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This is an introductory review on how genes interact to produce biological functions.

Transcriptional interactions involve the binding of proteins to regulatory DNA. Specific

binding sites can be identified by genomic analysis, and these undergo a stochastic

evolution process governed by selection, mutations, and genetic drift. We focus on the

links between the biophysical function and the evolution of regulatory elements. In

particular, we infer fitness landscapes of binding sites from genomic data, leading to

a quantitative evolutionary picture of regulation.

1 Introduction

Genomic functions often cannot be understood at the level of single genes but
require the study of gene networks. This systems biology credo is nearly com-
monplace by now. Evidence comes from the comparative analysis of entire
genomes: Current estimates put, for example, the number of human genes at
around around 22000, hardly more than the 14000 of the fruit fly, and not even
an order of magnitude higher than the 6000 of baker’s yeast. The complexity
and diversity of higher animals therefore cannot be explained in terms of their
gene numbers. If, however, a biological function requires the concerted action of
several genes, and conversely, a gene takes part in several functional contexts, an
organism may be defined less by its individual genes but by their interactions.
The emerging picture of the genome as a strongly interacting system with many
degrees of freedom brings new challenges for experiment and theory, many of
which are of a statistical nature. And indeed, this picture continues to make
the subject attractive to a growing number of statistical physicists.

Genes encode proteins, and proteins perform functions in the cell. Hence,
a gene takes part in a biological function only if it is expressed, i.e., if the
protein produced from it is present in the cell. Genes interact by regulation:
the protein of one gene can influence the production of protein from another
gene. Gene regulation can take place during transcription, the process by which
the cell reads the information contained in a gene and copies it to messenger
RNA (which is subsequently used to make a functional protein). This is the
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most fundamental level of interactions between genes: the transcription of one
gene may be enhanced or reduced by the expression of other genes. Transcrip-
tional regulation is thus a good starting point for theory. We should keep in
mind, however, that it is not the only mode of gene interactions. Especially
in eukaryotes, additional regulation mechanims involving histones, chromatin,
micro-RNAs etc. become relevant, which are just entering the stage of model
building. An excellent introduction to the biology of regulation can be found
in [1].

This article is a primer on theoretical aspects of gene interactions, and we
limit ourselves to transcriptional regulation. Clearly, the subject has rather
diverse aspects:

(1) Transcription is a biophysical process, which involves the interaction of
DNA and proteins. Its regulation takes place through the binding of proteins
to DNA at specific loci in the vicinity of the gene to be regulated. Already at
this level, this process is rather complex and not yet fully understood. What
enables the protein to find one or a few specific functional sites in a genome
of up to billions of base pairs, bind there with sufficient strength to influence
transcription, and leave again once its task is performed?

(2) Given the protein can find its functional sites, can we as well? If that
is possible, we can predict the specific gene interactions building regulatory
networks from sequence data. The analysis of regulatory DNA is a major topic of
research in bioinformatics, with the aim of identifying statistical characteristics
of functional loci and of building search algorithms.

(3) Regulation is also becoming an important part of evolutionary biology [2,
3]. If regulatory networks are to explain the differentiation of higher animals,
there must be efficient modes of evolution for the interactions between genes.
At the level of regulary DNA, these modes remain largely to be explored. It
is clear, however, that the underlying evolutionary dynamics is the basis of a
quantitative understanding of regulatory networks.

All three aspects of regulation contribute to a unified theoretical picture.
Key concepts such as the biophysical binding energy, the bioinformatic scoring
function, and the evolutionary fitness turn out to be rather deeply related. We
will focus on these crosslinks between different fields, which are likely to become
important for future research. A challenge for an introductory presentation is
the diversity of relevant background material, only a rather ecclectic account
of which can be presented here. Yet, I hope it transpires even from this short
introduction that present quantitative genomics is an area of science shaped by
a remarkable confluence of ideas from different disciplines.

2 Biophysics of transcriptional regulation

The fundamental step in the regulatory interaction between two genes is a bind-
ing process: the protein produced by the first gene acts as a transcription factor
for the second gene, i.e., it binds to a functional site on the DNA close to the
second gene and thereby enhances or suppresses its transcription. Binding sites
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Fig. 1. Transcriptional regulation. Transcription is the synthesis of messenger

RNA (1) whose genetic code is a copy of the coding DNA (2) of a gene, by means of

RNA polymerase (3). A transcription factor (4) bound to a DNA target site interacts

with RNA polymerase molecules, (a) enhancing or (b) reducing the transcription rate

of a nearby gene.

are short, typically segments of 10 to 15 base pairs in prokaryotes and even
shorter segments in eukaryotes. They are primarily located in the cis-regulatory
region of a gene, which lies just upstream of its protein-coding sequence and
extends over hundreds of base pairs in prokaryotes and over thousands of base
pairs in eukaryotes. The scenario of transcriptional regulation is sketched in
Fig. 1. A transcription factor bound to a functional binding site regulates the
downstream gene by recruiting or repelling RNA polymerase. This protein-
protein interaction catalyzes or suppresses the process of transcription of the
gene. All these binding processes should not be understood as on or off; they
happen with certain probabilities, which are determined by the binding energies
and the numbers of the molecules involved.

Factor-DNA binding energies. The interaction of a transcription factor
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Fig. 2. Thermodynamic states of a transcription factor. (1) Unbound state,

with three-dimensional diffusion. (2) Unspecific bound state, with one-dimensional

diffusion along the DNA backbone. (3) Specific bound state. The binding energy

depends on the genotype at the binding locus, which has length ` and whose position

is specified by the coordinate r.

protein with DNA is two-fold: There is a position-unspecific attraction with en-
ergy Eu and a specific interaction, whose energy depends on the particular locus
where the factor binds. The unspecific part is the electrostatic interaction be-
tween the positively charged protein and the negatively charged DNA backbone,
while the specific part involves hydrogen bonds between the binding domain of
the protein and the nucleotides of the binding locus. A locus is specified by its
starting position r and its length ` (with relevant values ` of order 10). The spe-
cific binding energy E(r) depends on ` consecutive nucleotides a = (a1, . . . , a`)
counted downstream from the starting position, the sequence state or genotype
of that locus. Switching between unspecific and specific binding takes place via
a conformation change of the factor protein. As a result of these interactions,
the factor protein can be in three thermodynamic states as shown in fig. 2: un-
bound (i.e., freely diffusing), unspecifically bound (i.e., diffusing along the DNA
backbone), and specifically bound.

The biophysics of factor-DNA binding has been established in a series of
seminal papers [4, 5, 6, 7]. More recently, the characteristics of specific binding
have been measured for some bacterial transcription factors [8, 9, 10, 12, 13].
These can be summarized as follows:

(a) The single nucleotides of a binding locus a ≡ (a1, . . . , a`) give approxi-
mately independent contributions to the binding energy,

E(a) =
∑̀
i=1

εi(ai). (1)

(b) At each position i, there is typically one preferred nucleotide a∗i with
εi(a∗i ) = mina εi(a). Hence, there is a unique “ground state” sequence a∗ =
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(a∗1, . . . a
∗
` ) with minimal binding energy E∗ ≡ E(a∗), i.e., with strongest bind-

ing.
(c) Mismatches with respect to the minimum-energy sequence involve energy

costs εi(a)− εi(a∗i ) ≈ 1− 3 kBT per nucleotide.
(d) There is an energy difference Eu−E∗ ∼ 15 kBT between unspecific and

strongest specific binding.
Experimental data for the binding energies εi(a) are known only for a few

transcription factors. Approximate values for these energies can also be inferred
from nucleotide frequencies in functional binding sites [10]. A promising recent
approach is to infer binding energies from large-throughput expression data [11].
For order-of-magnitude estimates, one often uses the so-called two-state approx-
imation [7], which is homogeneous in the nucleotide positions and distinguishes
only between match and mismatch:

εi(a)− εi(a∗i ) =
{

ε if ai 6= a∗i
0 if ai = a∗i

(2)

with ε ≈ 2kBT . In this approximation, the binding energy of a sequence a is
simply related to the Hamming distance d(a,a∗), i.e., the number of nucleotide
mismatches between a and a∗,

E(a) = E∗ + ε · d(a,a∗). (3)

Energy distribution in the genome. Fig. 3(a) shows the sequence of energy
values E(r) found in a segment of the E. coli genome for a specific transcription
factor, the cAMP response protein (CRP) This “energy landscape” looks quite
random, i.e., consecutive energy values are approximately uncorrelated. The
distribution Wdat(E) of energies over the entire noncoding part of the E. coli
genome is shown in fig. 3(b). We can compare this with the distribution W0(E)
obtained from a random sequence with the same nucleotide frequencies (i.e.,
from a scrambled genome). According to eq. (1), the binding energy E is then
a sum of independent random variables εi, and its distribution becomes approx-
imately Gaussian by the law of large numbers. Fig. 3(b) shows that the actual
distribution Wdat(E) is indeed of the same form as W0(E) for most energies.
However, a closer look at the low-energy tail of the distribution shows that
there are significantly more strong binding sites than expected from a random
sequence [14, 15, 16]. So at least some of them are there not by chance but for
a reason.

Search kinetics. All three thermodynamic modes of a factor molecule - free
diffusion, unspecific binding, and specific binding - are important for the search
kinetics towards a functional site [4, 5, 6]. The unspecific attraction causes the
transcription factor to be bound to DNA with a finite probability, i.e., a given
molecule spends about equal amounts of time on and off the DNA backbone.
Hence, the search process is a mixture of effectively one-dimensional diffusion
along the DNA backbone and three-dimensional diffusion in the surrounding
medium. This proves more efficient than purely one- or three-dimensional dif-
fusion. In the 1D mode, the factor diffuses in a flat energy landscape if it is in
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Fig. 3. Transcription factor binding energies of the E. coli genome. (a) En-

ergy “landscape” E(r) for specific binding of the CRP factor at 200 consecutive posi-

tions r in an intergenic region, with a binding site at position 59. (b) Count histogram

Wdat(E) with energy bins of width 0.1 obtained from all intergenic regions, together

with the distribution W0(E) for a random sequence (dashed line, shown with a 30fold

zoom into the region E < 14). From [16].

the conformation of unspecific binding, or in the landscape E(r) if it is in the
conformation of specific binding. In this way, it can sample the low-energy part
of the landscape E(r) while avoiding its barriers. The main obstacles on its way
to a functional site are spurious binding sites, which have a low energy E(r) by
chance and act as traps. We lack a completely satisfactory picture of the search
kinetics, which is an area of current research [14, 17]. However, this process
proves to be remarkably fast. Typical search times are less than a minute, i.e.,
substantially shorter than typical functional intervals in a cell cycle of at least
minutes. Therefore, the regulatory effect of a site is related to its probability of
binding a factor molecule at equilibrium, which can be evaluated by standard
thermodynamics.

Thermodynamics of factor binding. We start with the idealized but in-
structive problem of a single factor protein interacting with a genome of length
L � 1, which contains a single functional site, while the rest of the sequence is
random. Since the protein is bound to the DNA with a probability of about 1/2,
we neglect the unbound state for the subsequent probability estimates and study
only the bound protein, which is at equilibrium between specific and unspecific
binding. At each position r, the likelihood of these two states is given by the
Boltzmann factors exp[−E(r)/kBT ] and exp[−Eu/kBT ], respectively. Hence,
the partition function for a single protein has the form

Z =
L∑

r=1

e−E(r)/kBT + L e−Eu/kBT . (4)
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The functional site, which is assumed to be positioned at r = rf , must have a
low specific binding energy E ≡ E(rf ). We now single out this position and
write

Z = e−E/kBT +
∑
r 6=rf

e−E(r)/kBT + L e−Eu/kBT

≈ e−E/kBT + Z0, (5)

where Z0 is the partition function of a completely random sequence. The prob-
ability of the factor being bound specifically at the functional site is then

p(E) =
e−E/kBT

Z
=

1
1 + e(E−F0)/kBT

, (6)

where F0 = −kBT log Z0 is the free energy for a random genome. Thus, the
binding probability depends on the binding energy in a sigmoid way, with a
threshold energy E = F0 between strong and weak binding. This strongly
nonlinear dependence is known to physicists as a Fermi function.

It is easy to generalize the thermodynamic formalism to more than one
factor molecule. Ignoring the overlap between close sites, each position r can
be empty or be occupied either by an unspecifically or by a specifically bound
factor. Using a chemical potential σ, the many-factor partition function can
hence be written as

Z(σ) =
L∏

r=1

Z(σ, r), (7)

where
Z(σ, r) = 1 + eσ−E(r)/kBT + eσ−Eu/kBT (8)

is a sum over the three thermodynamic states at position r: no factor bound,
one factor bound specifically or unspecifically. The chemical potential σ is deter-
mined by the number of factor molecules, n, via the relation n = (d/dσ) log Z(σ).
For actual transcription factor numbers, which are of order 1−104, this relation
is well approximated by [14]

σ =
F0

kBT
+ log n. (9)

The functional site is now occupied by a specifically bound factor with proba-
bility

p(E) =
eσ−E/kBT

Z(σ, rf )
=

1
1 + e(E−F0)/kBT−log n

. (10)

The binding probability - and hence the effects of the functional site on the
regulated gene - are thus determined by the binding energy, the number of
factor molecules, and on the genomic background (via the free energy F0). The
dependence p(E) is a Fermi function with threshold energy E = F0 +kBT log n,
which is shifted with respect to the single-molecule case. Clearly, p is also a
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Fermi function of log n at fixed binding energy, with a threshold at log n =
(E − F0)/kBT . If there is more than one functional site in the genome, the
calculation remains unaffected as long as their number is much smaller than n.

Sensitivity and genomic design of regulation. The regulatory machinery
can be very efficient: in bacteria, it has been shown that single factor molecules
can have regulatory effects. We can use eq. (6) to enquire how the cell can reach
this high level of sensitivity, following mostly ref. [14]. We assume a minimal
genome which has a single functional site of maximum binding strength E∗

and is otherwise random. If a single factor molecule is to affect regulation, its
binding to the functional site must not be overwhelmed by the remainder of
the genome. This leads to a criterion on the signal-to-noise ratio of regulatory
interactions,

F0
>∼E∗, (11)

which in turn imposes a number of constraints on the design of regulatory DNA:
(a) In a random genome, there must be at most a number of order one

minimum-energy binding sites. Estimating the probability to find such a site at
a given position as (1/4)`, we obtain the condition

L(1/4)` <∼ 1. (12)

This gives a lower bound on the site length, ` >∼ log L/ log 4. For a bacterial
genome (L ∼ 106), we obtain ` >∼ 10, which gives the right length of functional
binding sites. However, this bound is not fulfilled in eukaryotes. Indeed, eu-
karyotic genomes use a different design with groups of adjacent binding sites.

(b) For each minimum-energy site, there are ` suboptimal sites of Hamming
distance 1 from the minimum-energy sequence. These must not suppress the
binding to the minimum-energy site, i.e.,

exp(−E∗/kBT ) >∼ ` exp[−(E∗ + ε)/kBT ] (13)

in the two-state approximation. This gives a lower bound on the binding energy
per nucleotide, ε/kBT >∼ log ` ≈ 2− 3.

(c) Finally, the unspecific binding in the entire genome must not suppress
the specific binding to a minimum-energy site, i.e.,

exp(−E∗/kBT ) >∼L exp(−Eu/kBT ). (14)

This produces a lower bound on the energy gap between unspecific and optimal
specific binding, (Eu − E∗)/kBT >∼ log L ≈ 15.

Quite remarkably, these bounds are fulfilled as approximate equalities in
bacteria. Hence, the machinery of transcriptional regulation operates just at
the treshold of single-molecule sensitivity, i.e, F0 ≈ E∗.

Programmability and evolvability of regulatory networks. Of course,
not every regulatory interaction is equally sensitive. To switch genes on or
off, the cell uses the dependencies of the binding probability both on factor
numbers and on binding energies. During the cell cycle, the level of n can vary
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over several orders of magnitude, say, between a few and tens of thousands
of molecules. At a given value of n, the effects on the regulated genes differ
since their functional sites have different values of E. The binding energies can
change on evolutionary time scales by mutations of the site sequence, which
leads to regulatory differences between individuals and, ultimately, between
species. Both parameters are thus necessary to encode pathways in regulatory
networks. This is most flexible if minimum-energy sites are indeed sensitive to
a single factor molecule as discussed above. Differential programmability as a
network design principle [14] thus favors complicated molecular structures with
longer binding sites and larger binding energies. However, this competes with
the evolvability of the system by a stochastic evolution process [18]. We have
seen that the single-molecule sensitivity is just marginally reached in bacteria.
This indicates that the actual machinery may result from a compromise between
programmability and evolvability: binding sites are just complicated enough to
work. It also indicates that genomic structures can only be understood from
their evolution; this aspect will be developed further in Section 4.

3 Bioinformatics of regulatory DNA

Predicting regulatory interactions between genes is clearly a key problem in
bioinformatics, which is as important as the analysis of individual genes and
proteins. It is not surprising that this problem is very difficult since, as we have
discussed in the last section, targeting regulatory input in a large genome is a
tremendous signal-to-noise problem even for the cell itself. Its solution via the
analysis of regulatory DNA requires finding statistical criteria to distinguish be-
tween functional binding sites and background sequence. A general introduction
to the relevant sequence statistics can be found in ref. [19].

Markov model for background sequence. We begin by specifying a stochas-
tic model for the nonfunctional segments of intergenic DNA. These are as-
sumed to be Markov sequences with uniform single-nucleotide frequencies p0(a)
(a = A,C, G, T ). Hence, the probability of finding a given sequence has the
factorized form

P0(a1, . . . , ak) =
k∏

i=1

p0(ai). (15)

This assumption should not be taken too literally. The term “nonfunctional”
refers to binding of a particular transcription factor. Intergenic DNA contains
plenty of non-random elements with other functions (e.g., binding sites for other
factors) or without known function (such as repeat elements). The salient point
is, however, that most of intergenic DNA is well approximated by a Markov
sequence with respect to binding of a given transcription factor. To make this
more precise, we project the distribution P0(a) for segments of length ` onto the
binding energy E as independent variable. Denoting the projected distribution
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for simplicity with the same letter P0, we have

P0(E) ≡
∑
a

P0(a) δ(E − E(a)). (16)

This distribution is close to the actual genomic distribution Wdat(E) for most
values of E, as we have seen in fig. 3. It is possible to improve the background
model by introducing small frequency couplings between neigboring letters [15,
16].

Probabilistic model for functional sites. The sequences a = (a1, . . . , a`)
at functional sites of a given transcription factor are assumed to be drawn from
a different distribution Q(a). We write this distribution in the form

Q(a) = P0(a) exp[S(a)]. (17)

The quantity S(a), which is called the relative log likelihood score of the distri-
butions P0 and Q, will turn out to have an important evolutionary meaning as
well.

The single-nucleotide distribution qi(a) at a given position i within functional
loci is obtained by summing the full distribution Q over all other positions

qi(a) =
∑

a1,...,ai−1,ai+1,...,a`

Q(a). (18)

The set of these marginal distributions, qi(a) (i = 1, . . . , `; a = A,C, G, T ) is
called the position weight matrix for binding sites of a given factor [20]. If the
score function is additive in the nucleotide positions, S(a) =

∑`
i=1 si(ai), the Q

distribution has a factorized form, Q(a) =
∏`

i=1 qi(ai) with

qi(a) = p0(a) exp[si(a)]. (19)

This additivity assumption is made in most of the existing literature since the
position weight matrix (18) can be inferred from a sample of known functional
site sequences, which in turn determines directly the single nucleotide scores
(19). This scoring is the basis for a number of site prediction methods in single
species and by cross-species analysis; see, e.g., refs. [20, 21, 22, 23, 24].

Here we treat functional sites as coherent statistical units and do not make
the assumption of additivity of the score function [16]. As will be discussed in
the next section, functionality imposes correlations between the nucleotide fre-
quencies within a functional site, preventing factorization of the Q distribution.
Of course, it is not possible to reconstruct the full distribution Q(a), which
lives on a 4`-dimensional sequence space, from a limited sample of experimen-
tally known functional sites. However, we can again project this distribution
onto the binding energy as independent variable, Q(E) ≡

∑
a Q(a)δ(E−E(a)).

Since all regulatory effects of a functional site depend on its sequence a only
via the binding energy, we can also write the score as a function of the energy,
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S(a) = S(E(a)) (this will become obvious in the next section). Hence, the
relationship (17) has the same form for the projected distributions,

Q(E) = P0(E) exp[S(E)]. (20)

Bayesian model for genomic loci. Assuming that functional loci are dis-
tributed randomly with a small probability λ, we now combine the models for
background sequence and for functional sites into a model for the full distribu-
tion of sequences a in intergenic DNA,

W (a) = (1− λ)P0(a) + λQ(a). (21)

(At the moment, we are ignoring the possible overlap between functional sites).
In the language of statistics, this is a probabilistic model with hidden variables.
The output of this model consists of pairs (m,a): First, the model variable m
is randomly drawn, labelling a locus as nonfunctional (m = 0) with probability
1− λ or as functional (m = 1) with probability λ. Then the sequence is drawn
from the corresponding distribution P0(a) or Q(a). However, only the sequence
counts a are available data. The “hidden” variable m can be inferred from
the data in a probabilistic way using Bayes’ formula, which expresses the joint
probability distribution of data and model in terms of its conditional and its
marginal distributions

prob(a,m) = prob(a|m) prob(m) = prob(m|a) prob(a) (22)

with prob(a) =
∑

m prob(a|m)prob(m). We can solve for the conditional prob-
ability of the model for given data a,

prob(m|a) =
prob(a|m) prob(m)∑
m prob(a|m) prob(m)

. (23)

For the probability of functionality, ρf (a) ≡ prob(m=1|a), this formula reads

ρf (a) =
λQ(a)
W (a)

=
1

1 + exp[−S(a) + log 1−λ
λ ]

. (24)

The dependence on S has again the form of a Fermi function. Its threshold value
S = log[(1− λ)/λ] separates sequences that are more likely to be functional or
more likely to be background.

The full Bayesian model (21) can again be projected onto the energy variable,

W (E) = (1− λ)P0(E) + λQ(E). (25)

In this form, it can be tested against genomic data [16]. To plot the distribu-
tions P0, Q, and W as functions of E, we use eq. (1) with an energy matrix
εi(a) = ε0 log[qi(a)/p0(a)] estimated from the position weight matrix up to an
overall constant ε0 [10]. For our example of the CRP transcription factor, the
distribution Q(E) can be estimated from the about 50 known binding sites in
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Fig. 4. Bayesian model for regulatory DNA and score function. (a) Energy

count histogram Wdat(E) for CRP sites in E. coli as in fig. 3 (log scale), model dis-

tribution W (E) (thick line), and its decomposition (25) into background component

(1 − λ)P0(E) (thin dashed line) and component λQ(E) (E < Es ≈ 13) of functional

sites (thin solid line). (b) Log-likelihood score S(E) = log[Q(E)/P0(E)] (shifted by a

constant, thick line) and probability of functionality ρf (E) (thin line). From [16].

the E. coli genome. Using this Q distribution and a probability of functionality
λ ≈ 6× 10−4, the full distribution W (E) produces an excellent fit of the count
histogram Wdat(E) over the entire range of energies; see fig. 4(a). The log likeli-
hood score function S(E) = log[Q(E)/P0(E)] is shown in fig. 4(b), shifted such
that the curve has its zero at a point Es ≈ 13 beyond which binding becomes
negligible.

The resulting probability of functionality ρf (E) as given by eq. (24) is also
shown in fig. 4(b). This indicates the dilemma for the prediction of individual
binding sites based on sequence data from a single species. Many functional sites
have energies in the “twilight” region between the ensembles λQ and (1−λ)P0,
where ρf takes values around 1/2. Hence, depending on the energy cutoff chosen,
any prediction is torn between many false negatives or many false positives.

Dynamic programming and sequence analysis. It is straightforward to
generalize the Bayesian approach to longer segments of intergenic DNA, which
are covered by an unknown number s of non-overlapping functional sites as
shown in fig. 5 [22]. The hidden variables are now the sequence of left initial
positions rf ≡ (r1, . . . , rs) of the functional sites (with the no-overlap constraint
rν+1 ≥ rν + ` for ν = 1, . . . , s− 1). The full sequence distribution in a segment
of length L has the form

WL(a1, . . . , aL) = Z−1
∑
rf

λ̃WL(a1, . . . , aL|rf ), (26)

where Z is a normalization factor, λ̃ = λ + O(λ2) is a weight factor for each
functional locus (the negligible correction terms originate from the no-overlap

12



constraint), and WL(a1, . . . , aL|rf ) is the sequence distribution for given posi-
tions of functional loci,

WL(a1, . . . , aL|rf ) =

p0(a1) . . . p0(ar1−1)
s∏

ν=1

Q(arν , . . . , arν+`−1) p0(arν+`) . . . p0(arν+1−1) =

p0(a1) . . . p0(aL) exp

[
s∑

ν=1

S(arν , . . . , arν+`−1)

]
(27)

with rn+1 ≡ L + 1. The sum over sequences rf of arbitrary length s seems
formidable at first, but WL is easy to compute from the recursion

Wr(a1, . . . , ar) = (1− λ̂)p0(ar)Wr−1(a1, . . . , ar−1)
+λ̃Q(ar−`+1, . . . , ar)Wr−`(a1, . . . , ar−`) (28)

with the initial condition W0 = 1 and λ̂ = λ̃ + O(λ̃2). This type of recursion
relation is usually called a dynamic programming algorithm in computer science.
In physics, it is known as a transfer matrix, and the sum (27) is recognized as
the corresponding discrete path integral in imaginary time r, if we interpret rf

as encoding a path m(r) that takes the value m = 1 at the nucleotide positions
rν , . . . , rν + ` − 1 (ν = 1, . . . , s) within functional loci and m = 0 otherwise
(see fig. 5). Both concepts prove very useful also in more general problems of
sequence alignment.

In analogy to (24), the probability of a set rf of functional loci for given
sequence data is

ρ(rf |a1, . . . , aL) =
WL(a1, . . . , aL|rf )
WL(a1, . . . , aL)

. (29)

The most likely set r∗f can be obtained by the following “backward” algorithm:
Given the sequence (W1, . . . ,WL) obtained from the “forward” recursion (28),
we can decide for every point r whether it is more likely to be a background
position or the endpoint of a functional locus, ignoring all sequence information
from positions > r. This depends on whether the leading contribution to Wr

comes from the first or second term on the r.h.s. of (28) and defines the local
optimum model m∗(r). The global optimum set of functional loci respecting
the no-overlap constraint is then r∗f = {r|b(r) = 1}, where b(r) is given by the
recursion b(r) = ` if b(r + 1) ≤ 1 & m∗(r) = 1 and b(r) = max(b(r + 1) − 1, 0)
otherwise, with the initial condition b(L + 1) = 0.

The Bayesian model can easily be extended to sequences containing several
types of binding sites, which bind different transcription factors and are distin-
guished by their Q distributions. Dynamic programming algorithms can thus
predict the likely coverage of a sequence with binding sites of known type [22].
This is the first step in extending the statistical analysis from single binding
sites to entire regions of regulatory DNA. Indeed, models of this kind have been
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Fig. 5. Analysis of regulatory sequences. A configuration of s nonoverlapping

binding sites is given by the sequence of left initial positions rf = (r1, . . . , rs) (with

rν+1 − rν ≥ ` for ν = 1, 2, . . . , s − 1). It can be associated with a path m(r) which

takes the values m = 1 at the nucleotide positions of binding sites and m = 0 else-

where. Dynamic programming algorithms based on a Bayesian model (27) of genomic

sequences assign to each site configuration a probability of occurence ρ(r|a1, . . . , aL)

for given sequence data a1, . . . , aL; see eq. (29).

applied successfully to predict regulatory elements in eukaryotes, which typi-
cally consist of functional groups of adjacent binding sites. In the algorithms
currently used, however, the scoring in (27) is strictly additive for groups of non-
overlapping binding sites: it does not take into account dependencies between
the sites within one functional group or overlapping sites within one sequence.

4 Evolution of regulatory DNA

In statistical picture developed so far, background sequences and functional sites
are reduced to ensembles P0 and Q. This picture is incomplete in two ways.
On one hand, it is quite disconnected from the biophysical aspects discussed
before: the specific function of binding sites hardly enters the standard formal-
ism of position weight matrices. On the other hand, there is not yet any notion
of time and dynamics. Sequences change by various mutation processes, and
the observed sequence ensembles derive from this evolutionary dynamics. The
evolution of functional loci is fundamentally different from that of background
sequence: it is subject to natural selection, that is, the fitness of an organism
depends on its genotype a at a functional locus via the effects on the regulated
gene. At this point, the biophysics of binding enters the evolution of functional
sequences [25, 26, 27]. Moreover, it becomes clear that the statistical framework
has to be extended from individual sequences to distributions of genotypes in
a population. In this section, we develop an evolutionary picture of regulatory
DNA, from which we obtain expressions for the sequence ensembles P0, Q, and
the score function S. The next four paragraphs are a self-contained introduction
to the underlying concepts of population genetics.

Deterministic population dynamics and fitness. We start by describing
the evolution of a large population, which contains individuals of different geno-
types a. Each genotype is assumed to produce a specific phenotype, which may
influence the reproductive success of the individuals carrying it. With respect to
factor binding, the phenotype can be associated with the binding energy E(a),
since presumably all organismic effects of a locus depend on its genotype only
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via the binding energy. However, the discussion in the following paragraphs is
more general. For a more detailed presentation, see, e.g., ref. [28].

We first assume that the subpopulations of a given genotype reproduce sep-
arately, i.e., there neither transitions between genotypes through mutations nor
(in a sexually reproducing population) mixing through genomic recombination.
Writing the dynamics of the subpopulations in the form of simple growth laws,

d
dt

Na(t) = Fa(t)Na(t), (30)

defines the (Malthusian) fitness Fa(t) of each genotype. For notational simplic-
ity, we now limit ourselves to the case of just two genotypes a and b, where (30)
can be written as growth laws for the total population size N(t) ≡ Na(t)+Nb(t)
and for the population fraction x(t) ≡ Nb(t)/N(t) of genotype b,

d
dt

N(t) = F̄ (t)N(t), (31)

d
dt

x(t) = ∆Fab(t) x(t)[1− x(t)], (32)

with F̄ (t) ≡ [1 − x(t)]Fa(t) + x(t)Fb(t) and ∆Fab(t) ≡ Fb(t) − Fa(t). This
decomposition is useful since the overall growth rate F̄ (t) is often strongly time-
dependent due to external conditions (e.g., seasonality), while fitness differences,
which reflect intrinsic properties of the phenotypes, are more stable. Different
genotypes coexisting in a population frequently produce the same or very similar
phenotypes and thus have equal fitness (∆Fab = 0).

Assuming ∆Fab to be constant over the time of observation, the solution of
eq. (32) is the evolutionary trajectory

x(t) =
x0 exp[∆Fab(t− t0)]

1 + x0(exp[∆Fab(t− t0)]− 1)
(33)

with the initial condition x(t0) = x0, shown in fig. 6(a). For ∆Fab 6= 0, the fixed
points of this dynamics are the monomorphic population states x = 0, and x =
1, of which x = 1 is stable for ∆Fab > 1 and x = 0 for ∆Fab < 1. The approach
to the stationary state takes place on a characteristic time scale τd = 1/∆Fab.
In the important case of neutral evolution (∆Fab = 0), the evolutionary outcome
remains indefinite. These results, which can readily be generalized to more than
two phenotypes, are a simple version of Fisher’s fundamental theorem of natural
selection: any population with initially coexisting phenotypes of different fitness
will evolve towards a state where only the fittest phenotype is present.

Fisher’s theorem seems to prove the popularized Darwinian notion of the
“survival of the fittest”. However, it rests on very restrictive assumptions that
are never fulfilled in a natural population. The deterministic growth law (32)
neglects mutations and recombinations, as well as the reproductive fluctuations
present in any population due to its finite number of individuals. These other
evolutionary forces have to be incorporated in our theoretical picture before
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we can even define fitness as a measurable quantity and before the theory can
address the important case of neutral evolution.

Stochastic dynamics and genetic drift. Stochastic fluctuations of the re-
production process in a large but finite population have been studied extensively
in population genetics, see [29, 30]. They are called genetic drift, an unfortunate
name which may falsely suggest a deterministic effect. To take these fluctuations
into account, we replace eq. (30) by a stochastic growth law,

d
dt

Na(t) = Fa(t)Na(t) + χa(t), (34)

where χa(t) are Gaussian random variables with χa(t) = 0 and

χa(t)χb(t′) = Na(t) δ(t− t′) δa,b. (35)

This form of noise is simply due to the law of large numbers, and the continuum
dynamics (34) emerges as an effective large-N description for a plethora of
discrete evolution models, which are defined at the level of individuals and have
finite generation times. In the application to real populations, N has to be
interpreted as the so-called effective population size, which can be inferred from
genome data and is in general smaller than the actual population size.

In the case of two genotypes, eq. (34) can again be projected onto the pop-
ulation fraction x,

d
dt

x(t) = ∆Fab(t) x(t)[1− x(t)] + χx(t), (36)

where χx(t) = (∂x/∂Na)χa(t)+ (∂x/∂Nb)χb(t) are Gaussian random variables
with zero mean and

χx(t)χx(t′) =
x(1− x)

N
δ(t− t′). (37)

This dynamics produces stochastic evolutionary trajectories x(t) as shown in
fig. 6(b). To capture their statistics, we convert the Langevin equation (36)
into a Fokker-Planck equation for the probability distribution of the genotype
composition [31, 29],

∂

∂t
P(x, t) =

1
2N

∂2

∂x2
x(1− x)P(x, t)−∆Fab(t)

∂

∂x
x(1− x)P(x, t). (38)

The mathematical subtlety of this equation lies in the x-dependent diffusion
“constant” x(1 − x)/2N , which reflects the multiplicative nature of the repro-
duction process. As a consequence, the two monomorphic population states
x = 0 and x = 1 are also fixed points also of the stochastic dynamics. Any
evolutionary trajectory x(t) will eventually lead to one of these states with
probability 1; this is called the fixation of the corresponding genotype in the
population. In other words, the Fokker-Planck equation (38) describes diffusion
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in the interval (0, 1) with absorbing boundaries. There is a family of stationary
states

P(x) = (1− φ)δ(x) + φδ(1− x), (39)

parametrized by the fixation probability φ of genotype b. The value of φ de-
pends on the initial condition x0 and can be computed by solving the backward
diffusion equation

∂

∂t
P(x, t|x0, t0) = x0(1− x0)

(
1

2N

∂2

∂x2
0

+ ∆Fab(t)
∂

∂x0

)
P(x, t|x0, t0). (40)

For time-independent ∆Fab, the stationary solution φ(x0) ≡ limt→∞ P(x =
1, t|x0, t0) has the form [31, 29]

φ(x0,∆Fab, N) =
1− exp(−2N∆Fabx0)
1− exp(−2N∆Fab)

, (41)

which for near-neutral evolution (N∆Fab � 1) reduces to

φ(x0, 0, N) = x0 + N∆Fab x0(1− x0) + . . . . (42)

The characteristic time τs of the stochastic dynamics interpolates between the
diffusive scale N and the deterministic scale: τs ≈ min(N, τd). It determines the
typical time of the evolution process up to fixation, shown shaded in fig. 6(b).

Hence, the stochastic population dynamics depends no longer only on the
fitness difference of the genotypes as in the deterministic case, but also on the
initial state of the population and the the population size. Yet, our evolutionary
picture is still incomplete. Population states with coexisting genotypes enter the
dynamics as initial conditions, but since mutations are neglected, the model does
not explain how this coexistence is generated and maintained.

Mutation processes and evolutionary equilibria. At the level of an indi-
vidual, mutations are rare stochastic genotype changes a → b, which take place
with rates µa→b, often coupled to the reproduction process. (These rates are all
of the same order of magnitude, in estimates we therefore omit the indices.) We
include mutations into the population dynamics (34) by their systematic effect
on the genotype subpopulations,

d
dt

Na(t) = Fa(t)Na(t) +
∑
b

[µb→aNb(t)− µa→bNa(t)] + χa(t), (43)

while their stochastic effect (whose variance is of order Nµ) is neglected since
it is small against the reproductive sampling noise χa(t). In the case of two
different genotypes, this dynamics can again be projected onto the variable x,

d
dt

x(t) = ∆Fab(t) x(t)[1− x(t)] + µa→b[1− x(t)]− µb→a x(t) + χx(t), (44)
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Fig. 6. Evolution of genotype composition x(t). (a) Deterministic evolution

with fitness difference ∆Fab > 0, leading to certain fixation of genotype b (time is

shown in units of τd = 1/∆Fab). (b) Stochastic evolution with selection and genetic

drift, leading to fixation of one of the genotypes. The time to fixation (grey shading)

is of order τs (N∆Fab = 0.5, time is shown in units of N). (c) Stochastic evolution

with selection, genetic drift, and mutations in the regime Nµ � 1, leading to a

substitution dynamics with rates ua→b and ub→a given by (49). Substitution events

are marked by dashed lines. The typical time between initial mutation and fixation

(grey shading) for a given substitution, τs, is much shorter than the time between

subsequent substitutions, 1/ua→b resp. 1/ub→a (N∆Fab = 0.5, Nµ = 0.05, time is

shown in units of 1/µ).

which leads to the Fokker-Planck equation [32]

∂

∂t
P(x, t) =

1
N

∂2

∂x2
x(1− x)P(x, t)−∆Fab(t)

∂

∂x
x(1− x)P(x, t)

−µa→b
∂

∂x
(1− x)P(x, t) + µb→a

∂

∂x
xP(x, t). (45)

For time-independent ∆Fab, this equation has a single stable stationary state,

P(x) =
1
Z

x−1+Nµa→b(1− x)−1+Nµb→a exp(2N∆Fab x) (46)

with a normalization constant Z that can be expressed in terms of Bessel and
Gamma functions [33].

Substitution dynamics. Here we are interested in the stochastic evolution
(45) and its equilibrium state (46) for Nµ � 1, which is the relevant dynamical
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regime for nuclear DNA in eukaryotes and in most prokaryotes (but not in viral
systems). In this regime, the mutation term in (45) is small against the diffusion
term except for values of x close to the boundaries 0 or 1. In this region, the
continuum approximation of eq. (45) is no longer valid, and (46) has to be
replaced by a stationary solution Pd(Na) of the underlying discrete evolution
model, which gives the probability that the population contains Na individuals
of genotype a (with Na = N −Nb = 0, 1, . . . , N). The discrete solution is easily
shown to have the singularity Pd(0) ' (Nµa→b)−1Pd(1). This singularity is
correctly captured if we use the approximation Pd(Na) '

∫ (Na+1)/N

Na/N
dxP(x)

for all Na (except at the other boundary, where there is a similar singularity
Pd(N) ' (Nµb→a)−1Pd(N − 1)) [34].

From this solution, we read off the following characteristics of the evolu-
tionary dynamics at equilibrium, which are illustrated by the trajectory of
fig. 6(c) [33]:

(a) For sufficiently small values of µ, the population remains monomorphic
for most of the time. Using the shorthands Q(a) ≡ Pd(Na = 0) and Q(b) ≡
Pd(Na = N), we have

Q(a) + Q(b) = 1−O(µN log N). (47)

(b) The ratio of probabilities for the two monomorphic population states
is given by the ratio of “forward” and “backward” mutation rate, the fitness
difference, and the effective population size:

Q(b)
Q(a)

=
µa→b

µb→a
exp(2N∆Fab) + O(Nµ). (48)

(c) The monomorphic population states x = 0 and x = 1 are unstable due
to mutations even at arbitrarily small values of µ, which cause occasional tran-
sitions of the entire population from genotype a to b, and vice versa. These
so-called substitutions are marked by dashed lines in fig. 6(c). The substitution
rate ua→b can be evaluated as the product of creating a single mutant of geno-
type b in an initially monomorphic a population, Nµa→b, and its probability
of fixation, φ(x0 = 1/N, ∆Fab, N). The time between initial mutation and fix-
ation (shown by grey shading in fig. 6(c)) is still of order τs and thus much
shorter than the time scale 1/µ, on which mutation effects become important.
Hence, the fixation probability φ is given to leading order by (41), which has
been derived for µ = 0. Together we have [31, 29]

ua→b = Nµa→b
1− exp(−2∆Fab)

1− exp(−2N∆Fab)
. (49)

Hence, the substitution rate ua→b is enhanced over µa→b for ∆Fab > 0 and
suppressed for ∆Fab < 0, as shown in Fig. 7. For weak selection (N |∆Fab| � 1),
eq. (49) becomes

ua→b = µa→b(1 + N∆Fab + . . .). (50)
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Fig. 7. Substitution rate in a population versus mutation rate in an in-

dividual. The ratio of these rates, ua→b/µa→b, depends on the product N∆Fab of

effective population size and fitness difference between the genotypes (in the relevant

regime N � 1, ∆Fab � 1, N∆Fab finite). The substitution rate ua→b is equal to µab

for neutral mutations (∆Fab = 0), reduced for deleterious mutations (∆Fab < 0), and

enhanced for advantageous mutations (∆Fab > 0).

This reproduces Kimura’s famous original result: for neutral evolution, the
substitution rate equals the mutation rate in an individual, independently of
the population size. For this reason, the rates µa→b are referred to as neutral
mutation rates. For strong selection (N |∆Fab| � 1 � |∆Fab|), eq. (49) takes
the asymptotic forms

ua→b = µa→b

{
2N |∆Fab| exp(2N∆Fab) (2N∆Fab � 1),
2N∆Fab (2N∆Fab � 1). (51)

The backward substitution rate ub→a is given by a formula similar to (49) with
∆Fba = −∆Fab. Forward and backward substitution rate have the simple ratio

ua→b

ub→a
=

µa→b

µb→a
exp(2N∆Fab) (52)

for N � 1. Comparing with (48), we obtain the consistency condition

ua→b

ub→a
=

Q(b)
Q(a)

. (53)

Hence, for sufficiently small mutation rates (µN log N � 1), a simple picture
emerges: The evolution of a population can be described as a sequence of tran-
sitions between monomorphic genotype states (substitutions). The substitution
rate u is determined by the corresponding mutation rate in an individual, the
fitness difference between the genotypes, and the effective population size.

Neutral dynamics in sequence space, sequence entropy. This evolution-
ary picture can be generalized to multiple genotypes, for example, the 4` di-
mensional sequence space of genomic loci a = (a1, . . . , a`). Transitions between
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different sequence states are point mutations a → b, which change exactly one
nucleotide. (We neglect here insertion and deletion processes, which change
the length of the sequence). We first discuss neutral evolution, where the sub-
stitution rate ua→b equals the mutation rate in an individual, µa→b, for all
elementary transitions a → b. Bona fide neutral mutation rates can be inferred
from DNA sequence alignments of sufficiently close species, recent insights have
also come from studying repeat elements.

We assume the neutral dynamics has an equilibrium distribution P0(a) which
obeys detailed balance, i.e., the relation

µa→b

µb→a
=

P0(b)
P0(a)

(54)

holds for each pair of sequence states linked by an elementary transition process
a → b. This says that the probability current at equilibrium, µa→bP0(a) −
µb→aP0(b), vanishes for each elementary transition. Clearly, any distribution
P0(a) satisfying the conditions (54) is stationary under the dynamics with rates
µa→b, but not every such dynamics has a stationary distribution which sat-
isfies (54) (the simplest counterexample involving three states and a circular
probability current a → b → c at stationarity). However, as will be verified
below, detailed balance is a good approximation for the genomic substitution
dynamics at least in prokaryotes. (There are known violations at CpG islands
in eukaryotes [35]). In the simplest type of models, every nucleotide a mutates
independently of all other positions with uniform rates µa→b (i.e., µa→b = µa→b

for any two sequences a = (. . . , a, . . .) and b = (. . . , b, . . .) differing by exactly
one nucleotide). This produces a factorized equilibrium distribution P0(a) of
the form (15).

We can project the equilibrium distribution onto a measurable quantity as
independent variable. For binding site sequences, a convenient choice is the
binding energy E, and the projected distribution P0(E) has the form (16).
Hence we can define the sequence entropy [36]

S0(E) = log P0(E), (55)

which counts the log density of sequence states a at energy E, weighed by the
distribution P0(a).

Dynamics under selection, the score-fitness relation. The dynamics of
substitutions can be studied in the same way for evolution under selection,
which is specified at the level of genotypes by an arbitrary fitness function
F (a) [38, 18]. This generalizes the results of [37] for a model with selection
acting independently at different nucleotide positions, i.e., F (a) =

∑`
i=1 fi(ai).

For each elementary transition a → b, the substitution rate ua→b is determined
by the neutral rate µa→b, the fitness difference ∆Fab, and the effective pop-
ulation size N according to (49). Given the detailed balance (54) of neutral
evolution and the relation (52) between forward and backward rates, it then
follows immediately that the evolutionary dynamics under selection also obeys
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detailed balance, as given by (53) with an equilibrium distribution Q(a) of the
form (48). Thus we have [38, 18]:

The equilibrium distribution Q(a) of fixed genotypes generated by a substitution
dynamics (49) with fitness function F (a) is related to its neutral counterpart
P0(a) by

Q(a) = P0(a) exp[2NF (a) + const.], (56)

with the constant given by normalization.

We can project eq. (56) onto the fitness as independent variable. Defining
the distribution Q(F ) ≡

∑
a Q(a)δ(F (a)−F ), similarly P0(F ), and the sequence

entropy S0(F ) ≡ log P0(F ), the projected identity takes the form

Q(F ) = exp[2NF + S0(F ) + const.] (57)

For binding site sequences, we have a similar projection on the binding energy,
Q(E) = exp[2NF (E)+S0(E)+const.], since all genotypes with the same “phe-
notype” E have the same fitness, i.e., the same score S. The projected identities
express the equilibrium distribution under selection in terms of fitness and se-
quence entropy, reflecting the balance between stochasticity (genetic drift) and
selection [18]. For strong selection, the exponent 2NF −S0 is dominated by the
fitness term, and Q(F ) takes appreciable values only at points of near-maximal
fitness, i.e., where Fmax − F <∼ 1/2N . For moderate selction, there is a non-
trivial balance between both terms, and for weak selection, the Q distribution
can be approximated by its neutral counterpart P0 = exp(S0). Clearly, the
roles of fitness and sequence entropy are formally analogous to those of energy
and entropy in statistical physics of thermodynamic systems, if 2N is identified
with the inverse temperature 1/kBT . Some consequences of this analogy are
discussed in ref. [39].

The dynamics of substitutions establishes a rather general evolutionary ground-
ing of genome statistics, if we identify the equilibrium distributions P0(a) and
Q(a) with the genomic distributions discussed in the previous section, as already
anticipated by our notation. Comparing eqs. (56) and (17) gives a relation be-
tween fitness and score [18, 16]:

The log-likelihood score S(a) = log[Q(a)/P0(a)] equals the fitness function mul-
tiplied by twice the effective population size up to a constant,

S(a) = 2NF (a) + const.. (58)

This relation allows us to use sequence data of a given genome to infer
quantitative patterns of its evolution. We now discuss specific consequences for
the evolution of regulatory DNA; an application to protein evolution can be
found in ref. [37].

Measuring selection for binding sites. We first give a precise definition of
functionality for regulatory (and other) elements: A binding locus is functional
if the genotype at that locus is under selection (for binding of the corresponding
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factor). Nonfunctional loci have evolutionarily neutral genotypes. This defini-
tion asks whether binding at a given locus makes a difference to the organism
or not. It is weaker than that of a functional binding site, which is a functional
locus with a sequence a that is likely to actually bind the factor. A functional
locus can lose its binding sequence due to deleterious mutations, leading to sub-
optimal fitness of the organism. Conversely, a nonfunctional locus can have by
chance a sequence which does bind the factor: this is a spurious binding site
without consequences for the organism.

To measure the selection on functional sites in silico, we apply the identity
(58) to the genomic distributions P0(a) and Q(a). (Assuming equilibrium for
most loci seems to be justified for our example of CRP binding sites in E. coli
since we find very similar distributions in the distant bacterial species Salmonella
typhimurium, and the factor protein itself is highly conserved between these
species.) After projection onto the energy, the fitness landscape 2NF (E) for
CRP binding sites is thus given by fig. 4(b) [16]. The fitness is constant in the
no-binding region (E >∼Es ≈ 13) since the evolution is always neutral in that
region. This constant is set to 0 in our normalization, i.e., F (E) measures the
fitness gain of functional sites due to factor binding. Loci with strong binding
are also under strong selection, with effective fitness values 2NF of order 10.
Genetic drift counteracts selection, producing also loci with weaker binding and
reduced effective fitness. This fitness “landscape” is thus qualitatively of the
form predicted from the underlying biophysics [25, 18]. Of course, it should be
kept in mind that this landscape results from averaging over a family of binding
sites, which may have a spectrum of individual selection coefficients and selected
binding strengths.

Nucleotide frequency correlations. A further consequence of (57) is the
generic occurence of nucleotide frequency correlations within functional loci [18].
If the fitness function F (a) is not additive in the nucleotide positions, nucleotide
frequencies are correlated in selected genotypes even if they are independent un-
der neutral evolution. This happens quite generically since selection acts on the
entire genotype a as a functional unit and not on its single nucleotides. For
binding sites, fitness effects follow from the expression level of the regulated
gene, which depends on the sequence a via the binding probability of the corre-
sponding transcription factor. While the binding energy is often approximately
additive in the nucleotide positions as given by (1), the binding probability
(10) is a strongly nonlinear function of the energy. This introduces correla-
tions between nucleotide frequencies at any two positions within functional loci,
preventing factorization of the distribution Q(a).

Stationary evolution of binding sites. Functional loci with a substantial
level of selection (as found for the CRP binding sites in E. coli) evolve in a way
quite different from background sequence. This is quantified in fig. 8(a), which
shows pairs of binding energies (E1, E2) for experimentally verified CRP binding
sites in E. coli and the corresponding sites regulating orthologous genes in S. ty-
phimurium [27, 16]. The evolutionary distance t between the two species and
characteristics of the neutral mutation process can be inferred from alignments
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Fig. 8. Evolution of binding sites. (a) Binding energy pairs (E1, E2) for 32
experimentally verified CRP binding sites in E. coli from the DPInteract database [42]
and their aligned orthologs in S. typhimurium (dots). Conditional expectation value
for the binding energy in S. typhimurium under neutral evolution, 〈G0(E2|E1)〉 (dashed
line), and under selection, 〈Gf (E2|E1)〉 (solid line). (b) Distribution of energy pair
counts Wdat(E1, E2) (filled contours), compared to the distribution W (E1, E2) given
by the Bayesian model (62). The symmetry of these distributions under exchange of
E1 and E2 reflects detailed balance of the substitution dynamics. From [16, 40].

of background sequence. The “phenotypic” evolution of CRP binding is quanti-
fied by the energy transition probabilities G0(E2|E1) under neutral evolution and
Gf (E2|E1) under stationary selection [16]. These are readily obtained by simu-
lating the substitution dynamics over a time interval t for given initial value E1,
both with neutral rates µa→b and with rates ua→b given by (49) and the fitness
function 2NF (E) measured in E. coli. The resulting conditional expectation
values 〈G0(E2|E1)〉 and 〈Gf (E2|E1)〉 for the binding energy in S. typhimurium
are also shown in fig. 8(a). The data conform to the selection model, showing a
substantially stronger conservation of binding energy than expected for neutral
evolution [27, 16, 40].

We can now build a probabilistic model for cross-species comparisons [16].
It is based on the joint distributions of energy pairs

P0(E1, E2) = G0(E2|E1) P0(E1) (59)

under neutral evolution and

Q(E1, E2) = Gf (E2|E1) Q(E1) (60)

under stationary selection, which are determined by the corresponding distri-
butions in one species and the energy transition probabilities. Detailed balance
of the substitution dynamics implies

P0(E2)
P0(E1)

=
G0(E2|E1)
G0(E1|E2)

and
Q(E2)
Q(E1)

=
Gf (E2|E1)
Gf (E1|E2)

, (61)
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i.e., the joint distributions P0(E1, E2) and Q(E1, E2) must be symmetric func-
tions of their arguments. These distributions combine into a model for pairs of
aligned loci, which generalizes the single-species model (25) and takes the form

W (E1, E2) = (1− λ)P0(E1, E2) + λQ(E1, E2). (62)

(This model can be extended further to include non-stationary selection.) The
distribution W (E1, E2) with a fraction of functionality λ = 0.0018 is in excellent
agreement with the count distribution Wdat(E1, E2) obtained from E. coli and
S. typhimurium, as shown in fig. 8(b). The symmetry of Wdat thus corroborates
the underlying assumption of detailed balance. Analogous Bayesian models can
be defined for more than two species related by a phylogeny. This approach
has been applied to binding site prediction in bacteria [16]; a related study of
several species of funghi has been reported in ref. [41].

Adaptive evolution of binding sites. What does this picture say about
the adaptive evolution of transcriptional regulation in response to a newly aris-
ing selection pressure? The evolution from a genotype with marginal binding
(E(a) ≈ Es) to strong binding requires only about three uphill point muta-
tions in the fitness landscape of fig. 4(b), i.e., there is an effective fitness gain
2N∆F ≈ 3 per mutation. Hence, according to (51), the rate of uphill substitu-
tions per locus is enhanced by a factor 2N∆F · d(a,a∗) at least of order 10 over
the neutral point mutation rate per nucleotide. At the same time, the downhill
rate is strongly suppressed. This shows that the adaptive formation of a bind-
ing site from background sequence can indeed be a rapid mode of regulatory
evolution, due to the substantial level of selection [18].

However, this mode is only efficient if adaptation can set in immediately
after the selection pressure is established. In larger regulatory regions, the ex-
act position of a binding site is often not important. We assume the initial
genome contains a set of L̃ shadow sites, i.e., positions r1, . . . , rL̃ where a given
sequence a would have the same regulatory effect. If one of these shadow sites
has already a genotype with marginal binding, it acts as a “seed” for the onset
of adaptation [43]. On the other hand, if all shadow sites of the initial genome
have energy E > Es, there is typically a substantial waiting time of neutral
evolution before one of them reaches the threshold energy Es. Assuming the
initial genome to be entirely background sequence, it will contain at least one
such seed if

∫
E<Es

P0(E)dE >∼ 1/L̃, which is a joint condition on L̃ and the site
length `: the shadow regulatory region must be long enough and binding sites
must be short enough. The example shows that the evolvability of regulation
imposes constraints on genome architecture [18]. Adaptive point substitution
may thus be a feasible mode for the formation of a single binding site, but will
hardly explain the groups of adjacent sites characteristic of eukaryotic promot-
ers. These may originate from repeat duplication by slippage, which has recently
been shown to be an efficient source of sequence innovation in intergenic regions
of Drosophila.
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5 Towards a dynamical picture of the genome

The relationship S = 2NF + const. between score and fitness is a cornerstone
of the theoretical picture developed so far, which links its population genetic,
bioinformatic and biophysical arches. It relates a key evolutionary variable with
the statistics of genomic frequency counts. The physical binding energy is an
appropriate phenotypic variable on which fitness and score depend, because
molecular function is determined by binding interactions.

We have discussed this picture for transcription factor binding sites, but it
can be applied more generally to functional elements in genomes. It relates
the statistics of these elements in one genome with their evolutionary dynam-
ics, which is observed in cross-species comparisons. This dynamics is shaped
by selection: The components of functional elements are coupled by a common
fitness function; such fitness interactions are called epistasis. Hence, functional
correlations lead to evolutionary correlations. These can be traced in the Q
distribution over fixed genomes of a functional element. A more detailed statis-
tical analysis using the statistics of polymorphisms within a population is briefly
sketched below.

Thus, the picture of the genome as a system with multiple interactions has
a fundamental dynamical significance. This is important since it allows us to
trace functional modules from evolutionary patterns. We conclude the article
with a brief outlook on functional integration of regulatory sequences at various
and its dynamical implications.

Evolutionary interactions between sites. Regulatory function is often de-
termined not by single binding sites, but jointly by a group of sites in the same
regulatory region [44]. An important mechanism is binding cooperativity, i.e.,
the formation of a protein complex between two (or more) factors bound to
their corresponding DNA sites. The binding energy of this complex has the
form E = E1 + E2 + ∆E12, where E1 and E2 are the energies of the factors
bound individually and ∆E12 < 0 is the energy gain due to the protein-protein
interaction, which is of the order of a few kBT . Cooperative binding has a
number of functional effects [1]:

(a) It increases the signal-to-noise ratio for the targeting of regulatory input
to a specific gene, which is important in larger eukaryotic genomes, where single
spurious binding sites are abundant in background sequence.

(b) It sharpens the response of the binding probability to variations in the
factor concentrations around their threshold value. This follows from the ther-
modynamics of two factors, which is a straightforward generalization of the case
of a single factor discussed in section 2.

(c) It implements logical connections between regulatory input signals to
a given gene. The simplest example is an AND connection between two fac-
tors, where the regulated gene is affected only if both factors are simultaneously
present. This happens if the binding energies and factor concentrations are such
that individual binding is weak but joint binding is strong. Larger groups of
binding sites can encode a whole repertoire of more complicated logical func-
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tions [45].
Regulatory modules with several jointly acting binding sites are frequently

found in eukaryotes. The functional coupling of sites in a module translates
into interactions between these sites in their sequence evolution. The genomic
functional element, i.e., the subset of the regulatory region on which selection
acts, is the module as a whole. Its fitness F (E1, E2,∆E12, . . .) is a joint func-
tion of the binding energies as the relevant phenotypic variables [25, 18]. The
evolutionary dynamics under this selection allows for a large number of com-
pensatory changes, i.e., pairs of correlated substitutions changing two binding
energies such that the fitness remains constant. These lead to nucleotide fre-
quency correlations between different sites. Such compensatory changes have
indeed been observed in experiments on Drosophila promoters [46].

Site-shadow interactions. In larger regulatory regions, there is a number
of shadow sites where a binding sequence a would have a similar regulatory
effect as at the functional sites present. In that case, the genomic functional
element contains not only the functional binding sites but also the shadow sites.
Once a functional site has disappeared due to deleterious mutations, a shadow
site can turn functional by adaptive evolution as described in the last section.
The resulting evolutionary dynamics leads to sequence turnover with the ac-
tual binding sites present at different but functionally equivalent positions [38].
Substantial sequence turnover has been observed in a number of case stud-
ies [47, 46, 48, 49, 50, 51]. Also the number of actual sites is subject to evolu-
tionary variation since the same regulatory effect, i.e., the same fitness, can be
distributed over fewer stronger or more weaker sites. With increasing number
L̃ of shadow positions, one expects that the number of actual sites grows while
individual sites get weaker [38].

Gene interactions. Evolutionary interactions are not limited to regulatory el-
ements for the same gene. An example are gene duplications and the subsequent
evolution of the daughter genes. Selection acts jointly on this pair of genes [52],
which have initially identical functions, eventually leading to either loss of one
of them or to subfunctionalization, which has been argued to be an important
mode of genome evolution in eukaryotes [53, 54]. This process can take place by
regulation, i.e., via a correlated distribution of the regulatory elements on the
daughter genes. More generally, the evolution of genes in a regulatory network
is correlated if their functions are coupled either in series (i.e., one gene acts on
the other) or in parallel (i.e., they are part of alternative pathways for the same
function). Although some regulatory networks in model organisms – e.g. the
embryonic development in the sea urchin [55] – have been studied in detail, we
lack a coherent view of their functional evolution to date.

Interactions and time-dependent selection. The functional integration
of regulation at multiple levels and the resulting fitness interactions (epistasis)
imply that the selection at one genomic site is influenced by changes at other
sites. A recent analysis of single-nucleotide polymorphisms and substitutions
in Drosophila provides indeed evidence on a genome-wide scale that selection is
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time-dependent: at individual loci, changes in the direction of selection occur
at nearly the rate of neutral evolution [56, 57]. At the same time, selection is
sufficiently strong so that the adaptive response can keep up with the rate of
selection changes. This rate is faster in non-coding DNA, which points towards
the role of regulation in the adaptive differentiation between species. Genomic
evolution emerges as a complex stochastic process, shaped jointly be the driving
force of time-dependent selection, fitness interactions between sites, and the
ongoing background of near-neutral changes. Much more remains to be learned
about the interplay of these evolutionary forces: in a large and strongly coupled
system, one external signal can trigger an avalanche of subsequent compensatory
responses. This dynamics seems now within reach of genomic sequence analysis.

Evolutionary innovations. Under stationary selection, functional elements
are more conserved than background sequence, and the score-fitness relation
quantifies the amount of conservation. But evolution is, of course, not lim-
ited to conservation. On one hand, there is typically a multitude of different
genotypes yielding the same molecular function, and the evolutionary dynamics
continuously plays with these alternatives. On the other hand, organisms face
long-term changes of their environment, which lead to new selection pressures
and a response by adaptive evolution of new functions. If regulation is to ac-
count for a large part of the diversification in higher eukaryotes, loss or gain
of regulatory function should be an important mode of molecular evolution.
Changes in regulatory DNA leading to new functions of gene networks have
been observed [58], and it is possible to extend the statistical models described
in the previous section to include evolutionary gain or loss of function of individ-
ual binding sites [16]. On a broader scale, time-dependent selection and fitness
couplings appear act as a major driving forces of genomic change, triggering
avalanches of evolutionary innovation. Understanding this molecular basis of
innovations is a major challenge for theory and experiment in the coming years.
It will profoundly change our dynamical view of the genome.
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[56] V. Mustonen and M. Lässig, Proc. Natl. Acad. Sci., in press (2006).
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