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Thc rcnormalizationgroup is viewed as a theoryof the geometryof action space.A general
covariantrelation betweencoupling constantandfield renormalizationis derived.As anapplica-
tion. the crossoverbetweenthe two-dimensionalminimal modesM,, and M,,, 1 is calculatedto
two-loop orderin a minimal subtractionscheme.

I. Introduction

Recentyears’ work hasrevealedan amazingrichnessof critical phenomenain two
dimensions(for a review seeref. [1]). At a critical point andat distancesmuch larger
than any microscopicscale,a systemis describedby a masslesseuclideanquantum
field theory which characterizesthe universality class of the fixed point. In many
physically interesting cases, it can be solved exactly by analyzing its infinite-
dimensionalconformal symmetry [2]. Thus one knows all scaling dimensionsand
correlation functions of the critical theory directly and neednot constructthem
perturbativelyfrom the gaussiantheory.

What is then the role of the renormalization group (RG)? It describes the
embeddingscenarioof theconformallyinvariant theories,which are its fixed points:
(a) locally, the field theories in the neighborhoodof a fixed point representits

scalingregionand(b) globally, the attractiondomainsof the fixed pointscharacter-
ize the topologyof the system’sphasediagram.

In two dimensions,one canproveundermild assumptionsa striking propertyof
the RG flow, namelyZamolodchikov’sv-theorem[3]: thereexists a function ‘l~’on
the spaceof two-dimensionalreflection-positivefield theorieswhich is monotoni-
cally decreasingalong RG trajectoriesandis stationaryonly at fixed points,where
it equalsthe central chargec of the correspondingconformalfield theory. Thusthe
centralcharge,which characterizesthe symmetryof the systemat a critical point, is
related to an entropy-likequantity away from criticality, where that symmetry is
broken. Moreover,as shown by Cardy [4], the differencein central chargebetween
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two fixed points linked by a RG trajectorycanbe measuredin termsof correlation
functionsof any noncritical theoryon that trajectory.

Perhapsequally important, Zamolodchikov’sanalysis also shedsa new light on
the RG scenarioin a generaldimensionof space:the spaceof actions,the stageon
which the RG acts[5], is endowedwith a metric that is nonsingularat the RG fixed
points.This suggeststo reformulatethe RG which, at present,exists in a multitude
of different schemesthat correspondto different coordinate systemson action
space.Undercoordinatetransformations,physicalquantitiesarecovariant,but this
is not obvious.New insight may be gainedby conceivingthe RG asthe theorythat
describesthe geometryof actionspacein which the covarianceof physicalquanti-
ties is manifest.

The presentpaperis a stepin this direction. In sect. 2, we outline the geometric

formulation and show that universalquantitiesare covariant.A simple but impor-
tant consequenceis derived: there is always a geometriclink betweencoupling
constantand field renormalization.

In sect. 3, we apply theseideasto a crossoverbetweentwo-dimensionalconfor-
mally invariant fixed points that can be treated in perturbation theory [3]. An
asymptoticexpansioncan be performedwith a small parameterr whosegeometric
significance is the distancebetween the (infrared-)unstablefixed point and the
stablefixed point*. This is quite remarkablesincein generaleven theunstablefixed
point theory has,unlike the gaussiantheory, a complicatedstructureof multipoint
correlationfunctions.Herewe presenta systematicminimal subtractioncalculation
of the minimal model M,,~(m>>1), perturbedby its weakestrelevantscaling field
(i.e. the onewith the smallestpositive RG eigenvalue).Consistentlyto the order of
two loops, we find that this perturbation inducesa crossoverto the fixed point
M,~_

1,which confirms Zamolodchikov’s result. This crossoveris distinguished
geometricallyby the fact that the RG trajectoryjoining the two fixed points is a
geodesic.

2. Geometryof the renormalization group

Critical phenomenaoccur at length scalesR much larger thanany microscopic

scale,where the systemcanbe describedby an euclideanquantumfield theory. The
fundamentalobjectsof a field theory areits (connected)correlation functions[3]

(2.1)

The spatialcoordinatesr E R~’andthe local fields ~°(r) E R are convenientlytaken
to be dimensionlessquantitiesscaledby the length unit R that characterizesthe

* The parameterin the usual c-expansionabouttheuppercritical dimensioncanbeinterpretedin the

sameway.
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observer rather than the system. The fields ~(r) span the infinite-dimensional
operator-algebrad. The k-point correlation functions are maps ®kd—sR, i.e.
tensorsof rank (0, k). (In the sequel,Latin letters a,b,c,... are usedas geometric
indices, Greek letters a,$, y,... as coordinate indices; see ref. [6].) Since all
measurablequantitiescanbe expressedin terms of the correlation functions,we
may definethe field theory, independentlyof any functional integraldescription,as

the collectionof all its correlationfunctions(2.1).
The measurementsdependon a number of (scalar) intensive thermodynamic

parametersu~(a= 1,..., n), which for simplicity are assumedto bein equilibrium,
i.e. spatially homogeneous.The set of field theories related to each other by a
continuouschangeof theseexperimentalparametersis called the thermodynamic
statemanifold .~#of the system.The u’~are regardedas coordinateson .~. Their
choiceis a gaugefreedom; equivalentcoordinatesystemsare relatedby diffeomor-
phisms.

Associatedwith thesecoordinates,thereare local sourcesu~(r)and their conju-
gate rotation-scalarfields 4~(r)Ed, by meansof which the correlation functions
canbe generatedfrom a scalarfunctional*

6
~ F(u(r)}. (2.2)

~. 11~ ‘. k) u(r)—u

It canbe definedperturbativelyin special“bare” coordinatesu
0 on a neighborhood

of somepoint on .~H(takento be thecoordinateorigin) by theexponentialmapping

F{uo(r)}=1n(expJuo~(r)~0~(r)ddr) . (2.3)
u0~()

All fields may appearin the exponential;hencethis formuladefinesa neighborhood
of the point u0~= 0 in an infinite-dimensionalmanifold ~° (parametrizedby the
coordinatesu0) in which the finite-dimensionalmanifold .A’ is embedded.The
spaceof zero-momentumfields ~ f4)a(r) d”r can be identified with the tangent
spaceT5’~that is, thesefields act as derivativeoperatorson the tensor fields (the
correlation functions). In particular, the bare coordinatederivatives a 9/O u0~

read

~O(r)) = (~O~O(r) ... ~°(r) )UO• (2.4)

In general, this expressioncontainsdivergencesthat make the bare perturbation
series(2.3) meaningless.New renormalizedcoordinateshave to be defined.To this

* The function F(u) F{ u(r) = u} on ~H is thegrandcanonicalentropyof the system,the Legendre

transformof the entropy S((~~))with respectto the extensivethermodynamicparametersK~)=
(9F/d u”.
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end, it is convenientto expressF as a functional integral

expFf u(r)) = f~exps{ ~(r), u(r)}. (2.5)

Here 1(r) representsa subset of d chosenas “elementary” fields, in terms of
which the remaining fields are written as “composite” fields [3]. 5~’ is now
interpretedas the spaceof actions 5, parameterizedby the coupling constantsua.

(The choice of barecoordinatesu
0” correspondsto the decompositionS= S~+ S1

into an “unperturbed”action S0 at the point u0a = 0 and the perturbationS =

fuoa(r)~oa(r)dutr.)The gaugefreedomin thechoice of coordinatesis realizedin the
functional integral as follows. Any transformationof variables cP(r) —s ~‘(r) that
leavesthe partition function (2.5) invariant inducesa changein the action

a ~‘( r)
s’{~’}=S{~(~’}}—fin a~(r) (2.6)

that is, it actsas a diffeomorphismon ~9°underwhich F transformsasa scalarand
the correlationfunctions (2.1) transformas tensorsof rank (0, k).

Considernow a one-parametergroupof diffeomorphismswith groupparameters
and generatingvector field a = ~ The differential change of a tensor field

of rank (1, k) underthis groupof transformationsis givenby its Lie-deriva-

tive* with respectto the vectorfield a,

~ ..1’~ ~ ~ +

(2.7)

In particular, for the correlation functions (2.1) oneobtains

(_~+~a)(~a(r1)...~a(rk))

= (_~+ac.~c+ ~Y(i))(~a(rl)...~a(rk))=0. (2.8)

Here y is the (1,1)-tensorwith components~y~C= V7a0~ the index i indicatesthat it

multiplies the field 4a(ri):

(~)() ~ (2.9)

* A conciseintroduction can e.g. be found in ref. [6J.
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Notice that the Lie-derivativedoesnot dependon the connectionv/~(providedit is
torsion-free). Hence, at least formally, it may be evaluatedusing the coordinate
derivativeoperator(2.4),

ao~a(~°~(r
1) . . . ~Oa( rk)) = (a ~ r1) ... ~O( rk)). (2.10)

The functional integral (2.5) is meaningful only if it is regularizedat distances
smaller than somescale a ~z R. A RG transformationis a changeof the observer’s
scaleR at a fixed cutoff a (or equivalently[7], a changeof a at fixed R) that leaves
F invariant,i.e. thatacts a gaugetransformationon the functionalintegral.We shall
assumethat the cutoff in (2.5) is implicit in the form of the interaction(decaying
rapidly at momentumscalesq � a’) rather than given by a restriction on the
functional measure.As shown by Wegner[8], a RG transformationcan then be
regardedas a transformationof the elementaryfields with a judicious choice of

1~}. It follows that therenormalizationgroup is the one-parametergroup of action

spacediffeomorphisms~ with group parameter t = ln(a/R). Its generatingvector
field 0 = /3~~is the trace of the stress—energytensor; the components/3~=
(d/dt)u~are called beta-functions.A gauge transformationof the functional

integral that leaves I fixed is redundant[8] in the senseof the RG.
The finitely many thermodynamicparametersdeterminethe long-distancebehav-

ior of the systemin a universalway. Therefore,the underlyingfield theoryshouldbe
renormalizable,i.e. in ~“ thereexists a finite-dimensionalsubmanifold.~ which is
an attractorunder the RG flow (and henceleft invariantby it: 0(u) E TA’ for all
U EA’). This submanifoldis to be identified with the thermodynamicmanifold A’.

The correlationfunctionsat scaleR obey the Ward identity

d
— ~— +s~ (4)ai(ri) 4~a~(’k))~

d k
= ~ ~Y(i))(~al(rl)...~ak(rk))u=0~ (2.11)

whichmay againbe evaluatedwith the coordinatederivative(2.4),

(2.12)

The (1,1)-tensor

= ~$a(U) (2.13)

is the representationof the RG on the dual vector spaced*. Since the RG is
abelian, y~°decomposesinto one-dimensionalirreducible representations,i.e. it is



M. Ldssig / Renormalization group 657

diagonalizable.Its eigenvaluesare invariant underdiffeomorphismsandare called

(anomalous)scaling dimensions; the correspondingeigenvectorsare the scaling
fields.

At a fixed point u* of the RG, 0(u*) vanishesand (2.11) expressesthe scale
invarianceof the correlation functions.The scalingdimensionsat the fixed point,

~ ~~$a(~~*) (2.14)

are independentof the connection~ on action space.Renormalizability implies
that only finitely many of them are negative.Onecandefinea metricon ~9°which is
regularat all RG fixed points by [3]

g~h(u) (~~(o)~h(1)), (2.15)

and let ~ denoteits Christoffel connection.Then it is easyto show* that the
structureconstantsC,,

1~of the operatoralgebrad at the fixed point u* are given
by * *

1
Ch(. c~hv’~/3(u). (2.16)

2ir

Hence the covariant RG flow in the neighborhoodof a fixed point contains all

information about thefixedpoint theory.
In the specialcaseof a conformallyinvariant fixed point in d= 2, themetric and

the beta-functionsdeterminethe RG flow of Zamolodchikov’s ~3~~function***

~(u) = 6~a$a(u)g~6(u)$b(u). (2.17)

The scaling dimensions (2.14) and the structureconstants(2.16) can then be
expressedcovariantly in terms of the ~‘-function,

1 1
_t’ ~ C61”= ~ (2.18).(2.19)6ir 12~

Considernow the crossoverfrom an unstablefixed point u* to other fixed points
located at a finite distance from u*, defined by the metric (2.15). The bare
coordinatesu0 in a neighborhoodof u* are given in termsof genericcoordinatesu

* This follows from the one-loopbeta-functions:a particularlystraightforwardderivationof them can

be found in ref. [9], sect. 6.4.
** Since [v’,,,v’]$”(u~) R,,f(u*)/3~i(u*)= 0 at the fixed point u*, there is no factor ordering

ambiguity in eqs. (2.16) and (2.19).
*** . . . . . . .The numerical constantin this equationis determinedby the normalization of the stress-energy

tensor:see ref. [1].
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by the nonlineartransformation

u
0 = lim eto1(.~i~,0(u) — u*) . (2.20)

They are exactly Wegner’s scaling coordinates(he calls them scaling fields) that
linearize the beta-functions,

= u0’y~,’~. (2.21)

Henceall the otherfixed pointsare at infinity in thesecoordinates.Thisties in with
the singularityof the coordinatederivative(2.4). But all covariantquantitiesremain
regular; these singularitiesare coordinatesingularities*. They can be absorbed,

order by order in perturbationtheory, into a coordinatetransformation

u~=Z~,(u)u~’, ~(r)=~°jr)
2”~(u) (2.22),(2.23)

to renormalizedcoordinatesu~and fields 4~(r).In the renormalizedcoordinates.
the other fixed points are at a finite coordinatedistance.This transformationis a
matter of calculational convenienceonly since the interesting physical quantities
(2.14) and (2.16) are covariant. Different sets of renormalizedcoordinatesare
relatedby diffeomorphismsthat leave the other fixed pointsat a finite coordinate
distance.This is a residualgaugefreedomthat correspondsto the choiceof the RG
scheme.

The Z-factors Z and Z determine the beta-functions/3 a and the anomalous
dimensionsy~°,respectively.Hence,the importantinterpretationof eq. (2.13) is that
thefact that thecoupling constantsare coordinatesandthefields are tangentvectorson

a manifold geometrical~’unifies their renormalization.
This fact canbe put to usewhenevertherenormalizationis carriedout at the level

of the operatoralgebra,sincethen the field renormalizationZ is relativelystraight-
forward to compute,while the coupling constantrenormalizationZ is not directly
accessible.An exampleis given in the next section.

3. The crossoverbetweenminimal models

The two-dimensionalminimal modelsMm are well-studiedconformallyinvariant
[2] and reflection-positive [10] euclidean quantum field theories. The minimal
models for m = 3,4, 5 havebeenarguedto describecritical melting transitionsof

atomicmonolayerson crystalsurfaces[12].

* Coordinatesingularitiesarefamiliar in generalrelativity: themostfamousexampleis Schwarzschild

coordinatesat theevent horizonof a Schwarzschildblack hole[6].
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The diagonal series m = 3,4,5,. - - representsthe universality class of the

Landau—Ginzburgmodel

2m—
2

f~~ex~{— f[(v~)2 + ~ u(u):~1:]d2r} (3.1)

at its multicritical point ~11~= u12~= = U(2fl1 41 = 0 [11]. The operatoralgebra
hasa basisof spinlessscalingfields. It consistsof

(i) m(m — 1)/2 primary fields 4(pq) (1 ~p ~ m — 1, 1 ~ q ~ m, with the identifi-
cation = ~(lli p,ai+t --q))~ having scalingdimensions

[(m + l)p — mq]2 —1
x =2x . (3.2)(p.q) 4m(m + 1)

Of them, 2m — 4 fields havescaling dimension <2; I.e. they are relevant in the
senseof the RG. They can be identified with the composite Landau—Ginzburg
fields : k’: (1 z~j~ 2m — 4). The field : ~2a_3: is redundantin the senseof the RG
anddoesnot appearin the operatoralgebraof the conformal field theory.

(ii) infinitely many secondaryfields generatedfrom eachprimary field 4(pq) by

the Virasoro generatorsL
1 and L_1 (j, ~ = 1,2,3,...), with scaling dimensions

x(p,q) + N (N = 1,2,3,- -.). All rotation-scalarsecondaryfields are irrelevantin the
sense of the RG.

The two-point function of primary fields is (with a suitablenormalization)

I
K~a(rt)~s(r2)) ri~s6~~ (3.3)

where r12 Jr1 — r7J. Hence, at the fixed point correspondingto ~ the scaling
basis diagonalizesthe metric(2.15) in the subspaceof primary fields.

The existence of an operator algebra implies that all multipoint correlation

functions can be expressedin terms of two-point functions and operatorproduct
coefficients; theseare the basic constituentsof the theory. For primary fields, one
obtainsthe three-pointfunction

1(~(r1) ~( r2) ~( r3)) = ~ ~r ~ c~ (34)

and the full four-point function (in boldface notation to distinguish it from its
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connectedpart)

r ~‘fl+ xar X~+
(~( r

1)~( r~)~( r3) 4~(r4)) = x+X~,3+X2~Xx+X ~ p), (3.5)

with p (r11r24)/(r12r34). Thescalingfunction Fa~y~(p)is a sum

= ~Ca~’C,y~F
1’1(p) (3.6)

in which eachterm F1’1 is in turn an infinite sum of two-point functions of the
primary field ~,,andits secondaries[2,13].

We wish to calculatethe RG flow of the model M~underthe perturbation

Sj=fuo4O(r)d2r (3.7)

with the relevant energy-like scaling field 4° = : ~I~2ni_4:. Via (2.3), this
perturbationdefinesa one-dimensionalsubmanifoldA’

1 of A’. Two propertiesof

4(1.3) are important:
(i) it hasa finite coupling C(1 31(1 3)(1 1) = 1 to the identity ~ (correspondingto

the normalization (3.3) of the two-point function) and a finite self-coupling

~t.3)(l,3)(l.3) C, but decouples from all other relevant scaling fields 4, (i.e.
C(13)(13),= 0). This implies that A’1 is a geodesicRG trajectoryandcan therefore
be left invariant by the transformation(2.22), (2.23) to renormalizedcoordinates
and fields. Within this subspace,the transformationthen reads

u=Z(u)u0, ~=402(u). (3.8),(3.9)

The Z-factorsdetermine/3 and y [7],

/3(u) = y*u/(1 — u~lnz)~ y(u) = y~— /3~ln2. (3.10),(3.11)

In this case,the relation(2.13), y = (d/du)/3,canbeintegratedandyieldsa relation
betweenZ and Z:

d I
Z= 1—u——lnZ /z. (3.12)

du /

(ii) for m>> 1, it becomesnearly marginal:

X(13) = 2— 4/(m + 1) 2— r. (3.13)
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Hence,at a distanceof order c from the unstablefixed point u~= 0, the trajectory

A’1 containsa nontrivial fixed point u”~(thepoint u0 = oo).
We makean c-expansionby analytic continuation in the central charge

= 1— 6/m(m + 1) (3.14)

to c = 1, the accumulationpoint of the sequenceof minimal models.This replaces
the usual c-expansionaboutthe uppercritical spatialdimension.

From (2.5) oneobtainsthe bareperturbationseriesfor the two-point function to
order u~,

~

~ (3.15)

Here the three-pointfunction is of the form (3.4); it can be integratedexactly in
terms of gamma-functions.The four-point function is more difficult. Only in the
limit c —~ 1, it has a simple form and it can be constructed from its crossing
symmetry [2] and meromorphyproperties(seeappendixA). In general,each term
F

1’1 of the scaling function (3.6) is the squareof a generalizedhypergeometric
function (the solution of a third order differential equation)for which no closed
expressionexists.Perhapssomewhatsurprisingly,the singularpart of the integral in
(3.15) may still be expressedin terms of gamma-functions.The resulting Laurent
seriesfor the bare two-point function is

4i~C lOir2C2 3ir2C2(~o(0)~o(1))1+ [~+O(~2)]u
0+ c

2 — 2c +0(c) u~+O(u~).

(3.16)

This formula is derivedin appendixB. Now the transformation(3.8), (3.9) hasto be
constructedorder by order in such a way that the renormalizedtwo-point function

= 22(u)(~0(0)~0(1))Uzi(U)U (3.17)

is regular.This determinesthe renormalizedquantitiesonly up to finite coordinate
reparametrizations.We fix this residual gaugefreedom by choosing a minimal
subtractionscheme,i.e. by requiring that Z and 2 haveno regular part. Upon
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inserting (3.16) and(3.12) in (3.17), we thenobtain to order u
2

2iTC 3i~2C2 3~r2C2
Z(u)=1—----——u+ 2 + ~ u2+O(u3), (3.18)

7rC ~
Z(u) = I + —u — —u2 + 0(u3) (3.19)

c 4c

and

(~(0)~(i))=1 + 0(c~u,u2). (3.20)

Henceu is a normal coordinateon A’
1 about the fixed point u~= 0 to order c

2.

From (3.10), (3.11), (3.18), (3.19), (3.20) and(2.17), we have

y(u) = —c — 2irCu + ~r2C2u2 + 0(u3), (3.21)

/3(u)= —cu—i~Cu2+~ir2C2u3+O(u4), (3.22)

~(u) — ~(u*=0)=6~2[_~cu2_~Cu3+ 1~2C2u4+0(u5)] (3.23)

The beta-functionhas the infrared-stablefixed point

u~~=~(_c+~c2+0(c3)), (3.24)

where

y**=c+1c2+0(c3) (3.25)

1 3

~‘( u**) — ~~(u* = 0) = — —~-c3+ ~-~-~c4 + 0(c5) = — ~c3 — + 0(c5).

(3.26)

Comparisonwith (3.14) shows that ~(u**) equals to the calculated order the
central charge of the fixed point Mm_i. At this infrared-stable fixed point,
the perturbingfield hasto be irrelevant.Eqs.(3.25) and(3.2) saythat it becomesthe
leadingirrelevantscalingfield 4(31) This is precisely what one would expect from
the Landau—Ginzburginterpretation.

I am indebtedto JohnCardy for many valuablecommentsthroughoutthe course

of this work. I also enjoyed useful discussionswith Andrea Cappelli, Philippe
Christe, GautamMandal and GiuseppeMussardo.This work was supportedby
NSF grantno. PHY 86-14185.



M. Làssig / Renormalization group 663

Appendix A

In this appendix,the exactscaling function (3.6) of the perturbingfield 4° ~(1.3)

is constructedin the limit c = 1, where 4~1.3 becomesmarginal (c = 0).
The infinite conformal symmetry implies that, after reparametrizingr = (x, y) in

terms of complex coordinates(z = x + iy, S = x — iy), each term F1’1 of the scaling
function (3.6) factorizesinto an analytic function of the holomorphiccross-ratio

(z
1(z7— I))/((z1 — 1)z2) andits complexconjugatefunction,

F
1’1(p) F1’1(~,~)=~)(~).~)(~) - (Al)

No closedexpressionsare known in generalfor these“conformal blocks”, but they

may be computedas powerseriesaboutany of their singularpoints 0, 1, and ~ [2].
In the caseof the minimal models,the ~ are solutionsof differential equations.
andthereis a divergentcontributionto the coefficientsof the powerseriesfrom the
null fields. After this hasbeenprojectedout, the coefficientsare well behaved,even
in the limit c = 1.

Specificallyfor the field ~(1.3)’ thereare threeconformalblocks correspondingto
the threeintermediatechannelsp = (1, 1), v = (1,3), and i’ = (1,5) in (3.6). A lengthy
calculationyields in the limit c = 0 thepower seriesabout ~= 0.

o’1(~)~-2+2+2~+ 1~2+o(~3)

= ~ + ~ + ~ + 5~2+ o(~~),

.~io5~)= ~2 + O(~~). (A.2)

The important simplification for c = 0 is that the conformal blocks become mero-
morphic functions,which are completelydeterminedby their poles.Thesepolesare

at ~ = 0, 1, and ~, andof first andsecondorder; from (A.2), it is a merealgebraic
exerciseto computetheir coefficients,

= ~-2 + ~(1 - ~-2 + ~(1 - ~)~i +

~3) = + ~(1 - -2 + ~(I - ~) -~+ ~,

~ ~22(l -~‘+ 1. (A.3)

The scalingfunction is then

F,.
0(.~.~) =o’~(~)~o’>(~)+

+ ~ (A.4)



664 M. L/issig / Renormalization group

The as yet unknowncouplingsC C(13)(13)(13) and~ C~13)(1 3)(i 5) canbe readily
determinedby imposingcrossingsymmetry,

~ ~) = i~(i - ~ 1- ~) = ~-
2~-2F

0(~-’ h’). (A.s)

One obtains the correct limit value of the expressionknown from Coulomb gas
methods[13], namely

,—‘2 16 ,-~2 _5
— 3 ‘.-~E=0— 9 -

The scaling functioncan now be written in a manifestlycrossing-symmetricway as

a sumof its disconnectedpart andits connectedpart:

~ ~) = F
ths~ ~) + ~ ~), (A.7)

where

F~(~~) = ~-2~-2 + (1- ~y2(i - ~2 +1, (A.8)

F,j~, ~) = ~C~
02 Re[~2+ (1- ~ -2 + ~2(i - ~) ~2]

+ ~C,~o2Re[~1(1 - ~2 + ~-2(1 - - ~‘(l -

+ ~ + (1- ~yt(~ - + ~-‘~-‘(l - ~y’(1 -

(A.9)

Appendix B

In this appendix,the Laurent expansion(3.16) for the integrals(3.15) is derived.
Considerfirst the integral

(B.1)

where a, ii, b, b E R (the bars do not denotecomplex conjugation)and, to ensure

univaluednessof the integrand, a — a and b — b areintegers.After a Wick contour
rotation in the complexIm z plane, the integral factorizesinto the productof two
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one-dimensionalreal integralsthat canbe solved in termsof gamma-functions,

- T’(—l—a—b)F(l+a)F(l+b)
I(a,a,b,b)=~ F(—a)F(—b)F(2+a+b) (B.2)

It is easyto verify that this expressionis real,

I(a,d,b,1b)=I(ä,a,b,b), (B.3)

and enjoysthe symmetries

I(a, a, h, h) = I(b, ~, a,a) = I(—2 — a — b, —2—5—b, b, ~). (B.4)

They express the invariance of the integral under the group of conformal
reparametrizationsgeneratedby z —~ 1 — z and z —* z

1, which permutethe three

poles at 0, 1, and co.
Thus one obtains for the integral over the three-pointfunction, using (3.4)

and(3.13),

J 0(0)40(1)~0(r)) d2r= i( —1 + ~c, —1 + ~c, —1 ~c, —1 +

(B.5)

To compute the integral over the four-point function

GE(r
1,r2)

= (z1—1) _2+E(~ —1) _
2+~z_2+ES~2±~F(~~), (B.6)

an auxiliary function

r
1, r2) = (z1 — 1) _2+E(~ — 1) ~

2±�z_2+~S_2+E. ~ ~) (B.7)

is introducedwith the following properties:

(i) the functions .F, — .F~are bounded by an integrablefunction;
(ii) f—sP~asc---~0.

UsingLebesgue’stheorem,onecan thenshow that

fGE(rl, r
2) d

2r
1d

2r
2 = fG~(r1, r2) d

2r
1d

2r
2 + 0(c°)- (B.8)
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The function F, to be usedin the sequelis

~�(~‘ ~) = F~+0(c)]2Re[~2~~(1- ~)~l -

- ~) ~2+~(~ - ~)‘ + ~
2+r~e(i — ~) ‘(1 — ~) -2~~j

(B.9)

+ [~C2+ O( c)I2Re[ 1+~/2~E/2(1— ~)‘(I —

+2~~(1 _~)~/2(l ~)_1+E/2

~1+E/2~�/2(1 — ~) iE/2(

1 — ~)E/2] (B.10)

+ ~C2[1/2~1~/2 + (1 — ~)_1+~/2(1 —

— ~) 1+E/2(~ — ~)1+�/2} (B.11)

Property(i) may be checkedby comparingthe singularitiesof F, with the onesof F,

known from the operatorproduct expansion.As c —~ 0, we have F, —~ ~ and
(A.9) shows that F, —~ F,0 this provesproperty(ii). Notice that F, cannotbe the
true scalingfunction.This doesnot interferewith the argument.It is convenientto
changethe integrationvariables,

f~,( r~,r2) d
2r

1d
2r

2 = f’~~’(— 1) ‘( ~ — 1) ‘( — ~) ‘(~ — ~) -‘

____ d(~-~)d(~+~)d(~-~) (B.12)
2 2 2 2

with ~ (z2 — 1)/z2. A look at the group of terms(B.1l) shows that for the first
two termsin thisgroup the integral factorizes;the ~- and n-integralsare bothof the
form (B.1). Thethird term doesnot factorizein thesecoordinates,but it is relatedto
the secondby the transformationr1 -~ r2 andgives thereforethe samecontribution
to the integral. In the groupof terms (B.9) and(B.10), the n-integral

- - d(i7+ij) d(~—~j)

— I)’(~ — 1)’(~ — ~ ‘~ — 2 2

(B.l3)

may be performedfirst, by notingthat thesingularitiesas ~j—~ 1 and i~—p are weak

andthe c~-poleof theintegral is determinedonly by the singularitiesas ~ —s 0 and
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—s ~ - Therefore,

I~= I( —1 + c, — I + c, —
2c, — 2c) + 0(c°). (B.14)

The k-integralsare then again in their leading part of the form (B.1) and havea
finite limit as c —~ 0. Taking everythingtogether,we obtain

~fô,(ri, r
2) d

2r
1d

2r
2

= ~[~C2 + O(c)I2I~[I( —2 + c, c, — 2c, — 2c) + I( —
2r, — 2~,—2 + c,

+I( —2 + c, c, c, —2 + ~) + 0(c)]

+ 0(c)]2141( —1— ~, — ~, c, —2 + + —2 + c, c, — ~, —1--

-1- ~, ~, -1— ~, ~)+ 0(c)]

1C2 /
+—~ il—1+—,—i+—,—c —clII—1+—,—1+— —c,—c

22 \ 2 2 2 2

+2I(_c~ — c, —1 + ~, —1 + ~)i(_i + c, —1 + c, ~,

(B.15)

[~C2+0(c)]2(~ +0(~0))

+~[V2+0(c)I2(~ +0(c0))

X[(-~+0(c)) +(-ir+0(c)) -(~+0(c)) + 0(c)]

1C2 4ir 4?r 4’,r 31r

+~_[(_~+0(c2))(_~+O(c2)) +2(~_+0(c2))(~_+O(c2))]

(B.16)

10~r2C2 3ir2C2
= 2 — +0(c°). (B.17)
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