the first two terms on the rhs of
equation (29). For this regime, we obtain

P (m, L) = LχPχ(x) with x = mLχ, (30)

where Pχ(x) is a scaling function (whose form is determined by the stochastic
dynamics on smaller scales). We can verify the consistency of the solution (30) by
checking that the third term on the rhs of (29) gives a contribution which is subleading
by a factor L2χ−1 for large L. This result is also verified by our numerics, as shown in
figures 6(a), (b), where we present measured distributions P (m, L) and the collapse
into one scaling function Pχ(x). Obviously, the scaling of P (m, L) also determines
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Figure 6. Numerically measured distribution functions P (m,L) and the
corresponding scaling functions P(x) for L = 102, 103, 104. ((a), (b)) Regime
(i) with χ = 0.1 and P(x) = L−0.1P (L−0.1x,L). ((c), (d)) Regime (ii) with
χ = 1.0 and the Gaussian scaling function P(x) = L−1/2P (L−1/2x,L). The
deviations for L = 102 for both regimes are due to the fact that the analytic
asymptotics is only valid for large L. The ensemble averages were obtained
by averaging over 107 sequence realizations for each parameter setting with
random initial conditions, resulting in symmetric distributions (only positive
values shown).

the scaling of its moments 〈mk〉(L) ≡
∫

mkP (m, L) dm,

〈mk〉(L) ∝ L−kχ. (31)

This is consistent with the scaling of the one-point and two-point functions, obtained
in equations (14) and (27).

(ii) Weak-correlation regime (χ > 1/2). Equation (29) has an exact solution of Gaussian
form,

P (m, L) =

√
L

2πξ(χ)
exp

[
−(m − m0L

−χ)2L

2ξ(χ)

]
with ξ(χ) =

χ

χ − 1/2
. (32)
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This solution has the expectation value

〈m〉(L) = m0L
−χ (33)

(with the coefficient m0 determined by the initial condition) and the variance

〈m2〉(L) − 〈m〉2(L) =
ξ(χ)

L
. (34)

It is thus of similar form to the simple fluctuation-dissipation equilibrium
exp[−m2/2L] for λ = 0, obtained from the last two terms on the rhs of (29). The
transport term generates an additional length scale ξ since individual sites are not
completely independent of each other but are strongly correlated on scales smaller
than ξ due to duplications. This reduces the number of effectively independent
fluctuating sequence segments to L/ξ. Numerical measurements of the distribution
P (m, L) in this regime for random initial conditions (m0 = 0) and the corresponding
scaling function Pχ(x) ∝ exp[−x2/2ξ(χ)] with x ≡ mL1/2 are shown in figures 6(c),
(d).

(iii) Transition point (χ = 1/2). The solution of (29) is still of Gaussian form,

P (m, L) =

√
L

2π log L
exp

[
−(m − m0L

−χ)2L

2 log L

]
. (35)

The existence of two different scaling regimes has direct consequences for the detectability
of correlations from data of a single sequence on large scales. In the strong-correlation
regime (χ < 1/2), the composition bias on arbitrary large scales L is determined primarily
by the ancestral bias, while the mutational fluctuations can be neglected asymptotically.
In the weak-correlation regime, the ancestral bias can only be detected on scales L < L∗,
while the mutational noise is dominant on larger scales. The scale L∗ can be estimated
by equating the average 〈m〉(L∗) with the rms deviation [〈(m − 〈m〉)2〉(L∗)]1/2 given by
equations (33) and (34).

The difference between the strong- and weak-correlation regime is illustrated in
figure 7, where we show two single sequences generated from an ancestor letter +1. In
the strong-correlation regime, the entire sequence has a detectable bias towards +1, with
islands of −1 tracing back to their ancestors generated by mutation events (figure 7(a)). In
the weak-correlation regime, the sequence is seen to consist of strongly correlated segments
of length ξ ≈ 5, but it looks random on larger scales (figure 7(b)).

We stress again that the existence of two different scaling regimes with a transition
at χ = 1/2 is a feature of the full distribution P (m, L) in the asymptotic regime L � 1.
Expectation values such as the composition bias (14) and the correlation function (27)
have a universal form in both regimes and no transition at χ = 1/2.

6. Model extensions and symmetry breaking

6.1. Biased insertions

In the following, we will investigate a generalization of the dynamical model and thereby
demonstrate the universality of our approach. For simplicity, we start with a single-
letter model (�max = 1). In contrast to the original model of section 2, where random
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(a)

(b)

Figure 7. A single sequence of length N = 400 generated by the expansion–
randomization process from an initial letter +1. (a) Strong-correlation regime
(µ = 0.5, δ1 = 10.0, i.e. χ = 0.1 < 1/2). The sequence retains a net composition
bias towards +1 in its entire length, i.e., the initial composition bias is detectable.
Minority islands of −1 are found on all scales. (b) Weak-correlation regime
(µ = 0.5, δ1 = 1.0, i.e. χ = 1.0 > 1/2). The sequence consists of strongly
correlated islands of length ξ ≈ 5 but looks random on larger scales. The initial
composition bias is not detectable.

insertions were defined as the insertion of random letters x = ±1 at position k + 1, which
was independent of the preceding sequence element sk, we now want to consider biased
insertions. This extension is biologically well motivated, since there is ample evidence
by now that the rates of segmental insertions into the genome, as for example those
of interspersed repeats, are biased by the local GC-content of the genomic region [13].
Formally, the biased insertion process in our model is defined by

(· · · , s, · · ·) → (· · · , s, y[s], · · ·) insertion rate η, (36)

where y[s] denotes a randomly chosen letter y[s] = ±1 with an average bias depending on
the value of the preceding sequence element s,

〈y[s]〉 = νs, ν ∈ [−1, 1]. (37)

The degree of dependence can thereby be tuned by a parameter ν. In fact, the random
insertions of the original model are the special case of this generalized process using ν = 0,
while ν = 1 corresponds to duplications.

The contributions of this process to the dynamics of the joint probabilities Peq/op(r, t)
can still be calculated exactly. Equations (16a) and (16e)–(16h) will not be affected, since
the biased insertion process will neither change the effect of single-site mutations, nor the
‘shift’ and ‘transport’ of joint probability. However, an additional multiplicative factor
(1− ν) has to be incorporated in (16b) and (16c), while effects on (16d) are described by
an additional factor (1 + ν). Concerning the master equation for C(r) in the continuum
limit (26), this biased insertion process therefore does not affect the asymptotic growth
rate λ, but the effective mutation rate is now given by

µeff = µ + 1
2
(1 − ν)η. (38)
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We want to mention that the biased insertion of single letters can generically be extended
to the biased insertion of segments (y[s])� at a rate η� with an average bias of their elements
〈yi[s]〉 = ν�s. In this case, one might actually have ν� = ν(�), and asymptotically for the
effective mutation rate we yield

µeff = µ + 1
2

�max∑

�=1

(1 − ν�)η�. (39)

6.2. Biased mutations and symmetry breaking

The model considered so far was symmetric concerning sk → −sk, i.e., the rates of all
processes were independent of sk. However, it is known that this symmetry is not granted
for genomic evolution. For example, distinct mutation rates of different nucleotides lead
to the unequal frequencies of the four different nucleotides along genomic DNA [14].
In the following we will show that the restriction to symmetric processes is not crucial
concerning the emergence of long-range correlations and the universal scaling of the
generated sequences. A simple scenario breaking the model’s Z2 symmetry is the choice
of asymmetric mutation rates,

(· · · , +1, · · ·) → (· · · ,−1, · · ·) rate µ+ (40a)

(· · · ,−1, · · ·) → (· · · , +1, · · ·) rate µ−, (40b)

with µ+ �= µ−. In this case, the master equations of the probabilities P±
k (t) are

∂

∂t
P±

k (t) = ±µ−P∓
k ∓ µ+P±

k +
�max∑

�=1

min(k − 1, �) γ+
� (1/2 − P±

k )

+ O

(
�max∑

�=−�max

P±
k+� − P±

k

)
, (41)

and we have already shown in section 3.2 that asymptotically P±
k is independent of k if

all sequence sites sk are allowed to mutate. Thus, for the asymptotic stationary average
composition bias 〈sk〉 = P+ − P− in the asymmetric mutation model we obtain

〈sk〉 =
µ− − µ+

µ− + µ+ + 2γ+
eff

. (42)

Concerning the dynamics of the joint probabilities Peq/op(r, t), the introduction of
asymmetric mutation rates will only change the mutational term, while the contributions
of duplications, random insertions, and deletions will not be affected. In the asymmetric
model, the master equations for Peq/op(r, t) are now given by

∂

∂t
Peq(r, t) = +(µ+ + µ−)Pop(r) − 2µ+P++(r) − 2µ−P−−(r) + Qeq(r, t) (43a)

∂

∂t
Pop(r, t) = −(µ+ + µ−)Pop(r) + 2µ+P++(r) + 2µ−P−−(r) + Qop(r, t), (43b)

where P++/−−(r) are the joint probabilities of simultaneously finding sk = sk+r = +1
and sk = sk+r = −1, respectively. Qeq(r, t) denotes the terms (16b)–(16h) with the
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k-dependence of Peq/op(r, t) already dropped, while Qop(r, t) is obtained by exchanging
Peq and Pop. The dynamics of C(r, t) in the asymmetric model is therefore

∂

∂t
C(r, t) = −2(µ+ + µ− + γ+

eff) [C(r) + 〈sk〉2] + [Qeq(r, t) − Qop(r, t)], (44)

where we used (42) and 〈sk〉 = P+ − P− = P++(r) + P+−(r) − P−+(r) − P−−(r) with
P+−(r) = P−+(r). Defining the effective mutation rate of the asymmetric model,

µ̃eff = 1
2
(µ+ + µ− + γ+

eff), (45)

the stationary solution of this dynamics in the continuum limit is now given by

C(r) ∝ r−α + 〈sk〉2 with α = 2χ =
4µ̃eff

λ
. (46)

The magnitude of the segmental composition bias (28) scales as

〈|m(L)|〉 ∝ L−χ + 〈sk〉. (47)

Hence, breaking the Z2 symmetry by introducing asymmetric mutation rates will not
change the long-range correlations and the general scaling of the model. It is obvious from
equations (46) and (47) that the scaling still holds for the connected correlation function

Cc(r) ≡ 〈sksk+r〉− 〈sk〉2 and the shifted segmental composition bias 〈1/L|
∑k+L−1

k′=k sk′|〉−
〈sk〉.

6.3. Universality

The structure of equation (26) reveals the basic mechanisms generating long-range
correlations in a very general class of expansion–randomization systems that share three
fundamental characteristics of their dynamics. The first feature is an overall exponential
expansion of the system transporting correlations from shorter to larger sequence distances
(combined effects of duplications, insertions, and deletions in our model). Mathematically,
this transport is described by a dilatation operator r∂/∂r (second term on the rhs of (26)).
On the other hand, all correlations are counteracted by local processes randomizing the
sequence (mutations) and therefore trying to diminish C(r) (first term of (26)). The
competition between expansion and randomization results in an algebraically decaying
C(r) ∝ r−α in the stationary state, with α determined by a simple ratio of effective
growth rate to effective mutation rate. Calculation of these two fundamental parameters
for any set of processes constituting such system determines the large-distance asymptotics
of the correlations in the generated sequences. However, C(r) = 0 for all r is also a
stationary solution of equation (26). Hence, in order for long-range correlations to be
established, a third necessary feature of such systems is the presence of a mechanism
continuously producing correlations on short scales. They serve as an ongoing reservoir
for the transport of correlations to larger sequence distances and ensure the existence of
a non-zero value C(r0) > 0 for a specific r0 ≥ 1 (in our model, these initial correlations
on short scales are produced by duplications). As an intuitive example for the necessity
of this third condition, consider an expansion–randomization system with mutations and
insertions of single random letters, but no duplications. This system features exponential
expansion, as well as local randomization. But the insertion process is not capable of
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producing C(1) > 0, and therefore no long-range correlations can be established in the
generated sequences.

As expected from standard scaling theory, the decay of the two-point function has
twice the exponent as the corresponding decay of the one-point function. The value χ can
be interpreted as the scaling dimension of the variable sk in this universality class. There
is a one-parameter family of decay exponents as, for example, in the Gaussian model
in two dimensions. This universal behaviour is unaffected by the breakdown of the Z2

symmetry, which manifests itself only in the non-universal constants in (47) and (46).

6.4. Numerical analysis

Numerical simulation of the stochastic sequence dynamics (1) was implemented using a
Monte Carlo procedure. During each discrete time step

∆t = ε ·
[(

µ +
∑

�

[δ� + γ+
� + γ−

� ]

)
N(t)

]−1

(48)

with a tunable parameter ε ≤ 1, we choose a random site and randomly let a process act
on it. The probability pα of a process α being executed on the drawn site is

pα = rate(α) · ∆t. (49)

The overall probability of executing any process on the drawn site therefore depends on
the parameter ε. While ε = 1 assures exactly one process being executed, for small ε, on
the other hand, no process will be chosen to act on the drawn sites in most of the cases.
We use ε = 0.1 for our numerical simulations.

For a single realization of the stochastic dynamics, the average segmental composition
bias 〈|m(L)|〉 and the correlation function C(r) are well approximated by sequence
averages,

〈|m|〉(L) ≈ 1

N − L

N−L∑

k=1

1

L

∣∣∣∣∣

k+L−1∑

k′=k

sk′

∣∣∣∣∣ , (50)

C(r) ≈ 1

N − r

N−r∑

k=1

sksk+r, (51)

for sufficiently small values of r and L to allow efficient averaging. Averaging over 100
sequence realizations reduces the noise further and produces very accurate measurements
of 〈|m|〉(L) and C(r).

If the dynamics obeys Z2 symmetry, we can directly infer the decay exponent α from
these measurements, according to equations (31) and (25). However, if the Z2 symmetry
is violated, these power laws have to be disentangled from the additional constants 〈sk〉
respectively 〈sk〉2; see equations (47) and (46). If the microscopic processes are known,
these non-universal constants can be calculated. A numerical problem arises, however, in
the analysis of genomic DNA sequences, where the Z2 symmetry is broken by an unknown
amount. In that case, we can self-consistently fit the data in the form 〈|m|〉(L) = aL−χ +c
and C(r) = br−2χ + c2. Hence, the link between the finite-size scaling of 〈|m|〉(L) and the
scaling of the correlation function C(r) dictated by universality is of practical importance
for data analysis. In particular, it is not justified in general to approximate the constant c
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Figure 8. Time-dependent correlations C(r, t). (a) Build-up of long-range
correlations by stationary growth. Measured C(r, t) at various intermediate
lengths N(t) = 102, 104, 106 (symbols) together with the stationary form (23)
for µ = 1.0, δ1 = 8.0 (line). (b) Correlation build-up from a random sequence
of length N0 = 104. At t = 0 the processes started acting on the sequence with
rates µ = 1.0, δ1 = 10.0. Measured C(r, t) (symbols) of the simulated sequences
after various times t (averages over 100 realizations). Black crosses denote the
corresponding mean sizes r∗(t) = exp(λt). Correlations have been established in
the sequences according to their analytic stationary form (red line) in the regime
r < r∗(t), while they vanish for r > r∗(t).

by 1/N
∑N

k=1 sk for sequences of finite length N in the strong correlation regime χ < 1/2,
as is often done in the literature. Furthermore, we can check consistency with the exponent
β = 1 − 2χ of the GC power spectrum. Power spectra can easily be obtained using the
fast Fourier transform algorithm [18].

7. Dynamical correlations

7.1. Correlation build-up

Up to now, results for the correlations C(r) in our model have only been obtained for
the stationary state, reached in the limit t → ∞. We now take a closer look at the
dynamical aspects of the build-up of correlations in growing sequences. Starting with a
sequence S(t = 0) = (x), where x = ±1 denotes a uniformly distributed random letter,
the correlations are found to be present from the beginning. Figure 8(a) gives examples
for C(r) measured along short single-sequence realizations of length N(t) = 102, 104,
and 106.

But, of course, correlations cannot be present right from the beginning on all scales if
we use a sequence S(t = 0) = (s1, . . . , sN0) with length N0 > 1 as initial condition, whose
letters are randomly chosen (and thus uncorrelated). All the processes of our model are
local processes: a single step can introduce correlations only up to a microscopic length-
scale �max. Thus, there will be a cutoff length r∗(t), up to which correlations can have
been established at time t > 0. It is determined by the average distance, two copies of
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a duplication event at t = 0 are separated from each other along the sequence at time t.
Therefore we have

r∗(t) = �max exp (λt). (52)

Figure 8(b) shows that r∗(t) marks the range where C(r) will start to deviate significantly
from its stationary form.

7.2. Distinct dynamical regimes and correlation decay

There is ample evidence that the rates of local evolutionary processes are not constant
in time [14]. We mimic this non-stationarity of the individual process rates by the
succession of several distinct dynamical phases. For each individual phase n, the rates of
the elementary processes are constant during the time interval tn−1 < t < tn and result

in specific values of λ(n) and µ
(n)
eff for that particular phase. Between different phases,

however, the complete set of rates may change,

phase 1: (µ(1), δ
(1)
1 , · · · ) for t0 < t < t1

phase 2: (µ(2), δ
(2)
1 , · · · ) for t1 < t < t2

: : :

phase n : (µ(n), δ
(n)
1 , · · · ) for tn−1 < t < tn

: : : .

(53)

Using the findings of section 7.1, we can generalize our dynamics with respect to varying
rates during sequence evolution. We start with the following simple two-stage scenario:
sequence growth with rate λ(1) > 0 for 0 < t < t1, followed by a second phase with λ(2) = 0
and therefore 〈N〉(t) = N (1) for t > t1. It is obvious from equation (26) that stationary
long-range correlations only emerge as long as the sequence grows, i.e. for λ(n) > 0. The
time-dependent solution of (26) for the asymptotics of C(r) during the second phase
(t > t1) then takes the form

C(r, t) = C(r, t1) e−4µ
(2)
eff ∆t ∝ r−4µ

(1)
eff /λ(1)

e−4µ
(2)
eff ∆t (54)

with ∆t = t− t1. Thus, the long-range tails of the correlations established during the first
phase are preserved in the second phase, but their amplitude decays exponentially with a

characteristic timescale τ = (4µ
(2)
eff )−1.

In the short-range part, however, correlations may still be present depending on the

particular set of process rates chosen to assure λ(2) = 0. If, for example, all rates δ
(2)
� ,

γ
+(2)
� , γ

−(2)
� are zero in the second phase, the only process acting will be mutation which

exponentially destroys correlations uniformly along the sequence, and thus the amplitude
of C(r) will decay according to equation (54) for all lengths r. The situation becomes more
complex if λ(2) = 0 is accomplished in the presence of duplications by a compensatory
increase of the deletion rate. In this case, the duplication process will keep correlations
present at short lengths since there is always a finite probability that a site sk recently
originated by a duplication of sk−1 (which again might be a duplication of sk−2, and so on)
and was not yet affected by a mutation event. Numerical results for this type of two-phase
dynamics are shown in figure 9(a), verifying the exponential decay of the long-range tail,
predicted by equation (54).
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Figure 9. (a) Decay of correlations during sequence evolution at stationary length
N0 = 106. Measured C(r, t) at various times ∆t (symbols) together with the
analytic decay of the long-range tail given by equation (54). In the previous
growth phase for t < t0, correlations have been established by a single-letter
duplication–mutation dynamics with µ = 1.0 and δ1 = 8.0 until the sequences
reached the length N0 = 106. For ∆t = t− t1 > 0, a single-letter deletion process
with γ−

1 = 8.0 was introduced. Note that the correlations on short scales are
preserved during the second phase. (b) C(r) with two scaling regimes 1 and 2
(symbols). Process rates are: µ(1) = 1.0, δ

(1)
1 = 10.0 and µ(2) = 1.0, δ

(2)
1 = 2.0.

The dashed red line is the analytical C(r, t) for the parameters of phase 1. The
second phase lasted over a period of time that on average allowed the sequences
to increase their length by a factor of 100. For each scaling regime (n = 1, 2),
C(r) obeys the predicted algebraic decay with exponent α(n) = 4µ(n)

eff /λ(n). The
transition between both regimes is sharp and its position agrees with the value
predicted by (52).

In a general evolutionary scenario, with several distinct dynamical phases and

arbitrary values of λ(n) and µ
(n)
eff for each particular phase, the functional characteristics of

the correlations in the generated sequences will be shaped by a combination of correlation
build-up and decay, according to the mechanisms which have been revealed above. During

phase n with λ(n) > 0, correlations will be established with α(n) = 4µ
(n)
eff /λ(n), and they

will approximately range over a length scale r = 1, . . . , rmax with rmax = exp(λ(n)∆tn).
The correlations already present from the previous phases will be transported to larger
sequence distances. If they ranged across an interval r = 1, . . . , N(tn−1) at the end of phase
n − 1, they will be shifted to the interval r = N(tn−1), . . . , N(tn) during phase n. The
long-range tails, however, will still obey the same exponent corresponding to the effective
rates of the original growth phase they have originated from. Additionally though, they
are at the mercy of mutations, and their amplitude will therefore decay exponentially on

all scales according to equation (54) with the effective mutation rate µ
(n)
eff . A numerical

example of a two-stage dynamics with two distinct scaling regimes is shown in figure 9(b).
Given the chronology of the process rates for all phases, we thus can in principle

predict the different scaling regimes of the correlation function. Furthermore, given the
measured C(r) of a sequence generated under the influence of our processes, we might
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be able to reconstruct the chronology of the ratio of the effective rates λ and µeff back
throughout its evolutionary history. In practice, however, such an attempt will be confined
by two major constraints. At first, all of the above statements only apply to the long-
range tails of C(r). Thus, in order to perspicuously identify the decay exponent α of
a certain rate regime, the net expansion during that regime must have been sufficiently
large. Moreover, since the correlations of the previous phases decay exponentially with
a timescale τ = (4µeff)−1, the ratio λ/µeff of the succeeding phases should be high.
Otherwise, previously established correlations will rapidly decay below the fluctuation
threshold ∆C = 1/

√
N(t), and thus cannot be measured any longer.

8. Discussion

In this paper, we have investigated a broad class of stochastic sequence evolution processes
as possible causes of the observed long-range correlations in genomic DNA sequences.
The emergence of such correlations is seen to be a robust feature of the entire class of
models. They can be observed, for example, in the two-point function and in the finite-
size distribution of the composition bias. The power-law behaviour of these quantities is
linked by a dynamical scaling theory.

Clearly, further analysis of genomic data is needed to corroborate or refute possible
causes of the observed correlations. Comparative genomics of closely related species
is expected to offer a more detailed view on the elementary evolutionary processes
shaping genomes. One has to keep in mind that genomic DNA is a highly heterogeneous
environment [19]: it consists of genes, non-coding regions, repetitive elements, etc, and all
of these functional substructures may imprint their signature on the amount of correlations
found in a particular genomic region. If a local expansion–randomization dynamics indeed
proves responsible for these correlations, the universality established in this paper is
crucial for the biological relevance. There is clearly a multitude of microscopic elementary
processes, whose individual rates may be small and difficult to measure. These rates
may vary across sequences, between species and between phases of evolutionary history.
However, they enter the composition correlations in the mesoscopic range—for length
scales between 103 and 106—only via two effective parameters, the effective growth rate
and the effective mutation rate. It is this fact that provides an explanation for the ubiquity
of long-range correlations and a way of testing the theory in a quantitative way. While
the emergence of long-range tails appears to be universal, the decay exponent is not. This
may also provide useful information on the expansion history of genomes.

Biology has sometimes been characterized as a ‘science of exceptions’. There is an
amazing diversity of biological species. Genomes encode that diversity, so the concept of
universality, which has proved so successful in physics, would hardly seem to be applicable
to biology at first glance. However, this may well depend on the questions we ask, and
even the above quote may have its exception. Genomic correlations could be an example
of universality in evolutionary biology.
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