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We study the scaling region spanned by all four relevant perturbations of the

	

"
model in two dimensions. We analyze the spectrum o¬ the (1 + 0-dimensional off-critical
hamiltonian on a truncated Hilbert space, a method recently proposed by Yurov and Al.
Zamolodchikov. In the phase coexistence regions the massive excitations are kink states. On the
temperature-driven two-phase coexistence line, they form bound states, which we analyze for
periodic as well as for twisted boundary conditions . We find a new asymmetric two-
driven by the subleading magnetic field. There are some indications of massless states along the
crossover line to the Ising model. The effects of off-critical integrability on the spectra are also
observed and discussed.

1. Introduction

USA

Next to the Ising model, the tricritical Ising model is the second simplest unitary
conformal field theory in two dimensions [1, 2] . Its central charge is c = 7/10, and
there are four relevant scaling fields. It represents the universality class of the
Landau-Ginzburg O6-theory at its tricritical point [3]. Thus it descries tricritical
phenomena in a variety of microscopic models, among them the Ising model with
annealed vacancies [4,51.
The tricritical Ising model is a theorist's ideal playground. It is particularly

interesting due to its various infinite-dimensional symmetries: conformal symmetry,
super-conformal symmetry (the tricritical Ising model is the first member of the
series of super-conformal minimal models [6]), and the symmetries based on the
algebras su(2) and e7 (related to the coset constructions su(2)2 ® su(2)1/su(2)3 and
(eA ® (e7)i/(eß)2 [7,81) .
A generic perturbation of the critical model will destroy all of these symmetries.

But for some specific perturbations, a subset of them survives away from criticality.
In these cases, the perturbed theory remains integrable, and it has an infinite
number of conserved currents JS with spin s [9]. The set {s) is given by the
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particular integrable deformation of the critical theory . The integrability of the
off-critical theory has striking consequences for the corresponding (1 + 1)-
dimensional quantum field theory : it allows for the exact computation of the
particle masses and the S-matrix.
The renormalization group scenario of the perturbed tricritical Ising model is

severely constrained by Zamolodchikov's c-theorem [10] . This theorem asserts that
there exists a function c on the space of two-dimensional unitary field theories that
is monotonically decreasing along renormalization group trajectories and is station-
ary only at fixed points, where it equals the central charge c of the corresponding
conformal field theory. Hence any unitary deformation of the tricritical Ising
model is described in the infrared limit by either the massive fixed point (c = 0) or
the Ising fixed point (c = 1).

In the present paper, we present a detailed investigation of the scaling region
around the tricritical Ising fixed point. The method we use was recently developed
by Yurov and Al. Zamolodchikov [11]. It can be stated in the language of quantum
field theory on the strip. The conformal theory defines the basis of the Hilbert
space and the unperturbed hamiltonian Ho , while the perturbation gives rise to an
interaction term V. The matrix elements of Ho and V between the conformal
states are given in terms of the anomalous dimensions and the structure constants
of the conformal theory. One can then numerically diagonalize the off-critical
hamiltonian on a suitably truncated Hilbert space and study the spectrum as a
function of the strip width R; the behavior for large R contains the information on
the infrared theory.

This method proves to be well suited for the study of the tricritical Ising model;
being essentially nonperturbative, it avoids some difficulties that the E-expansion
incurs in this case (see subsect. 4.2). The numerical data show the existence of
various phase coexistence regions, among them one generated by the subleading
magnetic field . This is remarkable since this perturbation explicitly breaks the
spin-reversal symmetry of the conformal theory.
The mass spectra agree well with the theoretical predictions in the integrable

cases [9,12-14]. We discuss in detail the interpretation of the massive particles as
kink states in the phase coexistence regions. Imposing antiperiodic boundary
conditions makes it possible to see also the fermionic sector of the theory. It is
more difficult, however, to observe with this method the massless states along the
crossover line to the Ising model.

This paper is organized as follows. In sect . 2, we discuss generalities of finite-size
scaling on the strip and the truncation method. In sect. 3 we collect the necessary
information about the theory at the conformal point: the operator content of the
tricritical Ising model, its structure constants, and the partition function with
periodic or antiperiodic boundary conditions. In sect. 4 we analyze the magnetic
perturbations and in sect. 5 the energy perturbations of the tricritical Ising model.
Sect . 6 contains our conclusions.
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2. Finite-size scaling on the strip and the truncation method
Consider a euclidean conformal field theory in the plane which is perturbed by a

relevant scaling field with angular momentum 4 -4 = 0 and scaling dimension
4 + 4 =x. The euclidean action is

.Ya = WO+Af0,a, A(Z,Z)d2Z,

	

(2.1)

with a coupling constant A having dimension y = 2 -x > 0. The perturbation
expansion of the correlation functions suffers from infrared divergences and, for
x > 1, from ultraviolet divergences as well . Via the logarithmic mapping

R
w=u+iv=

2Tr
In z,

	

(2.2)

the action (2.1) defines a euclidean quantum field theory on a strip of width R,
with the hamiltonian (the logarithm of the transfer matrix)

while the interaction term V is given by

momentum operator on the strip,

H� =Ho +AV.

	

(2.3)

The "unperturbed" part of the hamiltonian can be expressed in terms of the
Virasoro generators Lo, Lo , and the central charge c [15],

2R
r c

Ho=
R

	

Lo+Lo-

	

)
12

	

,

V= fR0a,a(w, w) dv .

	

(2.5)
0

27r
K=

(Lo
- Lo) .R

R
( Oj I V1O,i

	

2Tr (OjIOa,a(0,0)140i>SK;,Ki

(2.4)

Since

	

is rotation scalar in the plane, both Ho and V commute with the

(2.6)

Now one chooses a Hilbert space basis of eigenstates of Ho. These "conformal
states" are labelled by their energy, their momentum, and additional quantum
numbers. The matrix elements of V between them,

(2.7)
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can be expressed in terms of conformal three-point functions in the plane. By
virtue of the infinite-dimensional conformal symmetry, these in turn can be
computed from a finite number of (dimensionless) primary structure constants
which characterize the dynamics of the theory. The technicalities of this calcula-
tion are deferred to appendix A.

After a suitable truncation of the Hilbert space, the problem of finding the
off-critical spectrum is thus reduced to numerical matrix diagonalization. Yurov
and Al. Zamolodchikov [11] introduced this method and applied it to the inte-
grable off-critical Yang-Lee model [17] . They showed that a space truncated to a
moderate number of states gives a spectrum which is surprisingly similar to that of
the infinite Hilbert space in the massive regime.
The energy levels E; (i = 0, 1, 2, . . . ) on a strip of width R are expected to have

the scaling form

where ~(A) is the correlation length of the theory, defined as the inverse of the
lowest mass gap m1 . If the massive system is integrable, ~(Jk) can be computed
from the thermodynamic Bethe ansatz [161 . In the present context, we are
interested only in dimensionless mass ratios . The ultraviolet asymptotic spectrum is
that of Ho ,

where xi=di+ Si (Ai and Si are eigenvalues of L o and Lo , respectively). In the
infrared regime, the scaling functions fi become

so that

2v (R) ,
Ei( R, A) = R f, -

27r

	

c )
Ei=

R

	

xi - 12

	

(R«e),

(2 .8)

(2.9)

where mi is the mass gap of the ith level. The dimensionless constant Eo can be
interpreted as the universal contribution to the vacuum bulk energy density
(energies measured in units of m 1 and lengths in units of ~ = 1/m 1 ). For an
integrable massive system, it can be computed from the thermodynamic Bethe
ansatz [161 as well .
Which levels are present in the spectrum depends on the boundary conditions

(see the detailed discussion in subsect: 4.3). In a disordered phase, the lowest line

1 R R
fi

mi
= 2Tr E° ~ e

)2

+ m1 e
(R»e

)
, (2.10)

E
Ei(R) =2R+mi (R >> , (2.l1)



Eo = eoRg a is always present; in an ordered phase, this depends on the
conditions.
The sca'.ing form (2.8) of the energies is somewhat modified

	

the truncation of
the Hilbert space. In the full Hilbert space, the matrix elements of H® are
unbounded from above; hence for any finite A, the eigenstates, of H. are nontrivial
combinations of the eigenstates of H® and those of V. The truncation imposes an
upper bound to the matrix elements of Ho . This introduces an additional scale p
and leads to the scaling form for the energies

For large A (or equivalently, for R >> p), the matrix elements of Ho become
negligible against those of AV; the asymptotic eigenstates are those of V. In this
unphysical regime the energies scale like

The correlation length ~ characterizes the crossover from the ultraviolet regime
to the infrared regime, while the scale p governs the onset of truncation effects. To
extract reliable information about the infrared region, a sufficient number of states
has to be included in order that p >> 6. In this case, the R-dependence of the
levels shows the three distinct scaling regimes (2.9), (2.11) and (2.13), separated by
two crossover regions at R - 6 and R - p.
An interesting situation occurs when the deformation of the conformal theory

happens to be integrable . In this case, there exists a set of conserved currents
(TS + 1,Os-1) satisfying

The set {s} is given by the particular integrable deformation. By transforming onto
the strip and integrating over a surface of equal time, we obtain integrals of motion

M. Lâssig et aL / Trüritical Isïng

~r R R
Eir(R)=

2
RÎitr ~

,
P

a2Ts + 1 = 09'19'-1 .

1

	

R(T
Strip +

	

strip) ..(w) dt' .
2Tl J

	

s+1

	

s-1
0

(2.12)

E" - JIRy - '

	

(R>>p) .

	

(2.l3)

(2.14)

(2.15)

The Hilbert space and the dynamics decompose into sectors according to different
values of the charges (2.15) . This may be observed in the R-dependence of the
spectrum [11]: two levels from different sectors of the Hilbert space may cross each
other, while generic lines (in the absence of any symmetry) do not cross. For the
integrable deformations of the tricritical Ising model, we find level crossings which
we attribute to the higher conserved charges; this is discussed in subsect. 4.2.
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TABLE I

Kac table of the tricritical Ising model

3. The tricritical Ising model

The tricritical Ising model is the second member 4/4 of the unitary series of
minimal models .. ,~ (m = 3,4, . . . ). It represents the universality class of the
Landau-Ginzburg theory

exp -

	

[(V7415)2
+ A606 +A404 + A303 + A2

I;p 2 + A 10] d2r

	

(3.1)

at its tricritical point A 1 =A2 =A3 =A4 =0. Its operator algebra has a basis of
spinless scaling fields labelled by the conformal dimensions A,,!. The six
primary fields appearing in the Kac table (table 1) can be identified with normal-
ordered composite Landau-Ginzburg fields [3]. According to their transformation
properties under the 72 spin-reversal transformation Q: 0 -* -0, we have:

(i) Four even fields: the identity 1 --- 00,0 , the leading energy density E ---

	

_
,2 :, the subleading energy density* E' = 0t, ;, _ :04 :, and the irrelevant field

E" ---

	

_ _ :06 : . These fields form a subalgebra of the operator algebra. In this, 2
subalgebra, Kramers-Wannier duality acts as a second 72 symmetry under which E
and E" are odd and E' is even:

D- 'ED = - e,

	

D- 'E'D = e' .

	

(3.2)

(ü) Two odd fields : the leading magnetization o, = 0 ~� -1. = 0, and the subleading
magnetization Q' _

	

_ :(p3: .
fin ,

The composite field ' is redundant in the sense of the renormalization group
and is not a primary field of the operator algebra.

In the supersymmetric formulation of the theory [6], the energy densities build
up the superfield in the Neveu-Schwarz sector,

."Y(z, z, 8, ö) = e(z, z) + ee(z, z) + e4-! (z, z) + 88e'(z, 1),

	

(3.3)

while the magnetic fields are representations in the Ramond sector.

* In the site-diluted Ising model, this field couples to the density of vacancies.

a

to M
a
10

s 3 .6 .
10 M 10

s
i6
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TABLE 2
Operator content of the tricritical Ising model with periodic

80 M

	

magnetization
e=[iôa 1energy
Qs -[16a 16]_ :~ 3:

	

sub-magnetization
r _

	

6

	

6

	

$t.
£ - 110 , 10] = :~ :

	

vacancy density
e"=[3 :06 :

	

(irrelevant)

The operator content of the theory on the strip depends on the boundary
conditions imposed [15]. For periodic boundary conditions, the partition fun
of the tricritical Ising model is given by the diagonal solution of the modular
equations [241

ZP,P= Tre-Ho = Ixol 2 +
Ix~1

2
+

IX
~®1 2 + IX®12 + Ix~

12
+ Ix 12 '

	

(3.4)

leading to the operator content listed in table 2. The states have momenta that are
integer multiples of 27r/R, and we refer to them as bosonic states.
The partition function ZA, p with 712-twisted boundary conditions in the space

direction Re w may be obtained as follows [151. First, insertion of the 712-charge Q
into (3.4) yields the partition function Zp,A with twisted boundary conditions in
the time direction Im w,

Zp, A = Tr Q e-H° = IXo1
2
- IX_1.I

2
+ IX~ 12 - IX~I2 + IX_I2 +

IX1I2
l

	

(3.5)

which is related to ZA.p by the modular transformation S. Hence we obtain
'Z
A, P(q) = IX~lue1 2 + IX ~~I

2
+

	

Xôx; +x

	

x

	

+c.c.] ,

	

(3=6)
ln

	

10

and from this expression we can read off which operators appear with twisted
boundary conditions . The primary operators are (see table 3):

(i) The disorder operators

ü(1+ w~	O in+ia

TABLE 3
Operator content of the tricritical Ising model with twisted boundary conditions

3A =[~3 , 811_ _Z _il , = [-Z 16]
[ Oa 101

~ = [io, 01
G=[2,01
G=[0, ;1

disorder field
subleading disorder field

fermion
anti-fermion
susy generator
susy generator

(3.7)
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They are dual to the magnetic operators o, and o, ' and have the same scaling
dimensions. The elementary disorder field ju, describes a string of reversed bonds
on the lattice; the subleading disorder operator A' is the composite field :ue : . The
states in this sector are bosonic. The appearance of the disorder fields may also be
seen from the superconformal symmetry of the tricritical Ising model. The zero-
modes of the supercurrent in the Ramond sector are given by

they commute with the conformal hamiltonian (2.4). Since the tricritical Ising
model does not have a primary operator with dimension A = c/24, eq. (3.8)
implies the existence of the two degenerate ground states lo,) and I U > = G°G° I cr
in the Ramond sector .

(ü) The fermion 0=~±- L, the antifermion ~ =~~ h, and the supersymmetry
it,,_ta+w

generators G =

	

,° and G = (A°, ? . Particles and antiparticles are related by
duality:

In this sector, the momenta are half-integer multiples of 27T/R.
The operator algebra (which is given for the bosonic sector in table 4 and for the

fermionic sector in table 5) reflects the mentioned symmetries of the scaling fields .
This structure leads to symmetries and selection rules for the off-critical theories
as well . In the following, we discuss the deformations of the tricritical Ising model

TABLE 4
Fusion rules and structure constants for the scalar fields of the tricritical Ising model

even * even
=[ 1 1+

E , *£,_ [ll +C2[E']

E * E'= C 11''I + C31-"']

even * odd
E * ff' = C410'1
E*0=C4[Q' ] +C5[0'1
E' * 0' = C6[O1

E'* ff' C6[6'1 + C7[QI

odd * odd
Q f * 0.f = [1] + cs[£,,]
17' * 6 =C4[E1 +C6[E' ]

* ~_ [ll + C5[E] + C7[E'l + C9[E
� I

c_

	

c
G°	L°

	

24 '	G °

	

L°

	

24 '	(3 .8)

D- 14W,

	

ZG = -D-1GD .

	

(3.9)

C2 - Ci
3

C3 - 7
I

C4 = 2
_3

C5 - 2C1
3

C6 - 4
t

C7 - 4C1
7Cs - sCi

C9 - 56i

2V r(5) F3(5)
I'( 5 )r3(5)



TABS 5
Fusion rules and structure constants for the fermion fields of the tricritical Ising model

r(5)r3(5)
()5 5

* *G=-G*,~, = ic3le)

	

C3
-s- 7

VON
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V(CD)

CD -~
1 J-CD

(f)

Fig . 1 . Effective Landau-Ginzburg potentials for the gp6-theory: (a) at the tricritical point and
perturbed by (b) the leading magnetic field, (c) the subleading magnetic field, the leading energy

density with (d) A2 > 0 or (e) A2 < 0, the subleading energy density with (f) A4 > 0 or (g) A4 < 0.

by its relevant scaling fields in order of an increasing number of selection rules.
The Landau-Ginzburg potentials for the perturbed theories are shown in fig. 1. Of
course, the Landau-Ginzburg picture should not be taken literally since it does
not properly take into account the anomalous dimensions of the fields, nor all the
fusion rules of the two-dimensional theory.

4. Magnetic perturbations of the tricritical Ising model

Under the 71 2 spin-reversal transformation, any magnetic operator 0 changes
sign: Q-1OQ = -0. Hence the hamiltonians H+a =Ho ± AV are related by a
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Fig. 2. Leading magnetic perturbation (d 1 = ± 1), K = 0 sector: the lowest six levels in the massive
regime .

4 .1 . LEADING MAGNETIC PERTURBATION

H- A = Q-
'HAQ,

	

(4.1)

and the off-critical spectrum does not depend on the sign of the coupling con-
stant

The field

	

~,

	

is the most relevant scaling field of the tricritical Ising model,
and it breaks all known symmetries of the critical theory. Fig. 2 shows the low-lying
spectrum in the K= 0 sector as a function of the strip width R. We obtained these
data from a truncated Hilbert space of 228 states, which includes all conformal
states up to level 5 in the Verma modules. The lines show a clear massive infrared
pattern as given by eq. (2.11). The effective scaling exponent

d In Eo

R

a = dln R

	

(4.2)

of the ground-state energy is shown in fig. 3 for a wider range of R. In this graph,
one can distinguish the ultraviolet regime (2.9), the infrared regime (2.11), and the
truncation-dominated regime (2.13) .
The operator

	

is degenerate at level 4, and Zamolodchikov's counting
argument [9] does not suggest that this deformation of the tricritical Ising model is
integrable . We have checked explicitly that there are no conserved currents of spin
5 or spin 7. Of course, all this does not exclude the existence of conserved currents
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Q

0.5t

-0 .5

0925 --

Fig. 3. Leading magnetic perturbation (A 1 = ± 1), K= 0 sector: the effective scaling exponent a of the
ground-state energy, as defined in eq . (4 .2).

with higher spin. But a plot of the crossover region (fig . 4) does not give any
numerical evidence of integrability either; the lines repel each other.

In the infrared region, we extract the following masses below threshold (with a
numerical accuracy of the order of one percent) :

m2 = 1.6(2)m,,

	

m3= 1 .9(8)m I .

	

(4.3)

loglo R

Fig. 4. Leading magnetic perturbation (A, _ ± 1), K= 0 sector : the lowest ten levels in the crossover

region .
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mi
m2 = 2m, cos(7r/5)
m3 = 2m,cos(a/30)
m4= 4m, cos(7r/5)cos(7e/30)
m$ = 4m, cos(ir/5)cos(2zr/15)
m6= 4m, cos(7r/5)cos(7r/30)
m7=8m 1 cos2(7r/5)cos(77r/30)
mg=8mi cos2(7r/5)cos(27r/15)

TABLE 6
Mass spectrum of the EgToda system

These values are very close to those of the Ising model in a magnetic field at
T= T,, given in table 6 [9]. Henkel [25] recently found the same result using
another numerical approach. It indicates that the effective dynamics of the two
systems at length scales of the order of ~ are rather similar. However, we cannot
conclude that the tricritical Ising model in a magnetic field is described by the
same factorizable and elastic S-matrix as the Ising model in a magnetic field. The
closure of the boot strap implies the existence of stable particles above threshold
with fixed mass ratios m;/m, [9,26,181, and this requires fine-tuning of the
coupling constants to the integrable renormalization group trajectory. As shown in
ref. [18], an arbitrarily small generic perturbation destroys the elasticity of the
S-matrix: the particles above threshold decay into those below threshold (which
cannot decay). Indeed, suppose that the hamiltonian (2.3) for R - ~ is equivalent
to the integrable hamiltonian of the Ising model in a magnetic field with a small
amount of nonintegrability added. In the integrable system, the levels cross. The
perturbation lifts the degeneracy at the crossing points and causes a splitting of the
levels proportional to its matrix element between the two states . From fig. 2 we can
read off the order of magnitude of such matrix elements to be M- 10- 'm 1 . But
the same perturbation also induces a shift of the (nondegenerate) levels El below
threshold which is of the order

4Ei

	

EM2/(Ej -E;) ^' 10-2m1 .

4.2. SUBLEADING MAGNETIC PERTURBATION

1
1.6180
1.9890
2.4049
2.9563
3.2183
3.8911
4.7834

(4.4)

So it should not be surprising that the masses (4.3) are indistinguishable from those
of the integrable system within our numerical accuracy.

The perturbation by q5 z, 6 drives the tricritical Ising model into another massive
regime (fig . 5). There is a single excitation m 1 below the threshold at about 2m 1 .
The lowest two lines of the spectrum are interpreted as degenerate ground states .
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Fig. 5. Subleading magnetic perturbation (13"' ±0.1), K=0 sector. the lowest five levels in the
massive regime.

In the crossover region, these two levels approach each other exponentially,

(see fig. 6 which should be compared with fig. 11). The scale ~ equals (up to a few
percent within our accuracy) the inverse of the lowest mass m,, as predicted in ref.
[22] . In the usual three-dimensional phase diagram of the spin-1 Ising model in a
magnetic field (see e.g . ref. [5]), there exist two "wings" of two-phase coexistence.

log (E, - Eo)

R

(4.5)

Fig. 6. Subleading magnetic perturbation (A3 = ±0.1), K= 0 sector: exponential splitting of the two
lowest states in the crossover region, modified by truncation effects forR > 3.
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At zero temperature, these phases correspond to the states s = 0,1 or s = 0, - 1,
depending on the sign of the magnetic field. However, we should not identify the
perturbation

	

?

	

as generating precisely these wings of phase coexistence. In
~a> >a

fact, the thermodynamic state space of the theory (3.1) is four-dimensional. Hence
its two-phase coexistence manifold is three-dimensional, and 0>.,-I generates a

If, 16

one-dimensional section of it .
One may speculate about the algebraic origin of the ground-state degeneracy . In

the case of energy perturbations of the tricritical Ising model (which are discussed
in sect . 5) or the Ising model, this degeneracy signals the spontaneous breakdown
of the 71 2 spin-reversal symmetry. The present case is more interesting, since the
spin-reversal symmetry is explicitly broken. In the Landau-Ginzburg picture, this
corresponds to the potential shown in fig. lc. The field

	

,

	

is algebraically
distinguished in another way: together with the identity and oA, , it belongs to a

2 2

subalgebra of the operator algebra (leading to a decomposition of the Hilbert
space into two sectors which persists away from criticality), and it defines an
integrable deformation of the tricritical Ising model. It is degenerate at level 2, and
the counting argument shows that there are conserved currents with spins

In the crossover region, we observe crossing lines, even within a sector of the
Hilbert space (see fig. 7) . Furthermore, we checked that these crossings are
specific to the integrable trajectory; the addition of a small 0~, ~, i- -term removes all
crossings.

R*E
4r°_________

M. Lässig et al. / Tricritical Ising model

s = 1, 5, 7,11,13 .	(4 .6)

Fig. 7. Subleadmg magnetic perturbation (Aa = ±0.1), K= 0 sector: levels of the Hilbert space sector
corresponding to the conformal subalgebra (long-dashed lines) and of the orthogonal sector (short-

dashed lines) in the crossover region .



5.1 . LEADING ENERGY PERTURBATION

MLâssig et aL / Tricrïtical IsingnwM

In the massive regime, the spectrum of excited states is quite different
of the low-temperature Ising model, or the low-temperature tricritical Ising
Since the ground state is degenerate, we expect to find a continuum of unl
kink-antikink pairs k +, k_ with different relative momentum. In the finite-size
system, the continuum will be replaced by a series of discrete lines app
each other algebraically. We interpret the upper two states shown in fig. 5 as being
part of this series . The isolated single line must therefore represent a bound state
of a kink and an antikink. In the case of a spontaneously broken 2 symmetry, one
would expect two such degenerate bound states Ik+k_) and Ik_k, > (where the
order indicates ordering on the line). However, in this case, there is no 2
symmetry to enforce equality of the k +- k_ and k_-k } interactions . In the
Landau-Ginzburg picture (fig . lc), the potential well between the two vacua is
indeed asymmetric . Thus it is possible that only one of the configurations k {, k
and k_, k + can form a bound state, consistent with our findings. Interestingly
enough, the mass of this bound state seems to be roughly degenerate with that of a
single kink.

It would be interesting to consider this model further since it gives perhaps the
simplest example of a system with two ground states that are not related by
symmetry. Unfortunately, however, the perturbative approach is inflicted with
difficulties . Using the methods of ref. [20,211, one can show that in an e-expansion
about c = -2 (where the perturbing field becomes marginal) at least the first
three nontrivial terms of the .6-function vanish.

5. Energy perturbations of the tricritical Ising model

These perturbations are even under spin reversal; the (offcritical) Hilbert space
always decomposes into an even and an odd sector. Then it also makes sense to
distinguish between periodic and 71 2-twisted boundary conditions.

5.1.1. Periodic boundary conditions.

	

For A2> 0, the perturbation 0- . drives
To , 15)

the system into the 71 2-symmetric high-temperature phase. The massive theory is
integrable and related to the Toda field theory based on the exceptional algebra e 7
[12,13,181 . The conserved currents have spin

s = 1, 5, 7, 9,11,13,17

	

(mod 18)

	

(5.1)

(these numbers are just the Coxeter exponents of e7). The particle masses (table 7)

and the S-matrix are known exactly [12,131. The 712 spin-reversal symmetry is

manifest in the dynamics of the massive theory: the mass eigenstates can be

classified into even and odd states (this corresponds to the 712 symmetry of the



-2 t

-3
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S+= Q
_
'S+Q .

Dynkin diagram of the affine e7), and the S-matrix in the disordered phase S+
commutes with spin reversal

	

,

(5.2)

The massive spectrum in the IC = 0 sector is shown in fig. 8. The optimal point to
read off the infrared spectrum (2.11) can be identified from fig. 9 which shows the
effective scaling exponent (4.2) for the ground-state energy. Our numerical values
for the masses below threshold,

m2 =1.2(8)m l ,

	

m3= 1 .8(7)m l ,

	

m4 =1.9(6)ml ,

	

(5.3)

agree with the theoretical ones within our accuracy. Von Gehlen [23] obtained
similar values from a finite-size analysis of the Blume-Capel model.

Fig. 8. Leading energy perturbation (A2 = 1), periodic boundary conditions, K= 0 sector: the lowest
twelve lines in the massive regime . Long-dashed lines are even and short-dashed lines are odd under
spin reversal . The short-dashed lines alone are the bosonic levels for twisted boundary conditions and

A2= -1-

The EzToda system: mass s
TAmm 7

and 72 transformation of the states

M I 1 odd
m, -- 2m, 5r/18) 1.2856 even

3 = 2m I _Z/9) 1.8 odd
ma = 2,M I

a08) 1 ,96 even
rns = 4m, ,:r/18 ir/9) 2.5321 even
%= 4m, 2ar/9 ir/9) 2.8794 odd
rn7=4m,cosiw/18 °1r/9) 3.7017 even
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Fig. 9. Leading energy perturbation (A 2 = 11), periodic boundary conditions: effective scaling expo-
nent a of the ground-state energy, as defined in eq. (4.2).

For A2 < 0, the situation is related by duality to the previous case . Since E is odd
under duality, we have

eOR ,

	

EOR+ m2 ,

	

EOR+m4 ,

H_ �2 =D-IH�2D .

	

(5A)

The duality transformation maps the spin-even sector of the Hilbert space onto
itself; therefore the even levels do not depend on the sign of A2. The odd states
I cri ) are mapped onto their duals I IL i> =DI cri > ; the odd levels behave differently
for A2 < 0. In the massive scaling region, they become degenerate with the even
ones so that in the infrared theory (for periodic boundary conditions) only the
levels

EoR + 2m,

	

(threshold), . . .

	

(5.5)

appear (the K = 0 sector is shown in fig. 10). The system is in a two-phase region
of spontaneously broken spin reversal symmetry; in the thermodynamic limit there
are two degenerate ground states

I +>,

	

I ->=Q1 +> .

	

(5.6)

In a finite volume, the two lowest states are split exponentially; fig. 11 shows this in
the crossover region R- k. The massive excitations in the two-phase region are

(anti)-kinks and bound states thereof. The conserved kink number (mod 2) now

plays the role that the spin reversal symmetry had in the high-temperature phase .
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E
4

-2

-3

Fig. 10 . Leading energy perturbation (A2 = -1), periodic boundary conditions, K = 0 sector: the
lowest eleven levels in the massive two-phase region . Long-dashed lines are even and short-dashed lines
are odd under spin reversal . The short-dashed lines alone are the bosonic levels for twisted boundary

conditions and A2 = 1 .

All mass eigenstates can be classified into even states (having an equal number of
kinks and antikinks) and odd states (where those numbers differ by one). This is
the unbroken 712 symmetry Q of the low-temperature phase which corresponds to
the 71 2 symmetry in the Dynkin diagram of the S-matrix in this phase S_. It follows
from eq. (5.4) that S_ is related to the S-matrix in the disordered phase S+ by

log (E I -EO )
-2 -
-3
-4 --

-5 -

-6 -
-7 -
-8 --

0 .2 0 .4 0 .6 0 .8 1 1 . 1 .4

R

S_=D- 'S + D .

	

(5.7)

Fig . 11 . Leading energy perturbation (A2 = -1), K= 0 sector : exponential splitting of the two lowest
states in the crossover region .



Therefore the dynamics of the kinks and their fund states is described
same elastic and factorizable S-matrix based on e7. The spectrum consists of three
odd particle masses mi , rn 3, m6, and four even bound states with masses m2, M4.
m5 and m7 (see table 7) . The role of periodic boundary conditions is to restrict the
in-states to the even sector . Since the kink number is conserved,

also the out-states are even. The 712 symmetry ensures the equality of the k,- k
and k_- k+ interactions (unlike in the case of the subleading magnetic perturba-
tion); so we expect, and indeed find, that all bound states are doubly degenerate.
5.1.2. Twisted boundary conditions .

	

Twisted boundary conditions, on the other
hand, restrict the bosonic Hilbert space to the disorder states Ii i > =DIcr, >, which
are odd under Q and even under Q. By (5.4), the hamiltonian matrix elements
between these states are given by those of the dual system:

Hence in the infrared theory for A2 < 0, only the states with an odd kink number
appear (the short-dashed lines in fig. 8); the low-lying spectrum is

EOR + in, ,

	

eoR+m3 ,

	

EOR+mi +m2	(threshold),. . . .

	

(5.l0)

For A2 > 0, only the even levels (5.5) (the short-dashed lines in fig. 10) appear.
In addition to these bosonic levels, there are now states whose momenta are

half-integer multiples of 2-rr/R (fermionic particles). They are odd under both Q
and Q. Hence one expects (independently of the sign of A) the infrared spectrum
(5.10) . This is confirmed by fig. 12, which shows the massive region of the K= sr/R

2 -

M. Ldssig et al. / Tricritical Ising model

S_= Q_'S_Q, (5.8)

<Ii;IH-a21juj> = <ojjD-'H_A,DIoj > = <o;IHA,loj> .

	

(5.9)

Fig. 12 . Leading energy perturbation (A2 = ± 1), twisted boundary conditions: the lowest eight levels of
the sector K = Tr/R (solid lines), together with the lowest two bosonic levels for A2 = -1 (short-dashed

lines).
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sector.

Thus for

	

> c, the combined infrared spectrum of bosons, and fermions equals
the spectrum (5.3) for periodic boundary conditions. This is necessary to ensure
that correlation functions

	

me independent of the boundary conditions in the
limit.

	

e quantum number

	

classifying the levels can be
reinterpreted as the fermion number (mod2).
For

	

<T~, the combined s

	

differs from the one in the periodic sector;
only the masses (5.1®) appear. 'The levels are pairwise exponentially split and

me degenerate in the thermodynamic limit.
e S-matrix in the twisted sector should be related in a simple way to the

-matrix in the

	

ri

	

is sector.

e levels Eâ

/

	

r rl "alh

is sector show the following

.8(9)m,,

5.°? SUBLEADING ENERGY PERTURBATION

27r
AE; =

R
x,,

E~fj -Elf =1.2(9)mi , . . . .

	

(5.l1)

The subl

	

ding energy operator e' is even under spin reversal and duality. For
A4 > 0, it is believed to induce the crossover to the critical Ising model [19] . The
infrared behavior of the energy levels on the strip should be given by eq. (2.11),

(5.12)

where x$ are the scaling dimensions of the Ising model.
In its present form, however, the truncation method on the strip fails to

reproduce this situation accurately. As fig. 13a shows for the ground state, the
energy eigenvalues are strongly dependent on the level of truncation ; for this

rturbation, the Hilbert space truncated at level 5 is not yet a good approximation
of the infinite-dimensional Hilbert space. But even in the absence of truncation
effects, the asymptotic behavior (5.12) would be more difficult to extract since the
corrections to it are also algebraically decaying and not exponentially as in the
massive cases. However, our overall results are in no way consistent with a massive
infrared theory. Fig. 13b shows, as an example, the lowest even excitation in the
infrared region which is emerging at the highest level of truncation. In this region
the pattern is consistent with the expected massless behavior of the Ising energy
density, AEZ = 27r/R.

easuring the lowest fermionic excitation Elf - Eo involves the comparison of levels from different
Hilbert space sectors . Since the truncation effects differ between sectors, this is considerably less
accurate than measurements within one sector; we find Elf - Eo _m1 only with an error of about
ten percent (see the two lowest lines in fig. 12).
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Fig. 13. Subleading energy perturbation (14 :- 1), periodic boundary conditions : truncation depen
dence of (a) the ground-state energy and (b) the lowest even excitation. Hilbert space truncates at level

3 (dotted), level 4(dashed) and level 5 (solid).

For A4 < 0, the system is in the three-phase coexistence region [14]. The lowest
three states are exponentially split in the finite-size system (fig. 15); in the
thermodynamic limit there are three degenerate ground states

I0>=QIO>=DIO>,

	

I +>,

	

I ->=QI +> .

	

(5.l3)

The massive theory is integrable . The lowest conserved charges with integer spin
are easily identified by the counting argument; they are just the Coxeter exponents
of su(2) [27]. It was conjectured by Zamolodchikov that the finks do not form
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Fig. 14. Subleading energy perturbation (A4= -1), periodic boundary conditions, K= 0 sector: the
lowest nine levels in the massive three-phase coexistence region . Long-dashed lines are even and
short-dashed lines are aid under spin reversal. The short-dashed lines alone are the bosonic levels for

twisted boundary conditions and A4 = -1.

bound states [141 . This is confirmed by fig. 14 which shows that the lowest
excitation is a doubly degenerate two-particle state (an unbound kink-antikink
pair) at threshold.

Since

the bosonic levels in the twisted sector coincide with the odd levels in the periodic

o . -5t

-0-5 4

-lt

°° ig et al / 7°rfcrificnl Ising model

0 .4 0 .5

0 .
\

	

0.2

	

0 .3

	

0 .4

	

0 .5

R

R

Fig. 15. Subleading energy perturbation (A4",, -1), periodic boundary conditions: exponential splitting
of the three lowest states in the crossover region, modified by truncation effects for R > 1.
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NO (iv)

O

Fig. 16 . Subleading energy perturbation (A4= -1): unbound kink-antildnk pairs in the three-phase
coexistence region . (a) Periodic boundary conditions. The configurations (i) and(ü) represent the same
K=0 state, so do (iii) and (iv). (b) Twisted boundary conditions. All four configurations represent the

same K = 0 state.

sector (the short-dashed lines in fig. 14). There is a nondegenerate ground state
10) (this state is unaffected by the twisting) and a single lowest two-particle
excitation at threshold. One-kink states exist in neither case.

It is interesting to understand why the lowest state of the continuum is doubly
degenerate with periodic boundary conditions, but non-degenerate in the twisted
case. This may be seen in a semiclassical picture of the kinks. The kink-antikink
pairs of the periodic sector are shown in fig. 16a. The lowest excitation is the K= 0
state, which is obtained by averaging over all positions of the kinks. Hence on a
circle (i) and (ü) are in fact equivalent, so are (iii) and (iv). There are two
independent states, related by spin reversal . In the finite volume, they are split
exponentially. In the twisted sector, there are the four configurations of fig. 16b.
When we join the ends of the line to form a Möbius strip, and average over all
positions of the kinks to obtain the zero-momentum state, we find that all four
configurations are equivalent. The reader is encouraged to make this experiment
for him/herself.
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TABLEA.1
TheVerma modules of the tricritical Ising model: number An,A)of

independent
states

(left column) and number An, ®) ofquasi-primaries (right column)

with 1= 0 if 1=1, 1=1 otherwise,
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Xa(4) =4°-c/24 F d(n,a)4n .
n=0

n-1
P.(d) = pn,n(4)L-n +

	

pn,t(4)Lni1Pt(4) ,
1=1

;f I=1

	

anti " -> I

( )!(
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(n =1,2, . . . ). The number An,®) of linearly independent descendant states at
level n is given by the character of the Verma module 7/A,

The Verma module can be decomposed into two orthogonal subspaces (this
decomposition is convenient for the computation of the matrix elements below).
The quasiprimary subspace consists of the states IS) which satisfy the equation
L1 IS> = 0 (and hence cannot be written as the derivative of states at the previous
level). The number or linearly independent quasiprimary states at level n is
An,4) = d(n, 4) - d(n -1, d). Table A.1 lists the values of An, ®) and An, ®)
(n = 0, 1, . . . , 5) for the six Verma modules of the tricritical Ising model. A basis in
the quasiprimary subspace of ~a may be obtained recursively as follows. At each
level n= 2, 3, . . . there is one "primitive" quasiprimary state P.(A)I®>, where
PI(d)IA> =1 and P.(4), n > 2, is a polynomial in the lowering operators L-k
given by

(A.2)

1
2(24 + 1) n_1

pn,l( 4) =

	

n+ 1

	

if 1= 2, 3, . . . and n =1,

	

(A3)
n!(24 +1)n-t

and (a)m =T(a + m)/T(a). The quasiprimary subspace of a nondegenerate Verena

n ®=0 ®_8 ®_ ® ®= 16
&=A dl=i

0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 1 0 1 0 1 0 1 0
2 1 1 2 1 1 0 1 0 2 1 2 1
3 1 0 3 1 2 1 2 1 2 0 2 0
4 2 1 4 1 3 1 3 1 4 2 3 1
5 2 0 6 2 4 1 4 1 5 1 4 1
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module ~a is spanned by the composite states

Pnk(A +nk _ 1 + . . . +nl ) . . . Pn2(4 +n l)Pnl(4)I4> >

with nk < nk _ 1 < . . . < n 1 . In a degenerate Verma module, the null states have to
be projected out. For the tricritical Ising model, we use the quasiprimary basis

Io>, P2(o)I0, P2(2)P2(U)IO>,

ôi , P2( s3-o)I ô>>P3~ô)Iô>>P2(ô + 2)P2(-DI80

	

80>>P5( -810 )1 ô>>P2(ô + 3)P3( -820- )1 ô>,

I io > > P3~ô)I iô >> P4(io )I lô > > Ps( io )I io > ,

I 1>, P3(6)1 -116- >

	

P4( 6 )I 16 > > P5(6)1 16 > ,

I ô>, P2(10" )1 ô>> P4(ô)I ô>> P2(ô + 2) P2(ô)I ô> > P5(o)I ô>,

12>, PZ~i)I i>> P202 + 2)PZ( 2)I i>> Ps~2)I i>,

(A.4)

(A .5)

which is truncated at level 5.
The orthogonal subspace consists of pure derivative states . Any such state at

level n is of the form Lr 1 18 >, where 18 > is a quasiprimary state at level n -r. A
holomorphic descendant state is thus characterized by three quantum numbers
labelling its Verma module, its quasiprimary subfamily and its level.
The full Hilbert space is obtained by taking the tensor product of the holomor-

phic and antiholomorphic Verma modules for each conformal family. Each state is
characterized by six quantum numbers. We truncate the Hilbert space at level 5,
which leaves us e.g. for periodic boundary conditions with E6=1E5 =od 2(n, 4i) = 228
states in the K= 0 sector .
The dimensionless interaction matrix elements between these states,

R 2a

Vji(d,C) =

	

2v <Oi 1(Aa,v( 0 1 0)I`Ai> , (A .6)

are analytic functions of the conformal dimensions di, 4j and 4, and the central
charge c. The matrix elements between primary states are fundamental structure
constants which we extract from the crossing symmetric four-point functions in the
plane [1, 6,28]. The matrix elements between descendant states may then be
obtained by repeated use of the relation

[L., çba,a(w,w)] =zm(md +zalaz)Oa, a(w,W)

	

(A.7)

and its complex conjugate. We compute first the matrix elements between the
quasiprimary states (A.5) in a recursive way. The matrix elements between deriva-
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tive states are then given by the formula [11]

<S 1Li2Oa(0)Lr-' ,181 >

_ <8210A(0)Isl>r2!rl!
min(rI,r2) (S2 + 8 1 - A)l( 4 +S1 - S2)rl -1(4 +S2_81 )r2-t

1!(r_I)tr_I t1-0

	

1

	

( 2

	

)

617

(A.8)

The Hilbert space basis chosen is not orthonormal; the inner product between two
states is

The interaction matrix elements appearing in the logarithm of the transfer matrix
(2.3) are obtained from (A.6) by raising the index j,

vj(d'c) =gf'(C) i;j(4' C) .

	

(A.10)

We computed the matrix elements using a Mathematics computer program. The
detailed algorithm is not specific to the tricritical Ising model; it will be published
elsewhere [29].
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