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We study the man spectrum of (I - D-dimensional perturbed confoFmal field theories
defined on the cylinder . The finite-size dependence of the miFpxliclc levels alkms a direct
numerical measurement of the elastic S-match which uc compare with the Conjectured minimal
S-matrix for several perturbations of minimal models, We discuss the simplification% that
integrability imposes on the spectrum aNi%c threshold . In particulars, the ultraviolet limit of the
elastic phase shift of two lightest particles is related in a simple %aj to scaling dimensions of the
conformal field theory .

At a critical point, the uni~ers-al long-distance behavior of a system is described
by a scale-invariant field theory. Perturbing this theory by a generic combination of
its relevant scaling fields introduces it iiiiiie cut Ruldii.1 -1 llu .-igih a, and the rcsulting
massive continuum field theory describes the universal off-critical behavior of the
system . In two dimensions, often not only the critical theory can be solved exactly
due to its infinite-dimensional conformal symmetry [1], but for some perturbations
even the massive theory retains an infinite number of integrals of motion, and its
mass spectrum and the Itortable S-matrix can be obtained exactly as well [A .
These encode in particular the thermodynamics of the system in the scaling region
[3,4]. For perturbations of minimal conformal theories, exact S-matrices and mass
spectra have by now been predicted in many cases [2,5-9].
The massive theory of the perturbed system also contains the massless critical

theory as its ultraviolet limit, for distances much smaller than 6. Using the
thermodynamic Bethe ansatz, it is possible to reconstruct from the S-matrix the
"effective central charge" of the ultraviolet conformal theory, i .e . the quantity
c - l2q, where c 6 Me central charge and x_, is the scaling dimension of theground state [4,10-12].
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The crossover from massless to massive behavior can be studied in the spectrum
of the transfer matrix of the theory defined on a cylinder of finite circumference
R . If R is much smaller than the correlation length ~. it is predominantly the finite
size of the system that destroys criticality . and the spectrum is determined by the
ultraviolet critical theory [13] . In the thermodynamic limit, where R is much larger
than ~. the excitations become independent of the size of the system. This
crossover can be described in the framework of conformal field theory . The
conformal theory defines the basis of the Hilbert space and the unperturbed
hamiltonian Ho , while the perturbation gives rise to an interaction term V. Thematrix elements of Hn and V between the conformal states are expressed in terms
of the anomalous dimensions and the structure constants of the conformal theory
[13] . The hamiltonian can be diagonalized numerically after truncating the confor-
mal basis of the Hilbert space to a finite number of elements. Yurov and ALB.
Zamolodchikov proposed this "conformal truncation" method and applied it to the
off-critical Yang-Lee model [14], Lassig et al . studied the scaling region of the
tricritical Ising model [15].

In this paper, we focus on the finite-size spectrum above the two-particle
threshold . For states of two and more particles, the leading finite-size effect is the
kinetic energy 4Me panicles.which depends on R because the particle moments
are quantized. This dependence is modified by the elastic interactions between the
particles . as expressed by the basic equation of the Bethe ansatz [3,16] . Hence, as
observed 5 Li1scher U7,181, the molts-particle energy levels in a finite volume
contain direct information about the elastic scattering matrix elements between
those particles in the Memm"natrik limit .
For integrable perturbations of minimal models, we can measure the elastic

phase shifts in this way with remarkable accuracy over a wide range of moments.
In the cases we consider, we thus obtain a rather unambiguous confirmation of
recently conjectured "minimal" S-matriccs* . These include the [sing model in a
magnetic field [2], the tricritical Ising model with leading thermal perturbation [6],
and an integrable perturbation of the nonunitary model M2 .7 [7,9,20]. We discuss
specifically the case of spontaneously broken Z, symmetry, where the momentum
quantization condition is altered .
For a generic theory, the finite-size spectrum above threshold is very difficult to

disentangle . Integrability, however, imposes strong simplifications on the pattern
of levels, which we discuss in detail . The eigenstates of the hamiltonian have a
well-defined particle-content for any value of R, hence we can trace the behavior
of each level in the conforms( limit (R - 0) where it is characterized by some
scaling dimension x of the critical theory . The general features of this crossover
are quite complicated. However, for the states of two lightest particles with zero

*We recall that the single-particle mass spectrum in thethermodynamic limit does not determine the
S-matrix completely.
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total momentum, the asymptotic behavior is given by the simple formula

x - xvac =2(+n

in terms of the ultraviolet limit Sx of the corresponding two-particle phase shift
(defined such that S(0) = 7r/2, see eq . (3 .4) below). The quantum number it takes
the values n = 0, 1,2. . . or, in the case of spontaneously broken Z= symmetry, the
values n= 0, '-� 1, , 2, . . . . Hence the elastic S-matrix of an integrable theory
contains information about "effective scaling dimensions" x - x,_ of its ultraviolet
conformall theory.

This paper is organized as follows . In sect . 2, we recall generalities of finite-size
scaling away from criticality and the conformal truncation method. In sect. 3, we
discuss how multi-particle states in the finite volume are related to elastic scatter-
ing amplitudes and how integrability manifests itself in the spectrum . Sect . 4
contains numerical measurements of elastic phase shifts. In sect . ;, we consider the
conformal limit of two-particle levels . The results are discussed in sect. b.

2. Finite-size scaling away from criticality

Consider a massive euclidean quantum field theory in two dimensions which can
be regarded as a conformal field theory perturbed by a relevant scaling field with
angular momentum .1 -J= 0 and scaling dimension 1 +J=x. The euclidean
action is

. .~ . _ .v,. + A 10,

	

J z . f) d2Z ,.. ,;	(2 .1)

with a coupling constant A of dimension y = 2 -x >0. This theory can be defined
on a cylinder of circumference R with complex coordinate to = it + it ,, where v
measures distances around the cylinder and it measures the euclidean time along
the cylinder*. In these coordinates, the hamiltonian (the logarithm of the infinites-
imal transfer matrix in it-direction) is

H,,=H� +AV .

	

(2.2)

The "unperturbed" part can be expressed in terms of the conformal operators L� ,
L� , and the central charge c [13],

*This is a preferred coordinate frame; Lorentz covariance emerges only in the limit R --> w .
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while the interaction term V is given by

r
V_ f 0s.s(w , w)dv .

	

(2.4)as

Since both

	

,, and V commute with the momentum operator on the cylinder,

((P,IV1CP,>

the dynamics factorizes into Hilbert space sectors o¬ definite momentum p=
21rn/R, where it takes integer values for bosonic and half-integer values for
fermionic sectors.
The eigenstates of H,, ("conformal states") are assumed to form a basis of the

I-Iilbert space. The matrix elements of V between these states are proportional to
structure constants of the conformal theory [13].

C4A"P,t>, ,

(2 .5)

(2 .6)

which in turn are given in terms of a finite number of primary structure constants
[1]. The technicalities of the computation of these matrix elements are described in
detail in ref. [21]. The conformal truncation method consists in reducing the
}filbert space to a finite number o¬ conformal states; this is a viable way to"find the
off-critical spectrum by numerical matrix diagonalization [141.

In the finite geometry, the spectrum of the hamiltonian is quantized . The energy
levels E; (i = 0,1,2, . . . ) have the scaling form

1
E,(R, A) = -fj p) ,

	

(2 .7)

with the scaling variable p = R/4. The correlation length 6 is defined as the
Compton wavelength of the lightest particle in the thermodynamic limit: = 1lin, .
It is related to the coupling constant A in eq. (2 .2) by

A =ge-`' .

	

(2 .8)

If the massive system is integrable, the dimensionless coupling constant g can be
calculated numerically with high accuracy by comparing the ground-state scaling
function fo(p) obtained from the thermodynamic Bethe ansatz with conformal
perturbation theory [4].
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The asymptotic spectrum in the conformal regime (p «1) is that of H�,

27r c
Ei(12,1k)_R

	

12)

	

(R«e),

	

(2.9)

where x, = di +®, (®, and d; are eigenvaiues of L� and L� , respectively).
In the thermodynamic regime (p » 1), an integrable theory is characterized by a

set of stable particles A� (labeled by the subscript a) with masses u and purely
elastic interactions. Asymptotically, the energy levels,

Ei( R,A)=i;R+M,

	

(R»i;),

	

(2 .10)

(where M, = E�N�m� and N� is the number of particles of type a in the state i)
depend on R only through the ground-state term E� = coR/~=, which is infrared
divergent in the limit R- cc . It can be computed exactly from the thermodynamic
Bethe ansatz [4]*. The subtraction of this term,

É,(R A)=
Rf(p)=E,(R,A)-

_"o R .

	

(2.l1)

normalizes the partition function on a cylinder of length L,

Z(R, L, A) = T_ exp(LEi(R, A)) ,

	

(2.12)

to 1 in the thermodynamic limit R, L -> x, It is the subtracted ground-state scaling
function f� that appears in the solution of the thermodynamic Bethe ansatz . For
all massive perturbations of minimal models we studied numerically, this function
appears to be monotonically increasing. Hence the function

6-
e(p) -fo(p)

	

(2 .13)

is a monotonically decreasing function interpolating between the limit values
c(0) = c -12x,;,, (the effective central charge of the conformal field theory), and
6(-) = 0**. This is in agreement with the conjecture [10] that the effective central
charge measures the degrees of freedom of a general conformal field theory, in the

*In most cases, the coefficient E� is negative. The only counterexample known to us is the
nonunitary model M3.5 perturbed by the operator

**An interesting series of examples are the nonunitary models M=,� (q = 5,7,9. . . . ) perturbed by a
primary field. These perturbations arc super-relevant (), > 2) and hence the leading variation of
F(p) in the conformal limit is the infrared counterterm: c(p) - r(0)=(6/a )e �p` + o(p` ). This term
is indeed negative since for these perturbations E� is negative.
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same way as the centralcharge c does for unitary theories. Unlike Zamolodchikov's
c-function [22L however, the function (2 .13) is not analytic in the coupling con-
stant, because of the counterterm in eq . (2.11).
For the ground state and for zero-momentum single-particle states, the leading

finite-size correction to the (subtracted) infinite-volume energy is due to virtual
"interactions around the world" [17,231 . It decays exponentially :

fj R, A) -M, - exp( -bp) + . . .

	

(2.14)

for i = 1.2,---, where the b, are constants of order 1 . For multi-particle states, the
dominant correction is the kinetic energy of the particles, which depends alge-
braically on R in a way that is governed by the elastic interactions between them
(see the detailed discussion in sect . 3) .
At present, it is not known how to compute the exited levels É,( R, A) (i = 1, 2, . . .

from the thermodynamic Bethe ansatz. They may be calculated perturbatively in
an expansion in A about the conformal theory or in a large-volume expansion. In
both cases, calculations are difficult beyond leading order. The conformal trunca-
tion method, however, gives a reliable spectrum in the entire region 0 _< p :5 20.
The levels obtained in this way become exact in the conformal limit ; for large p
they are distorted by truncation effects [15]. The low-lying masses can be extracted
with a typical accuracy of about one percent, and the method is ideally suited to
study the crossover region p - 1 .

3. Multi-particle s ctra in theories with factorizable scattering

3.1 . MOMENTUM OUANTIZATION AND ELASTIC PHASE SHIFFS

Consider a system of noniniciactirig relativistic particles A,, on a cylinder of
circumference R. Any eigenstate of the hamiltonian,

O(R) = i(A,,,, n,), . . ., (A,, , n,), . . ., (A .,, n N )),t

	

(3.1)

is labeled by its particle content and the quantum numbers of the canonical
momenta of the particles,

pj = 27rn,/R .

	

(32)

The nj are integers for bosonic and half-integers for fermionic particles. The
system is assumed to be Lorentz covariant in the infinite-volume limit. Hence in
the thermodynamic regime, the energy of the states (3 .0 should be given approxi-
mately by the relativistic dispersion relation

N

	

2
t,P(R)

	

+ kj (33)
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in terms of the kinetic momenta k;, which equal the canonical momenta (3.2) for a
free system . In particular, states of two bosons with total momentum K= kF +k,
=0 are labeled by a single momentum quantum number n which takes the values
n = 0,1,2. . . . if the particles are identical and the values n = 0, ± 1, ± 2. . . . if they
are different ; we use the shorthand notation !A � ,, A_ ; n) for these states.

In 1 + 1 dimensions, a theory with purely elastic short-ranged interactions is
almost free . There is no particle production or annihilation, and the momenta of
the particles are individually conserved in a scattering process. Thus the eigen-
states of the hamiltonian (in the Heisenberg picture) can still he labeled as, in eq .
(3.1). At distances larger than the interaction length, the only effect on particle j
of a scattering with particle 1 is a phase shift 26,, ,. ., between in- and out-wavefunc-
tion which depends only on the Lorentz-invariant difference of the particle
velocities (defined by Oi = Arsinh(k,jm,)) and is given in terms of the correspond-
ing S-matrix element,

- ®t) = ®InS� �,(p,-®t) .

	

(3.4)

(The S-matrices considered in this paper satisfy Ss,_ �(p = 0) = - I for the scattering
of two identical particles, and the convention

	

(® =0) = <® j2 is convenient .)<e .a

This phase-shift can be absorbed in a redefinition of the canonical momenta,

Eqs. (3 .2), (3 .3) and (3 .5), which become exact in the thermodynamic limit, are the
basis of the Bethe ansatz. It was observed [17,181 by Löscher and applied [lß1 by
Löscher and Wolff that they directly link the elastic two-particle phase shifts to the
finite-size spectrum of multi-particle states. In fact, for a given state (3 .1), these
equations are just a parametric representation of the corresponding spectral line
E,t,itz) . This is a good approximation in the thermodynamic regime, where off-
mass-shell interactions around the world can be neglected . For p< 1, one expects
significant deviations that are nonanalytic in p, from the conformal perturbation
series . Surprisingly, at least for some two-particle states, we find that all correc-
tions remain small, and eqs. (3 .2), (3.3) and (3 .5) give a good approximation to the
levels for any value of p; this is discussed in sect . 5.

3.2. LEVEL CROSSINGS AND INTEGRABILITY

An integrable field theory is characterized by an infinite number of integrals of
motion Q,, labeled by a set of integers s (the first integral Qi is the hamiltonian
itself) . These integrals are a subset of the integrals of motion of the conformal
theory describing it ultraviolet asymptotics. They lead to purely elastic interactions
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E

Fig, L U) Crowing of motif-particle lines I an inKrabit system tschcmaticl. Ail thick solid lines
describe the same set of particles with combined infinite-volume m,ts,; .11 = the levels are
distinguished by the momentum quantum numbers of the particles. All thin solid lines describe a set of
particles with combint;d infinite-volume mass 31-

	

(b) A small perturbation of the system
away from the integrable renormalization group trajectory shifts all lines by a small amount and
removes all crossings . As a result, the ultraviolet limit of any line above threshold changes drastically .

The infrared limits, n- 2ni, for all such lines .

and the appearance of stable masst;s above the two-particle threshold 2m, It has
been suggested in ref. [14] that the existence of nontrivial integrals of motion
(besides the hamiltonian) is connected to the crossings of levels observed in the
finite-size spectrum . Indeed, in an integrable theory, there has to be an infinite
number of level crossings, where the two levels that cross each other are distin-
guished 4 M& particle content . To show this, consider a stable infinite-volume
state (P with energy M above threshold. In a finite volume, there is -a state (P(R)
whose energy is shifted by a small amount. At a given qn >>

	

it is Et(m ) =E,(R)
=M+ O(c-',") for a single-particle state or E,p(R,,) ~È,(RD

	

M+00/R2) for
a muBpmkk state (the dependence a the W6 on the coupling constant A is
suppressed in the notation of this section) . At this value of R, there are i - I levels
with energy smaller than E,,,(R,,). However, for sufficiently large R, any state
-P'(R)= j(A,,,,n,),(A,,n2). . . . >R with combined infinite-volume mass E,,N,,'ni,, =
M' <M has energy smaller than M. (In particular, all two-particle lines 1A 1 , At ; n)
accumulate at the threshold 2m,.) Hence any such level with El'(R,,) > E,,(R,,) has
to cross O(R) at some value R'> Ru . This is shown schematically in fig . la. There
cannot be a finite gap between this pair of levels at R = R' (as in fig. 1b) because
this would imply a finite lifetime of the infinite-volume maw 0. Q Ns. (32) and
OM P41.

At the crossing point, the states O( R') and -P(R') have the same energy, but
they are distinguished by their different eigenvalues of the higher integrals of
motion . Hence each continuous line of the crossover spectrum may be labeled by
its asymptotic particle content and the momentum quantum numbers of the
particles. This establishes a one-to-one correspondence between conformal states
and the basis (3 .0 of the Fock space. The lines interpolating between conformal
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R

Fig. 2 . Breaking of integrability by truncation of the Hilbert space (schematic). A line crossing in the
infinite-dimensional Hilbert space (dashed lines) and its approximation for several levels of truncation

(solid lines) (a) in the unitary case and (b) in the nonunitary case.

R

and thermodynamic limit follow a simple and beautiful pattern .

	

espectra shown
in the next section (figs . 3, 5, 7, 8,10,13) have an abundance of level crossings, in
some cases even multiple crossings (which we comment on in sect . 6). All of them
involve states that differ in particle content ; in a given sector of the Hilbert space,
states of the same particles never cross .
A small perturbation of the system away from the integrable renormaliaation

group trajectory distorts the spectrum slightly and in particular removes all
crossings, because two generic lines, in the absence of any selection rules, cannot
cross . For each level É,(R) above threshold, this drasticallychanges the conformal
limit as well as the thermodynamic limit, which is now 2nr, for all lines (see fig.
lb) . Any infinite-volume state 0 above threshold has a finite lifetime ; therefore
the finite-volume eigenstates O(R) cannot be assigned a definite particle cent-.nt.
The truncation of the Hilbert space to a finite number of dimensions breaks the

integrability of the system in a somewhat similar way. The charges 2, commute in
the infinite-dimensional Hilbert space. However, since the truncated space is not
invariant under their action, the projections of the Q, onto that subspace have a
nonvanishing commutator. This commutator acting on a state in the truncated
subspace involves the coupling of this state to the states in the orthogonal
subspace ; it is expected to vanish when the truncation threshold tends to infinity .
Therefore in the truncated spectra the lines repel each other, with minimum gaps
that decrease rapidly when the level of truncation is increased. This is shown in fig .
2a for a unitary theory and in fig . 2b for a nonunitary theory, where it was first
observed in ref. [14] .

4. Numerical measurements of the elastic phase shift

In this section, we use the spectrum obtained by the conformal truncation
method to get, via eqs. (3 .2), (3.3) and (3 .5), a numerical prediction of the phase
shift 3�(B) for the elastic scattering of the two lightest particles. We compare this
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Fig . 3 . The minimal model M1 7 perturbed by the field 0_ z ,-. --,in the K=0 sector : the scaling
function (2.7) for the lowest 16 levels. Identified lines : single-particle levels I(A,,0)) . I(ft_.0)) (thick

solid lines), two-particle levels Ir1,, A 1 .0 for t¬ -0.1 .2.1(long-dashed lines).

with the theoretical prediction from the conjectured "minimal" exact S-matrices
for these models.

Next to the Yang-Lee theory Mm,,, the nonunitary model M: .7 is the second
simplest conformal theory; its operator algebra does not possess any internal
symmetries . It has central charge c _ -68/7 and there are three primary scal-
ing fields 0-3/7-3/7,0-2/7-2/71" On the cylinder, the ground state of the
theory is Ivac)= 10-3/7-3/0, with energy En(R) =(2-s/RXx ��c-c/12)=

(2a/RX-1/21) as given by eq. (2.9) . The perturbation of this theory by the field

-P-1/7-2/7 yields a massive theory which, according to Smirnov (20], is related to
the RSOS reduction of the Izerzin-Korepin model. He conjectured the minimal
S-matrix for the scattering of two fundamental particles,

sinh 0 + i sin(rr/9) sinh 0 +i sin(27r/3) sinh 0 - i sin( 27r/9)
S11(0) = sinh B - i sin(7r/9) sinh B - i sin(2rr/3) sinh B + i sin(27r/9)

	

(4.1)

The theory has a bound state of mass in, = 2 cos(7r/18) = 1.9696.

	

Fig. 3 shows
the scaling functions f,(p), as given by eq . (2.7), for the lowest 16 levels in the
zero-momentum sector. One observes the single-particle states I(A t, 0)) and
I(A Z , 0)) and the four two-particles states IA t , A l ; n ) for n = 0, 1, 2,3. In fig . 4, we
plot the elastic phase shift obtained from the lowest two of these lines as a
function of the scaled momentum ke (where k--- Ik I I = Ik,l) in the massive
relativistic region (i.e. for kf of order 1) and compare with the theoretical phase
shift given by eq. (4.1) . We find good agreement for k f < 1 . For larger values of
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4 .2 . ISING MODEL

Fig . 4 . Elastic scattering of two lightest particles in the minimal model M',7 perturbed by the field
0 -1/7- 1/7. Theoretical phase shift obtained from the minimal S-matrix S II (B) (solid line) and
numerical data from the two-particle levels 1A, . A IM (long-dashed line) and 1A I . A j: I) (short-dashed

line) . (a) Massive relatv,Nic region (kf is of order 1). (b) Approach of the conformal limit.

k~, there are small deviations due to off-mass-shell corrections to the energies.
These are much smaller for the second line (it = 1), because a given value of k4
corresponds to a larger value of p for this line. As fig . 4b shows, they decrease
again in the ultra-relativistic region (k~ >> 1).

The magnetic perturbation q),ß �,,,/,6, of the Ising model breaks the 71 ' symme-
try of the critical operator algebra and leads to a massive theory which is related to
the Toda field theory based on the exceptional algebra es [2) . The minimal
S-matrix for the scattering of two lightest particles is

sinh o + i sin(2a/5) sinh o + i sin(2-,r/3) sinh o + isin(7r/15)
Si P) °

sinh 0 -i sin(27r/5) sinh 0 -i sin(27r/3) sinh 0 - isin(ar/15) '

	

(4.2)
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T,unsF I
The particles o¬the Isingmodel in a magnetic field

n,_ = 2,,1, COs

301
7-

r,P~=4�,, eo,(5 ~cos

	

31)

15

A�

	

,,, =Kn" c"-

,ti ; = 4111, c¬ ,,

,n � = 41P1, CO~

t (7 .,
an" c- =

	

Iceis[ ;tl

1.6180

1.9890

2.4(149

2.9563

3.2183

3.8911

-1.7834

and the bootstrap closes with eight particles A,, A, . . . . . AH whose masses are
given in table 1 (2].
The first 5 one-particle states can be found in the spectrum of fig . 5. together

with the lowest few two-particle levels JA I,A,n> and 1A I,A_n). In fig . 6, we
compare the elastic phase shift obtained from the lines JA, A,:0 (n =0, 1) with
the one predicted by e(1. (4 .2). Again, we find agreement in the region k~ <_ 1, with
small off-shell effects for large values of k~ that vanish again in the conformal
limit.

Fig. 5. The Ising model M;. ,, perturbed by a magnetic field . K=0 sector: the scaling function (2.7)for
the lowest 30 levels. Identified lines : single-particle levels I(A,,0)> .I(A"0)). . . . . I(A;.0)) (thick solid
lines); two-particle levels JA,A, ; iz) for it = 0. 1, 2, 3 (long-dashed lines), 1A, A_ ;a) for it =0. ± I

(short-dashed lines) . Focal points are marked by open circles .
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4.3. T.RICRITICAL (SING MODEL

Fig . 6. Elastic scattering of two lightest particles in the Ising model perturbed by a magnetic field.
Theoretical phase shift obtained from the minimal S-matrix S�(0) (solid line) and numerical data from
the two-particle levels IA, A, ;tl) (long-dashed line) and IA I,A,:l? (short-dashed line). (a) Massive
relativistic region (k4 is of order 1). The deviation of the numerical data forsmall values of k4 marks

the onset of truncation effects in the spectral lines for large p. (b) Approach of the conformal limit.

The operator algebra of the tricritical Ising model has the six primary scaling
fields 1, 03/s�,,/s � , q)t11o,11�, , `hI/16 .7/16 , `l't,/1 �,6/1 �,0312, 312 ' It is invariant under
the 71 2 spin-reversal transformation

0,_ =--> -q5= =,

	

(P, -> -~_
MI " UI

	

au NI

	

le` In

	

le " le

The leading thermal perturbation

	

leads to a massive theory related to
the Toda field theory based on e 7. The minimal S-matrix for two lightest particles
is [6]

sinh 0 + isin( rr/9) si nh 0 + isin(5Tr/9)
S"(0)

° - sinh 0 - i sin(ir/9) slnh 0 - i sin(57r/9)

(4 .3)

(4 .4)



TABLE 2

The particles of thethermallyperturbed tricritical Ising model and their?, symmetry
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R /C

Fig. 7. Leading thermal perturbation of the tricritical Ising model, K=O, even sector under spin
reversal: the scaling function (2.7) for the levels 3 to 25. The spectrum in this sector is the same in the
high-temperature (A > 0) and low-temperature (A < 0) phase . Identified lines: single-particle levels
1(A4,0)X I(As , 0)) (solid lines); two-particle levels

	

1A, A, ;n) for it = 0, 1 .2,3 (long-dashed lines).
IA,, A_ : Pr) for n = 0, 1 .2 (short-dashed lines) . 1A,Aa; Pt) for n = 0, ± t (dashed-dotted tines) . Focal

points are marked by open circles.

The 7L 2 symmetry of the critical theory is preserved under this perturbation and
hence manifest in the massive Fock space. Table 2 lists the masses and 71 2
symmetry of the seven particles A �A2, . . ., A7 [6] . By duality, the spectrum in the
even sector does not depend on the sign of A* . In fig . 7, one recognizes the
single-particle levels I(A4,0)i and I(A5,0)> (the lowest two levels loi and i(A2,0D
are omitted), as well as two-particle levels IA I , AI ; n), IA 2 , A2 ; n>, IA 1 .A.4; n> .

*A detailed description of these spectra and their dependence on the boundary conditions can be
found in ref. [151.

At odd PPP, 1
_, .

A_ even PPP== 2P., cos(
18

1.'_856

As add in,= 2,1P, CosG 1 .8794

A a. even 1114 = 2PPP -, Costt 1
\ ..

1 .9696

AS even PPP; = 4m, cos( )cos( 2.532118 9

A,, odd PPE� = 4"a, co,Meos 2.879-1

A-, even "P,=4Pn, COS(
)C-I(

~ 3.7017
ll Iß ` 6
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R /C

R/f

Fig. 8. Leading thermal perturbation of the tricritical Ising model, K=0, odd sector under spin
reversal: the scaling function (2 .7) in the high-temperature phase (A > 0) for the levels (a) 32 to 50 and
(b) 3 to 31 . Identified lines; single-particle level I(A � ,0)) (solid line); two-particle levels IA ,,

A,
;n) for

n = 0, ± 1, . . ., ± 4 (long-dashed lines), IA ,,
A4 ;n) for n = 0, ± 1, ± 2 (short-dashed lines) . Focal points

are marked by open circles .

The high-temperature spectrum in the odd sector is shown in fig. 8. There are
the single-particle level I(A,�0)) (the lowest two lines I(A,,O)), I(A.3,0)) are
omitted), and the two-particle levels JA I , A, ; it) for it = 0, ± I__. , , ± 4 and
IA t , A a ; l1) for n = 0, ± 1, ± 2. In the low-temperature phase and for periodic
boundary conditions on the cylinder, the levels in this sector become pairwise
degenerate with the even levels as p--.

In the thermodynamic limit, the spin reversal symmetry is spontaneously broken .
The two degenerate ground states,

1 +>,

	

I ->=QI +>,

	

(4.5)
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Fig. 9. Two-kink states in a low-temperature phase of spontaneously broken "?= symmetry .

form a doublet under spin reversal. They can be constructed as linear combina-
tions of the two lowest states in the finite volume (which are even and odd under
Q, respectively) in the limit R -> x. The excited states can be constructed as linear
combinations of states of definite symmetry as well, in particular the two-kink
states

IK(v)K(r')>, IK(r)K(v')>=QIK(v)K(v')> (4 .6)

shown in fig . 9. If in fig. 9a we move the kink at c' around the cylinder while
keeping the kink at c fixed, we obtain the configuration of fig. 9b, and vice versa.
Hence in a finite volume, the two-particle levels IA,,,, A� _ ; n> are labeled by

Fig. 10. Leading thermal perturbation of the tricritical Ising model, K=0, odd sector under spin
reversal : the scaling function (2.7) in the low-temperature phase(A > 0) for the levels 3 to 25. Identified
lines: single-particle levels I(Aa,O)>,I(A5,0)> (thick solid lines); two-particle levels IA j ,A j ;tr> for
n=1/2,3/2,5/2,7/2 (long-dashed lines), IA, A 2;n> for n=1/2,3/2,5/2 (short-dashed lines),

1A 1 ,A;; n> for n = ± 1/2, ± 3/2, ± 5/2(dashed-dotted lines).
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delta(k)

4.6}

4.4. NONUNITARY MODEL M,,S

k-é

Fig. 11 . Elastic scattering of two lightest particles in the tricritical ]sing model with leading thermal
perturbation . Theoretical phase shift obtained from the minimal S-matrix SI ,(B) (solid line) and
numerical data from the two-particle levels JA 1 , A1 ;0) (long-dashed line) and 1A 1 , A1 ; 1) (short-dashed
line) in the even sector under spin reversal . (a) Massive relativistic region (k4 is of order 1). The
deviation of the dotted line for small values of kf marks the onset of truncation effects in the

correspondingspectral line for large p. (b) Approach of the conformal limit.

integer and half-integer momentum quantum numbers it . The integer levels come
from the even sector (fig. 7), while the half-integer levels are part of the low-tem-
perature spectrum in the odd sector, which is shown in fig . 10.
We compare the theoretical phase shift given by eq. (4.4) with the numerical

results obtained from the two-particle levels IA 1 , A 1 ; n) for n = 0,1 in fig. 11 and
for it = `-� in fig. 12. Again, we find that off-mass-shell effects are small for all
values of kf .

The minimal model M3.s has four primary scaling fields 0_ 1/20-1/201 1, (P,15,115,

'P3/4.3/4 . It is the simplest nonunitary model whose operator algebra is invariant



under a -72 symmetry, namely
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Fig. 12 . Elastic scattering of two lightest particles in the tricritical Ising model with leading thermal
perturbation . Theoretical phase shift obtained from the minimal S-matrix S�(B) (solid line) and
numerical data from the two-particle levels IA , " A, ; 1/2) (long-dashed line) and IA,, A, ;3/2) (short-
dashed line)in the odd sector forA <0" (a) Massive relativistic region (k~ is of order 1).The deviation
of the numerical data for small values of kf marks the onsei of truncation effects in the spectral lines

forlarge p. (b)Approach of the conformal limit.

ÎI . _il -' -~ _1 II~

	

0'.,1-

	

(4.

This symmetry can be broken spontaneously by perturbing with the field -P,/,, 115.
Fig. 13a shows the lowest 12 levels Ei(R) and fig. 13b the corresponding scaling
functions f(p) in this phase. This is another example of the quantization of the
two-particle levels JA, A, ; n) in the case of spontaneously broken 7L 2 symmetry:
the even levels have quantum numbers n = 0, 1, 2. . . . and the odd levels have n
1, ; . . . . . The spectrum has no bound states below the two-particle threshold 2m,
[9]. The vacuum bulk energy density Ea is positive [12], in contrast to all the other
examples.
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5. The tonformal limit

For an iniegrabie theory, the set of equations (3 .2), (3 .3) and (3 .5) describes the
finite-size spectrum of all multi-particle levels in the thermodynamic region, where
off-shell effects can be neglected . However, in all cases we have studied, we
observe the surprising fact that for the lowest zero-momentum states IA,, A, ;n),
the off-shell corrections are small for all values of p and vanish for p -> 0 (see figs.
4b, fib, l Ib and 12b) . This means that the S-matrix determines even the conformal
limit of these levels. In this regime, the particles become ultra-relativistic, f, =É,
= Ik,I . Eqs. (3 .2) and (3.5) then express the conformal limit ofthe scaling function
(2 .7) for the level IA , . A, ; n) in terms of the phase shift Sx = lim,,_.x S�(®),

f(0) =2(23x +27,n) .

	

(5.1)

On the other hand, this limit of the scaling function is given by eq . (2.9) in terms of
the scaling dimensions of the asymptotic conformal state and the ground state,

fR(0) = 2r( x� -x �� ) .

	

(5.2)

Thus, the ultraviolet limit of the elastic phase shift is related to effective scaling
dimensions x� -x_c of the conformal theory,

x� - x,., = 2(3x/7r + n) .

	

(5.3)

If this holds true for all quantum numbers it, it follows that the levels of two
lightest particles originate from a single conformal family in the cases where it
takes integer values, and from two conformal families if it takes also half-integer
values. The regularity of the observed spectra suggests that similar rules govern the
ultraviolet limit of other multi-particle levels, but they need not be as simple.
The numerical spectra presented in the last section obey eq . (5 .3) . In the

nonunitary model M,,7 , the ultraviolet limit of the phase shift given by eq. (4.1) is
Sx = 7r, and eq . (5 .3) then says that the two-particle line IA � A, ; it) originates from
the conformal family of the ground state 10-3/7,-,/7) at level it + 1; this can be
seen in fig . 3 for it = 0, 1, 2,3. The lowest levels JA,, AZ ; it) seem to originate from
a single conformal family as well, but in general the situation is more complicated.
For the Ising model in a magnetic field, eq . (4-2) gives Sx = 2ar; hence the line

(A ,, A t ; n) should originate from the conformal family of the identity operator at
level n +2. Fig. 5 shows this for n = 0, 1, 2,3.
The thermally perturbed tricritical Ising model has Sx = 37r/2. When eq. (5 .3) is

applied to the two sectors of the Hilbert space separately, it predicts that the even
two-particle levels IA � A, ; n ) (it = 0, 1, 2. . . . ) originate from the conformal family
0s/2,3/2 at level n, while the odd levels IA � A, ; n) (n =1/2,3/2. . . . ), that appear
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R

R /C

Fig. 13. The minimal model M3, 5 perturbed by the field

	

in the phase of spontaneously
broken 7L, symmetry, K=0 sector. Thecoupling constant .t is chosen such that is = l . (a)The lowest 6
even levels (solid lines) and the lowest six odd levels (dashed lines). For the higher levels, one observes
"lacunae" indicating a pair of complex energy eigenvalues. (b) The scaling function (2 .7) for the same
levels. Identified lines : two-particle levels 1A �A, ;n) for it = 0, 1 .2 (thick solid lines) and for n =

1/2,3/2,5/2(long-dashed lines).

in the low-temperature phase only, originate from the family 0380,3/80 at level
n + 3/2 (see figs . 7 and 10, respectively)* .

In the model M3, 5, the ultraviolet limit of the phase shift [20] is Sx =Tr/4. Ed.
(5.3) predicts the correct conformal limit of the two-particle levels if the r6les of
the even and the odd ground state are exchanged: the even two-particle levels

*A similar case is the thermally perturbed Ising model, where S. = a/2. Therefore the even
two-particle levels IA,A ;n) should originate from the family 0,ßz .,/2 at level n; the odd
two-particle levels come from the family 01/,6.,/,6 at level n + 1/2.
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IA,, A, ; n) (n =0,1,2, . . .) in jig. 13 originate from the family 0,15.,15 and satisfy
x� -x_=2(1/4+n), the odd levels IA� A,; n) (n= 1/2,3/2, .. . ) come from the
family 0314 .3/4 and have x� -x, =x� = 20/4 + n) .
The asymptotic behavior of the two-particle states IA ,, A, ; n) has an interesting

consequence for the correlation functions

where x is the scaling dimension of 4). The scaling functions can be computed
from the S-matrix in the thermodynamic limit [25], and they tend to the structure
constants (2.6) in the conformal limit. Hence, in this limit, the field 0 decouples
from the states of two lightest particles, unless it comes itself from the conformal
family given by eq . (5 .3).

6. Discussion

By analyzing the finite-size spectrum of the transfer matrix in the conformal
truncation approximation, we have obtained, beyond the confirmation of the mass
spectrum, a direct verification of the minimal elastic S-matrices for several
integrable perturbations of minimal conformal theories.
The method of our analysis is, however, by no means restricted to integrable

theories . An interesting physical system which is presumably not integrable and
this method can be applied to is the tricritical Ising model in a magnetic field . This
theory has three particles below threshold. Within the numerical accuracy, their
masses equal those of the lowest three particles A,,A Z , A3 of the Ising model in a
magnetic field [15, 26]. Thus the dynamics of the two systems are very similar at
distance scales of the order of the correlation length, but this does not imply that
the tricritical Ising model in a magnetic field is integrable as well [15] . Integrability
requires fine-tuning of the lagrangian to a particular renormalization group trajec-

G,(r, R,A) = (O(u,r)$(u +r, r)) (5 .4)

in the spectral representation

G,(r,R,A)=_IF`(R,A)Iexp(-Ej(R,A)). (5 .5)

The form factors

F,(R,A)=(IIOI ,)R.A (5 .6)

can be written in scaling form,

F,(R,A) ={R,(P), (5 .7)
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tory. A small generic perturbation away from this trajectory destroys the factoriz-
ability of the S-matrix and forces the excitations above threshold to decay. Since
the finite-size spectrum also contains information about the inelastic part of the
S-matrix [24], this scenario can be tested : one can measure the lifetime of some of
the e,,resonances A,,, A5,. . ., AH which appear in the tricritical Ising model [27].

In an integrable theory, the additional conservation laws relate the thermody-
namic limit and the conformal limit of the eigenstates ofthe transfer matrix. As an
example which we hope can be generalized we have considered the states of two
lightest particles. The thermodynamic limit of these states is the threshold 2"r, ; in
the conformal limit, at least the lowest few of them originate from a single
conformal family which is given by e¬I . (5 .3) in terms of the ultraviolet limit of the
S-matrix.
The multi-particle spectrum of an integrable theory has a high degree of order,

imposed by the fact that in a given sector of the Hilbert space only levels that
differ in particle content seem to cross each other. Much is yet to be learned from
this pattern about the rôle that integrability plays for the universal behavior away
from criticality . A second look at figs. 5. 7 and 8 reveals for instance that at least
for the Ising model in a magnetic field and the tricritical Ising model perturbed by
the thermal operator there is a series of "focal points" where in general more than
two lines cross each other. All levels above threshold seem to go through one of
these points. Even more surprisingly, the focal points lie very close to the parabola
-cnp2 (which is the ground-state scaling function with reversed sign, up to
exponentially small corrections) .
To explain these observations, a better understanding of the representations of

the higher symmetries away from criticality is needed . This has eluded us so far.

We are grateful to John L. Cardy and to Giuseppe Mussardo for their interest in
our work and for several valuable discussions. We thank P. Fendley for sending us
a copy of ref. [20] . This work was supported in part by NSF grant PHY 86-14185
(M.L .) and by CNPQ (Brazilian agency) (M .J .M .).
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