
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 7, Numbers 1/2, 2000
Mary Ann Liebert, Inc.
Pp. 115–141

Scaling Laws and Similarity Detection in Sequence
Alignment with Gaps
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ABSTRACT

We study the problem of similarity detection by sequence alignment with gaps, using a re-
cently established theoretical framework based on the morphology of alignment paths. Align-
ments of sequences without mutual correlations are found to have scale-invariant statistics.
This is the basis for a scaling theory of alignments of correlated sequences. Using a simple
Markov model of evolution, we generate sequences with well-de� ned mutual correlations
and quantify the �delity of an alignment in an unambiguous way. The scaling theory predicts
the dependence of the � delity on the alignment parameters and on the statistical evolution
parameters characterizing the sequence correlations. Speci� c criteria for the optimal choice
of alignment parameters emerge from this theory. The results are veri� ed by extensive nu-
merical simulations.

Key words: sequence comparison, alignment algorithm, homology; evolution model, longest
common subsequence.

1. INTRODUCTION

Sequence alignment has been one of the most valuable computational tools in molecular biology. It
has been used extensively in discovering and understanding functional and evolutionary relationships

among genes and proteins. There are two basic types of alignment algorithms: algorithms without gaps,
such as the original BLAST (Altschul et al., 1990), and algorithms with gaps, for example, variants of the
Smith-Waterman local alignment algorithm (Smith and Waterman, 1981) as implemented in the current
generation of BLAST and FASTA. Gapless alignment is widely used in database searches because the
algorithms are fast (computational time scales linearly with sequence length) and the results depend very
weakly on the choice of scoring systems (Altschul et al., 1990; Altschul, 1993). However, gapless alignment
is not sensitive to weak sequence similarities (Pearson, 1991). For detailed similarity analysis, algorithms
with gaps are therefore needed (Waterman, 1989, 1994).

At present, there are two main obstacles to the wider application of the more powerful gapped alignment
algorithms. Firstly, they require substantially longer computational time than gapless alignments (depending
quadratically on the sequence length). More importantly, gapped alignments lack a quantitative theory
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assessing the statistical signi� cance of the results obtained. It is this second issue we address in the
present paper.

In a typical pairwise alignment, one assigns a score to each alignment of two sequences. The score
is based on the degree of match/mismatch for each pair of aligned elements and on the number of gaps
used. Maximization of this score is then used to select the optimal alignment, taken as a measure of the
mutual correlations between the sequences. However, it is well known that the optimal alignment of a
given pair of sequences can depend strongly on the scoring parameters used. The same is true for the
� delity of the optimal alignment, that is, the extent to which mutual correlations are recovered. Hence, the
key problem of alignment statistics is to quantify the degree of sequence similarity based on attainable
alignment data and to � nd the scoring parameters producing alignments of the highest � delity. Optimal
scoring parameters have been chosen mostly by trial and error so far, although there have been systematic
efforts to establish a more solid empirical footing (Benner, 1993; Vingron and Waterman, 1994; Koretke
et al., 1996). The statistical theory presented here gives a systematic way to � nd optimal alignment
parameters and to understand their dependence on the intersequence correlations. It is expected to be most
useful in the alignment of weakly homologous sequences, where a judicious choice of scoring parameters
is critical.

To guide the choice of scoring parameters, a quantitative measure of sequence similarity is necessary.
The most widely used measure is the p-value, which expresses the likelihood that a given alignment
score is obtained by chance. To compute the p-value, it is necessary to understand quantitatively the score
distribution, particularly the large-score tail of the distribution, given the vast number of sequences in
the database. While there is an exact theory to compute the asymptotic distribution for arbitrary scoring
parameters in gapless alignment (Karlin and Altschul, 1990, 1993), no theory is available for alignment with
gaps. Direct numerical simulation using shuf� ed sequences has been used instead. The shuf� ing method
is very time consuming, however, as tens of thousands of shuf� es are typically needed to reconstruct the
tail of the distribution.1

In this paper, we shall adopt a different approach. We develop a general scaling theory relating the
� delity of the alignment (which is unobservable for unknown homology) to alignment score data which
are observable. The theory is motivated by knowledge obtained from related problems of statistical physics
and is supported by extensive numerical simulations on synthetic sequences. One outstanding virtue of our
approach is that the statistical signi� cance of an alignment can be estimated based on the alignment score
data of a single sequence, without the need of shuf� ing. This general approach can also be extended to
estimate statistical signi� cance via the p-value, as demonstrated recently by Olsen et al. (1999b).

Since the algorithm is designed to detect residual similarities between sequences in a divergent evolution,
it is clear that the � delity measure has to emerge from the underlying evolution process. We use a simple
probabilistic evolution model to generate daughter sequences from ancestor sequences by local substitutions,
insertions, and deletions. The model is certainly too simple to describe realistic evolution processes, but
it allows an unambiguous identi� cation of inherited mutual similarities between sequences. The � delity
of an alignment is then simply the fraction of the inherited similarities recovered by it. Maximization of
the � delity is used as a criterion to select optimal scoring parameters. These depend, of course, on the
parameters of the primary evolution process. A link between evolution parameters and scoring parameters
is also inherent to maximum-likelihood methods (Bishop and Thompson, 1986; Thorne et al., 1991, 1992).
It has been found, however, that maximum-likelihood methods do not maximize the � delity as de� ned
above (Kschischo and Lässig, 2000).

The existing theory of gapless alignments has been used successfully to describe local alignments with
few gaps (in a sense to be made precise below). The theory of this paper describes the opposite limit
of alignments with many gaps. The statistics of such alignments differs signi� cantly from—but is shown
to be consistent with—the gapless limit. We focus on global alignments of long sequences obtained by
the Needleman-Wunsch (1970) algorithm, which inherently have many gaps. An important special case of
this theory is the problem of the longest common subsequence (LCS), for which a number of conjectures
and bounds exist. Additionally, we have shown in two recent communications (Hwa and Lässig, 1998;
Drasdo et al., 1998) that results on local alignments close to the phase transition to global alignment

1Waterman and Vingron (1994) proposed a declumping method which required only ¹ 10 shuf� es for random
amino acid sequences. However, the declumping algorithm itself is rather time consuming, and the direct estimate by
simulation is recommended over the declumping method (Hardy and Waterman, 1997).
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(Waterman et al., 1987; Arratia and Waterman, 1994) can also be described by this theory. This regime of
the Smith-Waterman algorithm is important for biological applications since it has been found empirically
to produce “good” alignments (Vingron and Waterman, 1994). The phase transition, in particular, is found
to differ qualitatively from the corresponding transition for gapless alignments.

The statistical theory of gapped alignments presented here is based on a geometrical approach introduced
recently by two of us (Hwa and Lässig, 1996). This approach focuses on the morphology of the optimal
alignment paths. The notion of an alignment path (recalled below) provides a very fruitful link to various
well-studied problems of statistical mechanics (Kardar, 1987; Fisher and Huse, 1991; Hwa and Fisher, 1994)
as has also been noticed by Zhang and Marr (1995). The important statistical properties of alignment paths
are described by a number of scaling laws (Hwa and Lässig, 1996; Drasdo et al., 1997) explained in detail
below. Their validity for sequence alignment is supported by extensive numerical evidence. The resulting
scaling theory of alignment has three main virtues:

(i) It distinguishes clearly between universal (parameter-independent) properties of alignments and those
depending on the scoring parameters (and hence governing their optimal choice). We � nd generic
alignments with gaps and LCS alignments share the same universal properties, which differ from
those of gapless alignments.

(ii) It relates score data of alignments to their � delity and to the underlying evolutionary parameters
characterizing the similarities of the sequences compared.

(iii) Its key statistical averages turn out to be signi� cant for the alignment of single sequence pairs that
are suf� ciently long.

These scaling laws are important for the statistics of uncorrelated and correlated sequences as we show
in detail below. They lead to a systematic score-based parameter optimization for global (Needleman-
Wunsch) alignments as well as for local (Smith-Waterman) alignments (Olsen et al., 1999a). Statistical
scaling theories have also been developed for related optimization problems in structural biology, notably
protein folding (Wang et al., 1996; Onuchic et al., 1997).

This paper is organized as follows. In Section 2, we de� ne the evolution process, recall the global
alignment algorithm used throughout this paper, and discuss the qualitative aspects of the geometrical
approach. The quantitative theory of alignment starts in Section 3, where we give a detailed description of
the alignment statistics for uncorrelated random sequences and present the power laws governing alignment
paths and scores. In Section 4, we turn to sequences with mutual correlations inherited by a realization of
our evolution process. We establish a scaling theory that explains the parameter dependence of alignments
in a quantitative way. Hence, we derive optimal alignment parameters as a function of the evolution
parameters. Furthermore, we show how the evolutionary parameters and the optimal alignment of a given
pair of sequences can be deduced from its score data.

2. THE GEOMETRICAL APPROACH TO SEQUENCE ALIGNMENT

Evolution model

The evolution process used in this study has as its input an “ancestor” sequence Q 5 fQ 1, . . . , Q i , . . . ,
Q N g of length N ¾ 1. Each element Q i is chosen from a set of c different letters with equal probability
1=c, independently of the elements at other positions. Hence, the ancestor sequence is a Markov random
sequence. The numerical results presented below are for the case c 5 4 as appropriate for nucleotide
sequences, but for some derivations it is useful to consider general c-letter alphabets.

The evolution process generates a daughter sequence Q 0 5 fQ 0
1, . . . , Q 0

j , . . . , Q 0
N 0 g from the ancestor

sequence Q . This process involves local insertions and deletions of random elements with the same
probability ep, and point substitutions by a random element with probability p. Insertion, deletion, and
substitution events at one point of the sequence are independent of the events at other points. The evolution
process can thus be formulated as a Markov process along the sequence (Bishop and Thompson, 1986;
Thorne et al., 1991; Hwa and Lässig, 1996). This Markov process models evolution in time with cumulative
mutation probabilities p and ep, which are related to the PAM distance of the sequences. These parameters
should not be confused with the mutation rates per unit time. The precise evolution rules used in this paper
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are given in Appendix A. They are chosen such that the average length of the daughter sequence equals
the length N of the ancestor sequence.

A speci� c realization of this Markov process de� nes a unique evolutionary relation between the sequences
Q and Q 0 (see Fig. 1(a)). Of course, the same pair of sequences can be linked by many different evolutionary
relations. For a given relation, there is a well-de� ned set of conserved elements, i.e., elements that are
neither deleted nor substituted. We call these conserved pairs of elements (Q i 5 Q 0

j ) native pairs. The
average fraction of ancestor elements Q i conserved in the daughter sequence Q 0 is

U (p, q) 5 (1 ¡ p) (1 ¡ q), (1)

where

q 5
ep

1 ¡ ep (2)

is the effective insertion/deletion rate (see Appendix A). U ( p, q) quanti� es the mutual similarity between
sequences. Identical sequences have U 5 1; mutually uncorrelated sequences are obtained for p 5 1,
i.e., U 5 0. In the remainder of this paper, we take U and q as the basic parameters characterizing the
evolution process. The primary goals of sequence alignment are to identify the native pairs and to estimate
the mutual similarity U .

Alignment and scoring scheme

We align the sequences Q 5 fQ 1, . . . , Q i , . . . , Q N g and Q 0 5 fQ 0
1, . . . , Q 0

j , . . . , Q 0
N 0 g using the

simplest version of the global alignment algorithm by Needleman and Wunsch (1970). A global alignment
of two sequences is de� ned as an ordered set of pairings (Q i , Q 0

j ) (matches or mismatches) and of gaps
(Q i , ¡ ) and ( ¡ , Q 0

j ), each element Q i and Q 0
j belonging to exactly one pairing or gap (see Fig. 1(b)).

A special case is alignments without mismatches. These produce always an LCS of Q and Q 0, de� ned
as a sequence Q 00 5 fQ 00

1 , . . . , Q 00
k , . . . , Q 00

L g of maximal length L with Q 00
k 5 Q ik 5 Q 0

jk
, i1 , . . . , iL ,

j1 , . . . , jL .
Any alignment of Q and Q 0 is assigned a score S , maximization of which de� nes the optimal alignment.

We use here the simplest linear gap function, with the alignment score given by the total number N 1 of
matches (Q i 5 Q 0

j ), the total number N ¡ of mismatches (Q i 65 Q 0
j ), and the total number Ng of gaps

used. Hence, the most general such function involves three scoring parameters:

S 5 m 1 N 1 1 m ¡ N ¡ 1 m gNg . (3)
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FIG. 1. (a) An evolutionary relation linking the ancestor sequence Q 5 fG, T , A , C, T , G, A , T , Gg to the daughter
sequence Q 0 5 fG , A , G, T , A , T , C, T , Gg. Native pairs are marked by bonds with full circles, substitutions by bonds
with empty circles. The unpaired letters Q i are deleted, the unpaired letters Q 0

j are inserted. (b) A possible alignment

between Q and Q 0 with matches (Q i 5 Q 0
j ) (full lines), mismatches (Q i 65 Q j ) (dashed lines) and gaps (unpaired

letters). (c) Lattice representation. The evolution path R (t ) corresponding to (a) is marked by circles; there are � ve
native bonds (full circles). The alignment path corresponding to (b) appears as thick line whose solid (dashed) diagonal
bonds are matches (mismatches) and whose horizontal and vertical bonds are gaps. It covers three of the � ve native
bonds, producing the � delity F 5 3=5.



SCALING LAWS AND SIMILARITY DETECTION 119

To � nd the optimal global alignment, we can use without loss of generality (see Appendix B) the simpler
scoring function

S 5
p

c ¡ 1 N 1 ¡
1

p
c ¡ 1

N ¡ ¡ c Ng , (4)

which has only a single scoring parameter, the effective gap cost c . As a function of c , we can distinguish
different alignment regimes:

(i) For c ! 1, the optimal alignment becomes gapless. The match/mismatch scores in (4) are chosen
such that gapless alignments of uncorrelated random sequences produce a score of mean 0 and
variance 1 per element pair.

(ii) For c ¶ c0, the optimal alignment contains matches, mismatches, and gaps. This regime is the most
interesting for biological sequences and is the focus of this paper. Optimal values of c are typically
of order 1.

(iii) For c , c0 ² 1=(2
p

c ¡ 1), the score cost of a mismatch is higher than that of two gaps. Hence,
the optimal alignments contain only matches and gaps. They are independent of c in this regime,
producing always longest common subsequences of the sequences aligned. An LCS of two sequences
of length N has a length L 5 N 1 which is related to the score of the corresponding alignment,

S 5
p

c ¡ 1 L ¡ 2c (N ¡ L ). (5)

The � delity of an alignment

As discussed above, mutual correlations between the sequences Q 5 fQ i g and Q 0 5 fQ j g arise from the
set of native pairs (Q i 5 Q 0

j ). The �delity F of an alignment can be quanti� ed as the fraction of correctly
matched native pairs (see Fig. 1(b)). This is an unambiguous measure of the goodness of an alignment,
and it will be used below to � nd optimal alignment parameters. To evaluate F directly, the native pairs
have to be distinguished from random matches (Q i 5 Q 0

j ) involving mutated elements. Hence, the � delity
de� ned in this way depends not only on the sequences Q and Q 0 but also on the evolution path linking
them. Of course, the evolution path is not known in actual applications of sequence alignment. However,
the scaling theory discussed below relates statistical properties of F to observable alignment data, making
it a useful and measurable quantity.

Lattice representation

Any alignment of two sequences fQ i g and fQ 0
j g is conveniently represented on a two-dimensional N £N 0

grid as in Figure 1(c) (Needleman and Wunsch, 1970). The cells of this grid are labeled by the index pair
(i, j ). The diagonal bond in cell (i, j) represents the pairing of the elements (Q i , Q 0

j ). The horizontal
bond between cells (i, j ) and (i, j 1 1) represents a gap (Q i , ¡ ) located on sequence Q 0 between the
elements Q 0

j and Q 0
j 1 1. The vertical bond between cells (i, j ) and (i 1 1, j ) represents a gap located on

sequence Q between the elements Q i and Q i 1 1. In this way, any alignment de� nes a unique directed path
on the grid. Using the rotated coordinates r ² j ¡ i and t ² i 1 j , this path is described by a single-valued
function r(t) measuring the displacement of the path from the diagonal of the alignment grid.

The Needleman-Wunsch dynamic programming algorithm obtains optimal alignments (denoted by the
subscript £) from the “score landscape” S (r, t) computed recursively for all lattice points. Here S(r, t)
denotes the maximum score of all paths ending at the point (r, t). The recursion relation requires boundary
conditions. We mostly use boundary conditions corresponding to rooted alignment paths starting at the
point (r 5 0, t 5 0), but some statistical quantities are conveniently evaluated for unrooted paths starting
at an arbitrary point (r, t 5 0). The precise form of the algorithm and of the boundary conditions used
in this paper are detailed in Appendix C. For given T , the maximum of the score landscape S (x , T ) 5
S£(T ) ² maxr S (r, T ) determines the endpoint x 5 r£(T ); the entire path r£(t) is then found by back-
tracing. Of course, optimal paths de� ned in this way are not unique since (i) the maximum score S£(T )
may be attained at different points x and (ii) for given x , the back-tracing may produce more than one path
r£(t). It can be shown that with probability 1 the resulting ambiguities for the displacement r£(t) are only
of the order of a single lattice spacing. For more precise formulations of this “macroscopic” uniqueness
of the optimal path, see Fisher and Huse (1991), Hwa and Fisher (1994), Kinzelbach and Lässig (1995).
The “microscopic” ambiguities do not affect any of the results reported below.
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The evolutionary relation linking the sequences Q and Q 0 can also be represented as a directed path
R (t ) on the alignment grid, called the evolution path (Hwa and Lässig, 1996). On this path, horizontal and
vertical bonds represent deleted and inserted elements, respectively. For a given realization of the evolution
process, the resulting path R (t ) is unique. A fraction U of the bonds along the evolution path are native
bonds representing the native pairs (Q i 5 Q 0

j ). The � delity of an alignment is then simply the fraction
of overlap between the trajectories of the optimal alignment path r£(t) and the evolution path R (t) (see
Fig. 1(c)).

Alignment morphology

Alignment algorithms are designed to trace the mutual correlations between sequences. As it becomes
clear from Figures 2, the presence of such correlations affects both the morphology of the optimal alignment
path r£(t) and the associated score statistics. Figure 2(a) shows the path r£(t ) for a pair of mutually
uncorrelated random sequences. This path is seen to be intrinsically rough; i.e., the displacement has large
variations. This “wandering” is caused by random agglomerations of matches in different regions of the
alignment grid. Figure 2(b) shows the corresponding score landscape S(r, t ) at a given value of t . The
maximum score value occurs at the point x 5 r£(t) and is seen to be not very pronounced; near-optimal
score values occur also at distant points such as x1. The statistics of alignment paths and scores for
uncorrelated sequences are discussed in detail in Section 3 below.

The optimal alignment path for a pair of mutually correlated sequences (obtained from the evolution
process described above) behaves quite differently, as shown in Figure 2(c). Its wandering is essentially
restricted to a “corridor” of � nite width centered around the evolution path R (t). In this way, the path r£(t)
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FIG. 2. (a) The optimal alignment path r£(t ) and (b) a slice of the score landscape S(r, t 5 4000) for a pair of
mutually uncorrelated random sequences. The score maximum is at x , which de� nes the endpoint x ² r£(t 5 4000)
of the optimal path. Similar score values occur also at distant points such as x1. (c) The paths r£(t ) (dashed line), R (t)
(solid line) and (d) the score landscape S(r, t 5 4000) for a pair of sequences with mutual correlations. The score
maximum at x is now pronounced; all distant points r have a substantially lower score. Hence the � uctuations of the
alignment path r£(t) are con� ned to a corridor around the evolution path R (t).
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covers a � nite fraction F of the native bonds. The corresponding score landscape is shown in Figure 2(d).
The maximum at r£(t ) is now very pronounced; all paths ending at points far from r£(t ) have substantially
lower scores than the optimal path. The alignment statistics of mutually correlated sequence pairs is
described in Section 4.

The morphology of the optimal alignment path depends strongly on the choice of the scoring parameter
c . As an example, Figure 3 shows the optimal paths r£(t ) (dashed lines) for the same pair of correlated
sequences with the same underlying evolution path R (t) (the solid line) and for three different values of
c : At small c , the path r£(t ) follows the evolution path only on large scales. On small scales, variations
in the displacement r£(t) are seen to be larger than those of R (t ) (Fig. 3(a)). The intrinsic roughness of
the optimal alignment path limits its overlap with the evolution path, hence suppressing the � delity. The
� delity is highest at some intermediate value c ¤ , where the alignment path follows the target path most
closely (Fig. 3(b)). At large c , the alignment path contains large straight segments (Fig. 3(c)), which again
reduces the � delity.
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FIG. 3. Optimal alignment paths r£(t ) for the same pair of correlated sequences and three different values of c .
The evolution path R (t ) (solid lines) is the same in all three cases, while the optimal alignment paths r£(t ) (dashed
lines) differ. (a) Random � uctuation regime (c , c ¤). The path r£(t ) has strong � uctuations since the gap cost is
low. (b) Optimal alignment parameter c 5 c ¤ . The � uctuations of the paths r£(t ) and R (t) are of the same order of
magnitude. (c) Shortcut regime (c . c ¤). At high gap cost, the � uctuations of R (t) are dominant, while r£(t) contains
large straight segments.
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A qualitative understanding of this parameter dependence may be gained from an analogy to random
walks, regarding r£(t) as the trajectory of a walker trying to follow a curvy path R (t). The intrinsic
properties of the walker are parametrized by c . (In statistical mechanics, c is called the effective line
tension of the � uctuating path r(t ).) For small c , the walker is “drunk” and cannot follow the path R (t)
without meandering to its left and right. This is the regime of Figure 3(a), which we call the random
� uctuation regime. For large values of c , on the other hand, the walker is lazy and bypasses the larger
turns of the path R (t ); this is the shortcut regime (Fig. 3(c)). From this analogy, it becomes plausible that
a walker who is neither too drunk nor too lazy will follow the path R (t) most closely and thereby achieve
the highest � delity (Fig. 3(b)). Such a criterion for the optimal parameter c ¤ will indeed emerge from the
quantitative theory described in the remainder of this paper.

3. ALIGNMENT OF UNCORRELATED SEQUENCES

A statistical theory of alignment can hardly predict the optimal alignment for a speci� c pair of sequences.
What can be characterized are quantities averaged over realizations of the evolution process for given
parameters U and q . It will be shown, however, that these ensemble averages are also relevant for the
alignment statistics of single pairs of “typical” sequences provided they are suf� ciently long.

In the absence of mutual correlations (i.e., for U 5 0), the statistics of alignments is determined by a
balance between the loss in score due to gaps and the gain in score due to an excess number of random
matches. As discussed by Hwa and Lässig (1996), the corresponding alignment paths belong to a class of
systems known in statistical mechanics as directed polymers in a random medium. The statistical properties
of directed polymers have been characterized in detail, treating r and t as continuous variables (Kardar,
1987; Huse and Fisher, 1991; Hwa and Fisher, 1994; see also the recent review by Lässig, 1998). They
take the form of scaling laws governing the large-distance asymptotics of ensemble averages over the
random potential. A number of scaling properties can also be proved for discrete models closely related to
the alignment problem (Gwa and Spohn, 1991). Licea et al. (1994, 1996) have studied these scaling laws
in the context of � rst passage percolation.

For the alignment problem proper, the scaling properties are presented as Conjectures 1 to 4. These
are supported by extensive numerical evidence as discussed below. The main difference of the alignment
problem from the percolation problem lies in the statistics of the match/mismatch score s(r, t) (see Ap-
pendix C): On an alignment grid of size N £ N , there are N 2 such variables, indicating whether the
pairing of elements (Q i , Q 0

j ) produces a match or a mismatch. Since these variables are determined by the
2N sequence elements, they have mutual correlations. In the analogous percolation problem, however, the
s(r, t) are independent random variables. We � nd this difference in the statistics of the random variables
does not affect the scaling properties of Conjectures 1 to 4, which take the same form as for the percolation
problem. The correlations between the variables s(r, t ) are observable in other alignment characteristics
but these effects are always numerically small (see Appendix D).

Alignment path and score statistics

The scaling laws of Conjectures 1 and 2, below, describe the mean square displacement of the optimal
alignment path from the diagonal, ¢2

r (t) ² r2
£ (t), and related mean square score differences. These are

obtained by averaging over an ensemble of mutually uncorrelated sequence pairs. Ensemble averages are
denoted by overbars. These scaling laws are valid in the asymptotic limit of large t , i.e., for alignments
with a large total number of gaps. (Below we denote by ‘’’ asymptotic equality and by ‘/’ asymptotic
proportionality up to a c -independent factor of order 1.) Alignments in this limit have statistical properties
qualitatively different from gapless (or nearly gapless) alignments. The statistical consistency of these
alignment regimes is discussed at the end of this section.

Conjecture 1. For mutually uncorrelated sequences, the mean square displacement of the optimal
alignment path has the asymptotic form

¢2
r (t ) ’ A 2(c ) t4=3, (6)

which is valid for t ¾ t0(c ) ² A ¡ 3=2(c ).
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Remarks to Conjecture 1:

(i) The asymptotic law is valid for ¢2
r (t) ¾ 1, i.e., t ¾ t0(c ). For large c , t0(c ) is the average distance

between gaps. For c ! 1, this distance is found to diverge. Hence, the alignment becomes gapless
in this limit for any given sequence pair.

(ii) The relation (6) says that the exponent 4=3 is a robust feature of the optimal alignment of uncorrelated
random sequences, independent of the scoring parameter(s) or even scoring schemes used. A large
gap cost ef� ciently suppresses the displacement only for the limited range of scales t , t0(c ).
On larger scales, the cost of gaps is always outweighed by the gain in score from regions of the
alignment grid with an excess number of random matches, leading to the power law (6) with a
“universal” exponent. The dependence of the mean square displacement on the scoring parameters
(c in this case) is contained entirely in the coef� cient A (c ), which will be discussed below.

(iii) ¢2
r (t) also describes the auto-correlation function of the optimal alignment path for a single sequence

pair,

¢2
r (t) ’ Cr (t ) ² T ¡ 1

TX

t15 1

(r£(t1 1 t) ¡ r£(t1))2. (7)

In this sense, the ensemble average is equivalent to averaging over initial points t1, in the asymptotic
limit T ! 1.

(iv) The higher moments of the displacement follow similar scaling laws, r2k
£ (t ) / ¢2k

r (t). Hence, the
whole probability distribution for the variable x 5 r£(t) can be written in scaling form, P (x , t ) ’
t ¡ 2=3P (x t ¡ 2=3), where the scaling function P has an exponential tail for large values of its argument.
This says that the displacement r£(t) of the optimal path has a typical magnitude of the order of
¢r (t). The same is true for all high-scoring paths. Paths with a larger displacement have signi� cantly
more gaps, reducing the score S (r, t).

We now turn to the statistics of the score landscape S (r, t) de� ned in the previous section. Arratia and
Waterman (1994) have shown that the average score S (r, t) is asymptotically linear in t . For a single pair
of sequences, we � nd that both the optimal score S£(t) and S (r, t) at arbitrary � xed r have the same
asymptotics as the ensemble average,

S£(t) ’ S (r, t) ’ S (r, t) ’ E 0(c ) t , (8)

since the score is cumulative over the path. The regime of validity is again t ¾ t0(c ). The coef� cient
function E 0(c ) is the limit score per aligned element for two random sequences. Using the normal form
(4) of the scoring function, E 0(c ) is a positive, monotonically decreasing function of c , which tends to 0
in the gapless limit c ! 1. This function has been calculated in a variational scheme (Bundschuh and
Hwa, 1998), which turns out to be a very good approximation for not too large values of c . Figure 4
shows the linear growth of the average optimal score S£(t ) and the extracted data for E 0(c ).

Equation (8) has an important consequence. The difference between the optimal score S£(t ) and other
values S (r, t) grows more slowly than t , which explains that score maxima for uncorrelated sequence pairs
are not very pronounced. In fact, the local variations of the score landscape are described by scaling laws
with fractional exponents, which are related to those for the alignment paths. As described above, the
score landscape S(r, t ) for rooted alignment paths at given t looks random for displacements jr j, ¹ ¢r (t)
(see Fig. 2(b)), while scores for larger values of jr j are signi� cantly lower. The typical amplitudes of
the random � uctuations can, for example, be characterized by the mean square score difference ¢2

S (t ) ²
(S (r 5 ¡ ¢r (t)=2, t) ¡ S (r 5 ¢r (t)=2, t))2. This determines also the score difference between different
high-scoring paths.

Conjecture 2. The mean square score difference ¢2
S (t) for mutually uncorrelated sequences has the

asymptotic form

¢2
S (t) ’ B 2(c ) t2=3 (9)

valid for t ¾ t0(c ).
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FIG. 4. (a) The average optimal score S£(t ) ’ E0(c )t as a function of t for several values of c . The average has
been obtained from an ensemble of 200 pairs of independent random sequences. (b) The asymptotic score per aligned
element, E0(c ), obtained from the asymptotic slope of the lines in (a).

Remarks to Conjecture 2:

(i) The dependence on the alignment parameters lies only in the prefactor, while the exponent 2=3 is
universal. The function B (c ) is related to A (c ) as discussed below.

(ii) The scaling laws of Conjectures 1 and 2 have precisely the same form as for a directed polymer in a
random medium, with independent random variables s(r, t ). Hence, the mutual correlations between
the s(r, t) are irrelevant for the scaling of ¢2

r (t ) and ¢2
S (t ). (Details can be found in Drasdo, Hwa,

and Lässig (2000); see also the discussion by Cule and Hwa (1998) for a number of related physics
problems.) Nevertheless, correlation effects between the variables s(r, t) can be observed in other
characteristics of the score landscape. The most important one is the single-point score variance,
which is asymptotically linear in t as discussed in Appendix D; see also the discussion by de los Rios
and Zhang (1998) for a related system. In the LCS case, the score variance is directly related to the
variance of the LCS length by (5).

(iii) ¢2
S (t) can be evaluated ef� ciently from single sequence pairs if boundary conditions corresponding

to unrooted alignment paths are used; see Appendix D.

Figure 5 combines our numerical evidence for Conjectures 1 and 2 and shows that displacement and score
statistics are indeed closely related. Figure 5(a) contains a log-log plot of the mean square displacement
¢2

r (t) for different values of c . The ensemble averages are seen to have the same asymptotic behavior
as the auto-correlation function Cr (t ) for a single pair of long sequences. Figure 5(b) shows the mean
square score difference ¢2

S (t) evaluated as described in Appendix D. The data in Figures 5(a,b) are
asymptotically straight lines; the asymptotic behavior sets in rather quickly for most values of c . The
respective slopes of these lines are 4=3 and 2=3, in accordance with the exponents given in (6) and (9).
The intercepts of the asymptotic lines with the vertical axis then determine the coef� cient functions A (c )
and B (c ) (see Figs. 5(c,d)). Finally, we show autocorrelation data for a pair of unrelated cDNA sequences
in Figures 5(e,f). The same scaling is found, justifying our modeling of individual sequences as Markov
chains.

Con� nement and tilt scores

A related set of scaling laws governs the change in the average optimal score S0 when the alignment paths
are subject to various constraints. For example, the constraint ¡ W=2 , r(t) , W=2 arti� cially con� nes
the alignment paths to a strip of width W on the alignment grid. This constraint is easily implemented
in the alignment algorithm as described in Appendix C. It becomes effective if W is smaller than typical
displacements ¢r (t) of the optimal unconstrained path, i.e., for t ¾ tW (c ) ² W 3=2t0(c ). The con� nement
lowers the score maximum S£(t) since the optimal con� ned path r£(t) can no longer take advantage of
random agglomerations of matches outside the strip. We de� ne the average con� nement cost Sc(W ; t ) ²
S (W ; t) ¡ E0(c )t , 0.
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FIG. 5. (a) Mean square displacement ¢2
r (t ) (lines) and auto-correlation function Cr (t) (diamonds) of the optimal

alignment path for several values of c . The averages are obtained from an ensemble of 200 mutually uncorrelated
sequence pairs; the auto-correlation data are from a single sequence pair of length N 5 105. (b) Mean square score
difference ¢2

S (t ) for the same ensemble as in (a). (c) The coef� cient A (c ) extracted from (a). (d) The coef� cient
B (c ) extracted from (b). (e,f) Auto-correlation functions Cr (t ) and CS (t) (de� ned in an analogous way) for a pair of
unrelated cDNA sequences (P.lividius cDNA for COLL2alpha gene (Exposito et al., 1995) and Drosophila melanogaster
(cDNA1) protein 4.1 homologue (coracle) mRNA, complete cds. (Fehon et al., 1994)).

Conjecture 3. The average con�nement cost has the asymptotic form

Sc(W ; t) ’ E c(W ) t (10)

for t ¾ tW (c ), and

E c(W ) ’ ¡ C(c ) W ¡ 1, (11)

for W ¾ 1.

In a similar way, the alignment may be constrained by restricting both ends of the alignment path to
given values of r. Consider, for example, an optimal rooted path (starting at (r 5 0, t 5 0)) with endpoint
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FIG. 6. (a) The con� nement cost E c as a function of 1=W for various values of c . The averages are obtained from
an ensemble of 200 mutually uncorrelated random sequences. (b) The coef� cient C(c ) obtained from the slope of the
lines in (a).

� xed at x 5 r(T ). It is forced to have an average tilt h ² x=T , which increases its number of gaps and
decreases its number of matches. This is quanti� ed by the tilt cost St (h ; t ) ² S(r 5 ht ; t) ¡ E 0(c )t , 0.

Conjecture 4. The average tilt cost has the asymptotic form

St (h ; t ) ’ E t (h) t (12)

for t ¾ t0(c ), with

E t (h) ’ ¡ D (c )h2 (13)

for small tilt angles, jhj , t ¡ 1
0 (c ).

Conjectures 3 and 4 have also been veri� ed numerically. Figure 6(a) shows the con� nement cost per
unit of t , E c(W ), as a function of 1=W for several values of c . The data sets fall on straight lines,
supporting the conjectured scaling form (11). The slopes of these lines then give the coef� cient C(c )
shown in Figure 6(b). The tilt cost E t (h) is shown in Figure 7(a) as a function of h2 for various values of
c . We � nd again straight lines and extract the coef� cient D (c ) from their slopes (Fig. 7(b)).

Parameter dependence and link to gapless alignment

Conjectures 1 to 4 all have the same structure: they describe power laws with universal exponents and
parameter-dependent coef� cients. These relations contain variables of longitudinal distance (t ), displace-
ment (r), and score (S). Taking r as the basic variable, the amplitudes A , B , C, D are given in terms of the
(a priori arbitrary) normalization factors of t and S , namely t0(c ) and s0(c ). To de� ne the normalization
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FIG. 7. (a) The tilt cost E t as a function of h2 for various values of c . (b) The coef� cient D (c ) obtained from the
slope of the lines in (a).
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factors, we rewrite Conjectures 1 and 2 as ¢2
r (t) ’ (t=t0)4=3 and ¢2

S (t) ’ s2
0 (t=t0)2=3, respectively. Hence,

A 5 t ¡ 2=3
0 and B 5 s0=t1=3

0 . The scales t0 and s0 de� ne the lower boundaries in longitudinal distance and
the score of the asymptotic scaling regime described by Conjectures 1 to 4. It is then a simple matter of
dimensional analysis to express the remaining amplitudes as C 5 s0=t0 and D 5 s0 t0. Hence, we have
only two independent amplitudes, and there are universal amplitude relations, e.g., C 5 A B .

Of course, these universal relations do not yet � x the parameter dependence of the amplitudes. To
obtain this dependence, recall that for large c , t0(c ) is the average distance between gaps of the optimal
alignment. Conjectures 1 to 4 refer to alignments with a large number of gaps, i.e., to sequences of length
N ¾ t0(c ). In the limit c ! 1, however, the average distance t0(c ) between gaps diverges. Hence, for
given sequences and suf� ciently large c , we always have N ½ t0(c ); the optimal alignment is gapless.
Consistency between the statistics of gapped and gapless alignments then imposes a set of matching
conditions at the crossover scale t0(c ). The r.m.s. score difference ¢S (t ) between two gapless alignments
in neighboring diagonals r 5 r1 and r 5 r1 1 1 grows as ¢S (t ) / t1=2. The occurrence of a gap requires
¢S (t) to exceed the gap cost c ; this happens, by de� nition, for t / t0(c ) and ¢S / s0(c ) and leads to
an average score gain per unit of t , E 0(c ) / s0(c )=t0(c ). Thus we have

t1=2
0 (c ) / s0(c ) / E ¡ 1

0 (c ) / c (c ¾ 1). (14)

We conclude that for large c , there is only a single independent amplitude function (up to c -independent
factors) in Conjectures 1 to 4, which is moreover linked to the coef� cient E 0(c ) in (8),

A 3=4(c ) / B ¡ 3(c ) / C (c ) / D ¡ 1=3(c ) / E 0(c ). (15)

Numerically, we � nd the relations (15) to hold approximately in the entire interval c . c0. This is
shown in Figure 8. The amplitude data of Figures 5(b), 6(c,d), 7(b), and 8(b), raised to the appropriate
powers according to (15) and adjusted by c -independent proportionality factors, all collapse approximately
onto a single curve, which can be � tted as

E 0(c ) 5
0.722

c 1 1.257
. (16)

In the LCS regime (c , c0), optimal alignment paths are independent of c and scores are linear in c as
given by (5). Hence, we have t0(c ) 5 t0(c0) and s0(c ) / E 0(c ) 5 (

p
c ¡ 1=2 1 c )` ¡ c , where ` ² L =N .

The numerical value of this constant, ` 5 0.654... is very close to the expression ` 5 2=(1 1
p

c) (with
c 5 4) conjectured by Arratia (private communication; see Steele, 1986). This conjecture has recently been
proved (Bundschuh and Hwa, 1999; Boutet de Monvel, 1999) for the � rst passage percolation problem
where the match/mismatch score s(r, t) are independent random variables.
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FIG. 8. Parameter dependence of the amplitudes A , B , C, D , and E0 as given by (15), together with a � t curve of
the form (16).



128 DRASDO ET AL.

4. ALIGNMENT OF CORRELATED SEQUENCES

Displacement � uctuations of the evolution path

As discussed in Section 2, the mutual correlations between sequences can be represented by the evolution
path R (t ) on the alignment grid. This path has displacement � uctuations due to the random distribution
of insertions and deletions (see Figs. 2(c) and 3). However, the statistics of these � uctuations is different
from that of the alignment paths discussed in the previous section. Since the evolution is modeled as a
Markov process, the mean square displacement ¢2

R (t) ² (R (t1 1 t) ¡ R (t1))2 has the form

¢2
R (t ) 5 qjt j (17)

characteristic of a Markov random walk, with q given by Equation (2) (see Appendix A). The overbar
denotes an ensemble average over realizations of the evolution process with given values of U and q . The
ensemble average (17) can also be obtained from the auto-correlation function of a single (suf� ciently
long) evolution path R (t) as in (7).

Score gain over uncorrelated sequences

For sequences with mutual correlations (i.e., U . 0), the morphology of the optimal alignment path
r£(t) and the score statistics are more complicated than for uncorrelated sequences, since in addition to the
random matches, there are now the native matches along the evolution path R (t). Due to these competing
score contributions, the problem seems to be beyond the means of even an approximate analytical approach.
However, it turns out that the statistics of weakly correlated sequences (in a sense de� ned below) is described
with remarkable accuracy by the scaling theory developed in the previous section.

Consider a pair of correlated sequences of length N ¾ 1 with an optimal alignment of � nite � delity
F . 0 at a given value of c . Since the optimal alignment path r£(t) and the evolution path R (t) have
a � nite fraction of common bonds, the displacement � uctuations of r£(t ) remain con� ned to a “corridor”
centered around the path R (t) (see Fig. 2(c)). The width rc of this corridor can be de� ned by the mean
square relative displacement

r2
c ² (r£(t) ¡ R (t))2, (18)

averaged over an ensemble of mutually correlated sequences with evolution parameters U , q. By Equa-
tion (6), we can associate a longitudinal scale tc 5 r3=2

c t0(c ) with rc . Then tc describes the characteristic
interval in t between intersections of the alignment path and the evolution path. In other words, these two
paths form “bubbles” of typical width rc and length tc (see Fig. 2).

Alignments between mutually correlated sequences produce an average score larger or equal to the
average score for uncorrelated sequences at the same value of c . This score gain is due to the native pairs
contained in the alignment and is de� ned as dS (t ; c , U, q) ² S£(t ; c , U, q) ¡ E 0(c ) t , where E0(c ) is the
coef� cient function in (8).

Conjecture 5. The score gain over uncorrelated sequences has the asymptotic form

dS(t ; c , U, q) ’ dE (c , U, q) t (19)

for t ¾ tc , with dE (c , U, q) . 0.

Remarks to Conjecture 5:

(i) This conjecture says that the scale tc is a correlation length; i.e., points t1 and t2 on the alignment
path are essentially uncorrelated if jt2 ¡ t1j ¾ tc . (This property can be shown for closely related
physics problems.) In the regime t ¾ tc , the � delity and the width rc thus become asymptotically
independent of t . The score gain dS(t) accumulates contributions from uncorrelated regions along
the alignment path, leading to linear behavior.

(ii) The ensemble average can be generated from a single pair of sequences with N , N 0 ¾ tc .
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FIG. 9. (a) The score gain over uncorrelated sequences, dS(t ; c , U, q) as a function of t for several c , obtained
from a single pair of sequences with mutual correlations (U 5 0.33, q 5 0.11). The slopes clearly depend non-
monotonically on c . (b) The � delity F, the score gain per element dE , and the total score per element E ² S£(t )=t
as functions of C(c ). F and dE have maxima at close by parameter values c ¤ and c s , respectively. The � delity at the
point of maximal score gain, F(c s ), is very close to the � delity maximum F(c ¤). These optimal parameters cannot
be inferred from the parameter dependence of the total score E .

We have veri� ed the asymptotic linearity of dS (t ) (see Fig. 9(a)). The c -dependence of dE at � xed
evolution parameters is shown in Figure 9(b) (plotted as a function of C(c ) rather than c ). It is seen to
be closely related to that of the � delity, also shown in Figure 9(b). This makes the score gain, and not the
total score, the most important alignment observable. The common parameter dependence of dE and F
can be understood rather systematically in the framework of scaling theory, to which we now turn.

Scaling theory for correlated sequences

There is a considerable amount of alignment data even for the simple scoring function and evolution
model considered in this paper. The � delity F (c , U, q) and the score gain dE (c , U, q) can be shown as
functions of C(c ), like in Figure 9(b), for each U and q . However, for weakly correlated sequences (e.g.,
U ½ 1, such that rc ¾ 1), the alignment data can in fact be presented in a simpler way. The simpli� cation
is due to a relationship between these data at different values of the alignment and evolution parameters.
This relationship can be exhibited by using a scaled gap strength x ² C (c )=U and a scaled indel frequency
y ² q=U2.

Conjecture 6. For long and weakly correlated sequences (t ¾ tc ¾ t0(c )), the �delity and the score
gain take the form

dE (c , U, q)=U ’ e(x , y ), F (c , U, q) ’ f (x , y ). (20)

Remarks to Conjecture 6:

(i) This conjecture is valid if t ¾ tc (so that the score gain becomes linear in t according to Conjecture 5)
and tc ¾ t0(c ). The latter condition says that there are many gaps in a correlation interval, i.e., rc ¾ 1.
The numerics shows that scaling sets in already for rc of order 1. For t ¾ t0(c ) ¾ tc, the score
gain is still linear according to Conjecture 5, and rc ½ 1. This case can be treated by the statistics
of gapless alignments but is never realized for weakly correlated sequences.

(ii) The scaling form (20) can be understood as an asymptotic invariance property of alignment ensemble
averages. Consider the scale transformations2 t ! b ¡ 1t , which change the length of the alignment
path by a factor b ½ T . We require the � delity F and the score gain dS to remain invariant. By

2Such transformations make sense only in the regime t ¾ t0(c ), where r and t can be treated as continuum
variables. This is precisely where Conjecture 6 is valid.
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Conjecture 5, this requires dE ! b dE . The discussion in Appendix E further indicates speci� c
transformation rules for the parameters U , q , and c : U ! b U , C ! b C , and q ! b2 q .
Parametrizing c in (20) by the coef� cient C(c ), we have

F (C ¡ 1, U, q) 5 F (b ¡ 1 C ¡ 1; b U, b2 q), dE (C ¡ 1, U, q) 5 b ¡ 1 dE (b ¡ 1 C ¡ 1; b U, b2 q).

(21)

By choosing b 5 1=U , we recover the scaling form (20), with f (x , y ) 5 F (x ¡ 1, 1, y ) and e(x , y ) 5
dE (x ¡ 1, 1, y )=U .

According to Conjecture 6, the scaled score gain e and the � delity f can be represented as one-parameter
families of functions of the variable x , parametrized by the variable y . That this is indeed the case can
be seen from Figure 10(a,b) for numerical data obtained from single sequence pairs with various values
of U, q and c . As expected from (20), the data for different parameter sets (c , U, q) corresponding to the
same (x , y ) collapse approximately. This data collapse will be useful for similarity detection.

Alignment parameter optimization

The numerical � delity and score patterns of Figure 10(a,b) have clear maxima f ¤(y ) ² f (x ¤(y ), y )
and e s (y ) ² e(x s(y ), y ), attained at closeby points x ¤(y ) and x s(y ) respectively. Most importantly, the
� delity evaluated at the point of maximal score gain, f (x s(y ), y ), is very close to the maximum f ¤(y )
(see Fig. 11 and the example of Fig. 9(b)). For a given sequence pair, the corresponding alignments are
typically very similar. We conclude that the �delity can be optimized ef� ciently by maximization of the
score gain dE .

This optimization rule can be understood as a geometric criterion in accordance with the qualitative
picture of Section 2. To see this, we compare the � uctuations R 2(t) of the evolution path for correlated
sequences with the � uctuations r2

£ (t) of the optimal alignment path for uncorrelated sequences. Equating

the mean square displacements, we obtain a pair of characteristic scales er and et , i.e., R 2
¡
et
¢

5 r2
£

¡
et
¢

² er2.
From Equations (6) and (17), we obtain

et(c , q) 5 q3=A 6(c ), er(c , q) 5 q2=A 3(c ). (22)

We call these scales the roughness matching scales. For jt j , et(c , q), the displacement of the evolution
path exceeds that of the optimal alignment path, while for jt j . et(c , q), the displacement of the alignment
path becomes dominant.

The de� nition of the roughness matching scales et and er does not involve the con� nement scales rc and
tc. However, the two sets of scales are related at the optimal parameter values as we now show. Noting
that er can be written in scaling form, er 5 y 2=x 4, we can de� ne the geometric ratio

vc(x , y ) ²
rc(x , y )
er(x , y )

5
rc(x , y ) x 4

y 2 . (23)

Over the relevant parameter regime, vc is a monotonically increasing function of x ; see the numerical
data of Figure 10(c). Comparison with Figures 10(a,b) shows that the optimal values x ¤(y ) and x s(y )
are given by the closely related conditions vc º v¤ and vc º vs , respectively, where v¤ º vs are two
parameter-independent constants of order 1. The � rst condition is readily interpreted in terms of the path
morphology discussed in Section 2: The con� nement length is proportional to the roughness matching scale
(22) at the optimal alignment parameter. In other words, at x 5 x ¤(y ) (i.e., vc 5 v¤), the � uctuations of
the optimal alignment path r£(t) just match those of the evolution path R (t ) (see Fig. 3(b)). The shortcut
regime (Fig. 3(c)) corresponds to the ascending branch (x , x ¤(y ), i.e., vc , v¤) of the � delity curves
in Figure 10(a), while the random � uctuation regime (Fig. 3(a)) corresponds to the descending branch
(x . x ¤(y ), i.e., vc . v¤).

For the simple evolution model and scoring function studied in this paper, the � delity and score patterns
of Figure 10(a,b) can even be predicted theoretically (see Appendix E). This will certainly become more
dif� cult for models with more parameters. However, the geometrical link between the maxima of the
� delity and of the score gain is expected to be preserved. This has indeed been found for local alignments



SCALING LAWS AND SIMILARITY DETECTION 131

0.2

0.4

0.6

0.8

1

f

y=0
y=0.12, U=0.35
y=0.23, U=0.47
y=0.23, U=0.26
y=0.47, U=0.49
y=0.47, U=0.61
y=1.04, U=0.33
y=1.04, U=0.41
y=2.41, U=0.18
y=2.41, U=0.21
y=3.7, U=0.22

(a)

0

0.2

0.4

0.6

0.8

e

(b)

0 1 2 3
x=C/U

0.1

1

10

100

w
c

(c)

wc=w*

wc=ws
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FIG. 11. Fidelity optimization by maximalization of the score gain. The � delity maximum f ¤(y ) is very close to
the � delity at the point of maximal score gain, f (x s (y), y ).

(Olsen et al., 1999a) and for probabilistic alignments used for maximum likelihood inference (Kschischo
and Lässig, 2000).

Similarity detection

The evolution process used in this paper is closely related to a more realistic process for the divergent
evolution of two daughter sequences Q (1) and Q (2) from a closest common ancestor sequence Q . Modeling
the two evolution paths as independent Markov processes with respective parameters U1, q1 and U2 , q2,
one can show that the evolution path linking Q (1) and Q (2) is again a Markov process with parameters
U 5 U1U2 and q 5 q1 1 q2 1 O (q2).

For practical alignments, however, the evolutionary parameters U and q are unknown. Since they enter
the de� nition of the basic variables x and y , knowledge of the optimal parameters x ¤(y ) and x s (y ) seems
to be of little use for applications. However, these parameters can be reconstructed from alignment data,
as we will now show for a speci� c example.

Consider three sequences Q (1) , Q (2) and Q (3) related by the evolution tree of Figure 12(a). The evolu-
tionary distances ti are de� ned in terms of the mutual similarity coef� cients Ui j by

¡ log Ui j 5 ti 1 t j (i, j 5 1, 2, 3). (24)

t

t2

(a)

1t

3

Q
(2)

Q(1)

Q
(3)

0 0.5 1
0

0.2

0.4
dE12(C)
dE13(C)
dE23(C)
e12(x)
e13(x)
e23(x)

x
12

C
12

s s

(b)

FIG. 12. (a) Evolution tree linking three sequences Q (1) , Q (2) , and Q (3) . The sequences have evolutionary distances
t1, t2, and t3 to the branching point of the tree, as de� ned by Eq. (24), and have lengths N1 º N2 º N3 º 5000.
(b) Alignment data dE12 , dE13 and dE23 for pairwise alignments of the sequences at different values of c , shown
as a function of C(c ). e12 , e13 , and e23 obtained by rescaling the raw alignment data by respective factors U12 ,
U13 , and U23 such that the maxima of the rescaled curves fall on the theoretical locus (x s (y), e s (y )) (long-dashed
curve, cf. Fig. 10(b)). This determines the a priori unknown similarity coef� cients Ui j , and hence the evolutionary
distances ti .
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We wish to determine t1, t2 and t3 from pairwise alignments of the sequences.3 Figure 12(b) shows the
alignment data dE i j as de� ned in Equation (19) for each of these pairs, plotted as a function of C(c ). To
� t the data curve dE i j (C) to the corresponding scaled score gain curve e i j (x ) of Figure 10(b), we have
to divide both axes of the diagram by Ui j . In this way, we can determine the a priori unknown factors
Ui j and hence the evolutionary distances ti (see Fig. 12(b)). For this example, we obtain U12 º 0.54,
U13 º 0.43, U23 º 0.415, and t1 º 0.22, t2 º 0.33, t3 º 0.55, which are to be compared with the actual
values t1 5 0.27, t2 5 0.38, and t3 5 0.61 used to produce the sequences.

Finally, high-� delity pairwise alignments of these sequences are found for parameters c ¤
i j º c s

i j as
expected from the above (see Appendix E).

5. DISCUSSION

We have presented a statistical scaling theory for global gapped alignments. Alignments of mutually
uncorrelated sequences are found to be governed by a number of universal scaling laws: ensemble averages
such as the mean square displacement of the alignment path or the variance of the optimal score follow
power laws whose exponents do not depend on the scoring parameters. The parameter dependence is
contained entirely in the prefactors. This universality is comparable to the diffusion law describing a large
variety of random walk processes on large scales, the only parameter dependence being the value of the
diffusion constant. In contrast to diffusive random walks, however, we � nd optimal alignment paths to be
strongly non-Markovian on all length scales due to random agglomerations of matches and mismatches.
Hence, the exponents take nontrivial values. The scaling laws also govern the displacement statistics of
the optimal path r£(t) of a single pairwise alignment, and the associated statistics of scores S(r, t ). These
properties makes the concepts discussed here applicable to individual alignment problems.

The scaling theory is also relevant for the statistics of mutually correlated sequence pairs. Two important
quantities are the score gain over uncorrelated sequences and the alignment � delity. Both quantities strongly
depend on the evolutionary parameters linking the two sequences and on the alignment parameters. For
a simple Markovian evolution model and for linear scoring functions, we have obtained a quantitative
description of this parameter dependence. In particular, the alignment parameter of maximal � delity turns
out to be closely related to the parameter of maximal score gain, which makes it possible to construct
the alignment of maximal � delity from a systematic analysis of score data. Moreover, the underlying
evolutionary parameters (the mutual similarity U and the effective indel rate q) can also be inferred from
this analysis.

It is important to understand how far the results of this paper carry over to more re� ned algorithms for
the alignment of realistic sequences. The universal scaling laws for uncorrelated sequences should prove
to be very robust under changes of the scoring function (such as scoring matrices distinguishing between
transitions and transversions) as well as changes in the sequences (the number of different letters and
their frequencies). As corroborated by preliminary numerical results, such changes reduce to a different
parameter dependence of the amplitude functions A , B , C, and D . In particular, we � nd the universal scaling
laws to be preserved for the alignment of bona � de uncorrelated cDNA sequences, which also validates the
Markov model for single sequences. While not affecting the asymptotic universality, some scoring functions
(for example, systems with af� ne gap cost distinguishing between gap initiation and gap extension) may
introduce intermediate regimes where the score and � delity curves are modi� ed. Nevertheless, the � delity
and the score gain remain key quantities of an alignment, and their optimal values are closely related. This
makes it possible to construct optimal alignments on the basis of a statistical analysis of score data. This
link and the underlying scaling theory are also crucial to the analysis of local alignment algorithms, as we
have shown recently (Hwa and Lässig, 1998; Drasdo et al., 1998).

APPENDIX A: EVOLUTION MODEL

The Markov process governing the evolution of a daughter sequence Q 0 from an ancestor sequence Q
is speci� ed by the � ux diagram of Figure 13.

3In this example, we use effective indel rates ¡ log(1 ¡ qi j ) 5 ¡ (ti 1 t j ) with ¡ 5 0.2, but this choice is not
crucial.
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FIG. 13. Flux diagram of the Markov evolution process. A realization generates a daughter sequence Q 0 5 fQ 0
j g

from an ancestor sequence Q 5 fQ i g. The process is characterized by the insertion/deletion probability ep and the
substitution probability p. X denotes a random letter.

The statistical properties of this Markov process are straightforward to compute. Using the notation
t ² i 1 j and R ² j ¡ i , we � nd R (t) is asymptotically a Gaussian random variable with

R (t ) 5 0, R 2(t) 5 qt, (25)

where q is given by Eq. (2). This implies in particular that the length N 0 of the daughter sequence is also
a Gaussian random variable with

N 0 5 N , (N 0 ¡ N )2 5 2qN . (26)

To show Eqs. (25), we start from the recursion relation

w (R , t 1 1) 5 p̃ (w (R ¡ 1, t) 1 w (R 1 1, t )) 1 (1 ¡ 2 p̃)w (R , t ¡ 1), (27)

where w (R , t) is, up to a normalization factor, the probability to � nd the evolution path at position R for
a given t . Asymptotically this can be replaced by a differential relation,

w (R , t ) 1
@w (R , t )

@ t
º p̃

³
w (R , t) ¡ @w (R , t)

@R
1

1
2

@2w (R , t)
@R 2 1 w(R , t) 1

@w(R , t)
@R

1
1
2

@2w (R , t )
@R 2

´

1 (1 ¡ 2 p̃)

³
w (R , t) ¡ @w (R , t )

@ t

´
, (28)

which reduces to

@w(R , t)
@ t

5
q

2
@ 2w (R , t)

@R 2 . (29)

with q given by Eq. (2). For the initial condition describing rooted evolution paths, i.e., R (t 5 0) 5 0, the
solution of (29) is indeed a Gaussian with the moments (25).

APPENDIX B: SCORING FUNCTION

Given a three-parameter scoring function S of the form (3), the optimal global alignment of two sequences
Q and Q 0 remains invariant under the linear transformations

S ! aS 1 b (a . 0). (30)

This shows that the optimal global alignment depends only on a single effective parameter. Written in
terms of the scoring parameters, the transformations (30) read

m§ ! am § 1 2b0, mg ! am g 1 b0 (31)
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with b 5 N b0. To arrive at the normal form (4) of the scoring function used in this paper, we compute the
score average m and variance v2 of a pairing of random elements,

m 5
1
c

m 1 1
c ¡ 1

c
m ¡ , (32)

v2 5
1
c

m 2
1 1

c ¡ 1
c

m2
¡ ¡ m2, (33)

and choose a 5 1=v and 2b0 5 ¡ m=v . Hence, (4) is normalized in such a way that a pairing of two
random elements has average score 0 and score variance 1. Expressed in terms of the original scoring
parameters, the effective gap cost is

c 5
1
v

m g ¡
m

2v
. (34)

APPENDIX C: ALIGNMENT ALGORITHM

The dynamic programming algorithm generates the score landscape S (r, t) for all grid points by the
recursion relation

S (r, t) 5 max

8
<

:

S(r ¡ 1, t ¡ 1) ¡ c

S(r 1 1, t ¡ 1) ¡ c

S(r, t ¡ 2) 1 s(r, t)

9
=

; (35)

with

s(r, t) 5

( p
c ¡ 1 if Q 0

(r1 t )=2 5 Q (r ¡ t )=2

¡ 1p
c ¡ 1

if Q 0
(r1 t )=2 65 Q (r ¡ t )=2

. (36)

This recursion relation is evaluated on a restricted alignment grid shown in Figure 14, which limits the
computing time to a value ¹ T £ W . The width of the strip is chosen according to the speci� c tasks
(see below). Across the strip, we use periodic boundary conditions, i.e., S (r ¡ W=2, t ) 5 S (r 1 W=2, t).
(Similar results are obtained for the open boundary condition.)

Two types of initial conditions are used in the text:

(i) r(t 5 0) 5 0 (with t ² i 1 j), corresponding to alignment paths rooted at the point (r 5 0, t 5 0).
(ii) S (r, t 5 0) 5 0 for ¡ W=2 , r , W=2 (with t ² i 1 j ¡ W =2), corresponding to unrooted alignment

paths starting at an arbitrary point (r, t 5 0).

Evaluation of the recursion relation stops at t 5 T . Hence, the optimal alignment path r£(t) ends at the
point x ² r£(T ) given by S(x , T ) 5 S£(t) ² maxr S (r, T ). If this maximum occurs for different values
of x , one of them is chosen at random. The entire path r£(t ) is then found by backtracking it from its

i

W
T t

r j

FIG. 14. Restricted alignment grid (bounded by thick lines) used for the evaluation of the recursion relation (35).
With initial condition (i), the alignment paths are pinned at their initial point (dot) de� ned to be at t 5 0. With initial
condition (ii), the score is prescribed along the dashed line de� ned to be at t 5 0, namely S(r, t 5 0) 5 0.
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endpoint x . Degeneracies are again resolved by a random choices. This is justi� ed since degenerate optimal
paths have a typical distance of order 1 only.

To compute the unconstrained � uctuations of optimal alignments for uncorrelated sequences, W has to
be suf� ciently large so that the result becomes independent of it: The necessary condition is W ¾ ¢r (t).
The mean square displacement ¢2

r (t) and the tilt cost E t (h) are evaluated with initial condition (i); in the
latter case, also the endpoint x 5 h T is pinned. The mean square score differences ¢2

S (t) and CS (r , t)
are computed with initial Condition (ii). On the other hand, the con� nement cost E c(W ) is determined by
choosing W ½ ¢r (t ) so that the result becomes independent of T and of the initial condition.

For correlated sequences, we again choose W large enough, i.e., W 2 ¾ (¢R (T ))2 1 r2
c , so that the

result becomes independent of it. For T ¾ tc , quantities de� ned per unit of t such as F and dE will also
become independent of the initial condition.

APPENDIX D: STATISTICS OF THE SCORE LANDSCAPE

For simplicity, we discuss the score landscape not for the full alignment grid but for a strip region
¡ W =2 , r , W =2 with W ¾ ¢r (t ) and initial conditions corresponding to unrooted alignment paths
(see Appendix C). The ensemble averages then become invariant under translations of r and can, hence,
be evaluated ef� ciently as averages over r . For example, the mean square score difference CS (r , t ) ²
(S(r 1 r , t) ¡ S(r, t ))2 for arbitrary r and r . 0 is given by

CS (r , t) ’ W ¡ 1
r5 W=2X

r 5 ¡ W=2

(S (r 1 r , t) ¡ S (r, t))2 (37)

for W ! 1.
The following conjecture is an extension of Conjecture 2, which describes the score landscape in more

detail.

Conjecture 7. The mean square score difference CS (r , t ) for mutually uncorrelated sequences has the
asymptotic form

CS (r , t ) ’ B̂ 2(c )t2=3 g [r=¢r (t )] 1 a(c ) min(r , t) (38)

valid for t ¾ t0(c ). The scaling function g[x ] is normalized such that g[1] 5 1; it has the asymptotics
g[x ] 5 g1x for x ½ 1 and g[x ] ’ g1 for x ¾ 1, with g1 and g1 being constants of order 1. The
correction term has a coef� cient a(c ) ½ 1.

Remarks to Conjecture 7:

(i) For small distances r ½ ¢r (t), Conjecture 7 gives

CS (r , t ) ’ [g1B 2(c )=A (c ) 1 a(c )] r . (39)

Since the � rst term turns out to be larger than 1 and a(c ) ½ 1 for all c , the a term is always
negligible. The asymptotic linearity CS (r , t ) ¹ r has been proved recently for a version of the LCS
problem corresponding to c 5 c0 (Bundschuh and Hwa, 1999).

(ii) For r 5 ¢r(t), Conjecture 7 reduces to Conjecture 2,

¢2
S (t) ² CS (¢r(t), t ) ’ B 2(c ) t2=3 (40)

with B 2(c ) 5 B̂ 2(c ) 1 a(c )A (c ) º B̂ 2(c ); the a term is again negligible against the scaling term.
(iii) The correction term becomes visible only for large distances r ¾ ¢r (t), i.e., for paths with no

element pairs in common. Consider, in particular, the mean square score difference CS (r , t) for
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distances r . t . Since the corresponding optimal paths are statistically independent, this reduces to
twice the single-point score variance,

CS (r . t , t) 5 2Var[S (r, t )] ² 2S2(r, t) ¡ 2S(r, t )
2
. (41)

According to Conjecture 7, we have

2Var[S (r, t)] ’ a(c )t 1 g1 B̂ 2(c )t2=3. (42)

Hence, the a term will eventually dominate the scaling term for suf� ciently large t . Eq. (42) also
describes the variance of the optimal score, Var[S£(t)]. For c , c0, in particular, S£(t) is linear in
the length L (t) of the LCS. Hence,

Var[L (t)] ’ a0t 1 O (t2=3) (43)

with a0 ² a(c )=(c 1
p

c ¡ 1=2)2. The linear asymptotics is in agreement with the rigorous bound
by Steele (1982). Chvátal and Sankoff (1975) had conjectured Var[L (t)] to be of order O (t2=3).
Indeed, the O (t2=3) term in (43) turns out to remain dominant even for t º 104 since a0 ½ 1.

(iv) We emphasize again that the a term in Conjecture 7 is spurious, i.e, it does not affect the scaling
of the optimal alignment path. The reason is that � nding the optimal rooted path r£(t ) amounts to
evaluating score differences of paths within a distance r, ¹ ¢r (t ), where the a term is negligible
according to (39) and (40). This does not contradict the asymptotic dominance of this term for
the single-point variance (38). Indeed, the existence of spurious contributions to the single-point
score is easy to understand. Consider, for example, changing the potential by a (� ctitious) amount
depending only on the sequence Q but not on Q 0, i.e., s(r, t) ! s(r, t) 1 s̃((r 1 t )=2). This changes
the score of any alignment containing all elements of Q , S ! S 1

PN
i 5 1 s̃(i). However, since this

shift is the same for all such alignments, all score differences remain invariant, and so does the
optimal path r£(t). The a terms above turn out to be generated by a similar mechanism which can
be traced back to correlations between the random variables s(r, t ) (see Drasdo, Hwa, and Lässig,
2000).

Conjecture 7 has also been veri� ed numerically. The log-log plot of CS (r , t) for several t and c 5 c0

is shown in Figure 15(a). The rescaled data CS (r , t)=B 2t2=3 plotted as functions of the rescaled variable
x ² r=¢r (t) collapse for x , ¹ 1 to a single function g(x ) (see Fig. 15(b)), as predicted by Conjecture 7
with the a term neglected. This term is visible only for larger values of r . Plotting CS =t versus r=t
(Fig. 15(c)) exhibits its functional form a min(r, t ) and determines a(c0) º 0.012 from the slope of the
ascending straight lines. The saturation value reached for r=t . 1 gives the single point score variance
¢S (t), which is seen to follow Equation (42). That ¢S (t ) grows faster than t2=3 has recently been noted
by Boutet de Monvel (1999), who erroneously attributed it to a new asymptotic regime ¢S (t) ¹ t0.836 .
The data for larger values of c look similar to those in Figure 15. However, a(c ) is found to be a rapidly
decreasing function of c , rendering the a term unobservable for c . ¹ 2. For details, see Drasdo, Hwa, and
Lässig (2000).

APPENDIX E: VARIATION THEORY AND ALIGNMENT
PARAMETER OPTIMIZATION

Given the evolution parameters U, q and the alignment parameter c , the con� nement length rc and the
score gain dE can be calculated approximately in a “variational approach,” treating rc as an independent
continuum variable to be determined a posteriori from an extremal condition. We assume that mutual
correlations act as a constraint on the displacement � uctuations of the alignment path, producing a tilt cost
E t and a con� nement cost E c as discussed in Section 3. These costs must be outweighed by the score
gain due to native matches in order to produce a net gain dE . 0. The different score contributions take
the following forms:
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FIG. 15. (a) The mean square score difference CS (r, t ) as a function of r for several t and c 5 0.25 , c0. (b) The
rescaled data CS (r , t)=B 2t2=3 plotted as functions of the rescaled variable x ² r=¢r (t) collapse for x , ¹ 1 to a single
function g(x). (c) The rescaled data CS (r , t )=t plotted as functions of the rescaled variable r=t show the asymptotic
form CS (r, t ) ’ a(c ) min(r, t ) 1 O (t2=3) for r ¾ ¢r (t ); we obtain a(0.25) º 0.012.
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(i) If the optimal alignment path r£(t) is con� ned to a corridor of width rc around the � uctuating path

R (t ), then at the scale tc , r£(t ) has a typical tilt of h ¹ R 2(tc)
1=2

=tc 5 q=rc with respect to the main
diagonal of the alignment grid, implying a tilt cost

E t (rc; q, c ) ¹ ¡ D (c )

³
q

rc

´2

(44)

according to Conjecture 4.
(ii) The con� nement cost to an untilted corridor of width rc is E c 5 C (c )=rc . The tilt reduces the

effective width of the corridor so that the con� nement cost takes the form

E c(rc; q, c ) ¹ ¡ C(c )
1 1 q=[C2(c )rc]

rc
. (45)

On the other hand, the gain in score per unit of t due to the native matches is simply E n 5 U F ,
as it is clear from the de� nition of the � delity F . We need to express F in terms of rc. Naively, one
would expect F ¹ 1=rc . A detailed analysis shows that this is correct up to a logarithmic correction
(Hwa and Nattermann, 1995, Kinzelbach and Lässig, 1995; Hwa and Lässig, 1996) leading to

E n(rc; U ) ¹ U
1 1 log rc

rc
. (46)

The net score gain is the sum of these contributions, dE 5 E c 1 E t 1 E n . 0. The alignment parameter
enters the expressions (44), (45), and (46) only via the coef� cients C(c ) and D (c ) ¹ C ¡ 3(c ). The scale
transformations E c ! b E c, E t ! b E t , E n ! b E n amount to the transformations C ! b C ,
U ! b U , q ! b2 q , leading to the scaling form (20). Absorbing all unknown proportionality factors
into the de� nition of the variables x , y , and e , we obtain the scaled energy gain

dE (rc; x , y ) ² dE =U 5 ¡
x

rc
¡

y

x

±
1 1

y

x 2

² 1
r2
c

1
1 1 log rc

rc
. (47)

Maximizing (47) then determines the actual value of rc(x , y ) 5 rc(U, q, c ) by a variational principle:

e(x , y ) 5 max
rc

dE(rc; x , y ). (48)

The numerical solution of Eqs. (47), (48) produces loci of the � delity and score gain maxima, (x ¤(y ), f ¤(y ))
and (x s(y ), e s(y )), as shown in Figures 9(a,b) and 16. The theory is seen to predict the functional form
of the sequence data in a reasonable way, except in the region f ¹ 1 (i.e., rc ¹ 1) where the contin-
uum approximation valid in the regime of weak similarity breaks down. (The unknown c -independent
proportionality factors for the scaling variables x , y , e and for F have been determined by � ts to the data.)
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FIG. 16. Alignments of maximal � delity and of maximal score gain. Theoretical predictions for the curves (a) x¤(y ),
x s (y ) and (b) f ¤(y ), e s (y), compared to numerical data obtained from � ts to the curves of Fig. 7.
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The functional dependences of Figure 16 can be used to construct high-� delity alignments and to estimate
the � delity maximum. For the evolution tree discussed in Section 4, we read off C s

12 º 0.23, C s
13 º 0.225,

and C s
23 º 0.254 from Figure 12(b) and use the approximate relations C ¤

i j =C s
i j 5 x ¤

i j =x s
i j º 1.2 for

0.1 , y , 4 (see Fig. 16(a)) as well as the function C(c ) discussed in Section 3 to obtain the optimal
alignment parameters c ¤

12 º 1.52, c ¤
13 º 1.59, c ¤

23 º 1.25. The scaled score maxima e s
12 º 0.26, e s

13 º
0.18, e s

23 º 0.15 determine the expected � delities F¤
12 º 0.75, F¤

13 º 0.58, F¤
23 º 0.52 as seen from

Figure 16(b). They are in good agreement with the actual maxima F¤
12 5 0.8, F¤

13 5 0.65, F¤
23 5 0.55

computed by comparing directly to the evolutionary paths.
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