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Abstract

A statistical theory of local alignment algorithms
with gaps is presented. Both the linear and log-
arithmic phases, as well as the phase transition
separating the two phases, are described in a
quantitative way. Markov sequences without mu-
tual correlations are shown to have scale-invariant
alignment statistics. Deviations from scale invari-
ance indicate the presence of mutual correlations
detectable by alignment algorithms. Conditions
are obtained for the optimal detection of a class
of mutual sequence correlations.

Introduction

Sequence alignment is an important tool in molecular
biology (Waterman 1994, Doolittle 1996). Alignment
algorithms are designed to detect mutual correlations
between DNA or protein sequences; such correlations
are often indicative of functional and evolutionary re-
lationships. Given two sequences, the so-called local
alignment algorithms identify pairs of putatively cor-
related elements in two contiguous subsequences. The
powerful algorithm of Smith and Waterman (1981) pro-
duces alignments with gaps (i.e., unpaired elements) to
account for the occurrence of local insertions and dele-
tions in molecular evolution. Mutual correlations be-
tween subsequences are detected by means of a scoring
function: Based on the number of matches, mismatches,
and gaps, a score is assigned to each alignment of the
sequences compared. Maximization of this score is then
used to select the optimal alignment, taken as a mea-
sure of the mutual correlations between the sequences.
However, it is well known that the optimal alignment of

a given pair of sequences strongly depends on the scor-
ing parameters used, and so does its fidelity, that is, the
extent to which it recovers the mutual correlations. The
key problems of alignment statistics are to quantify the
degree of sequence similarity based on alignment data
(e.g., the score), to find the scoring parameters produc-
ing the alignment of highest fidelity, and to assess the
significance of the results obtained.

This communication reports recent progress in the
statistical theory of alignments with gaps. We show
that such alignments can be understood using the con-
cept of scale invariance familiar from the physics of
phase transitions. Scale invariance is observed for
long pairs of mutually uncorrelated Markov sequences
aligned in their entirety, so-called global alignments
(Needleman and Wunsch 1970). It manifests itself in a
series of nontrivial power laws. For example, the score
variance for such sequences grows with the power 2/3
of the sequence length (Hwa and Léassig 1996; Drasdo,
Hwa, and Lassig 1997, 1998). Local alignments, how-
ever, show a phase transition separating two differ-
ent phases of scoring parameters (Arratia and Wa-
terman 1994). This introduces a finite characteristic
length scale t,, i.e., a scale independent of the sequence
lengths. It can be defined in the so-called logarithmic
phase as the average length of the aligned subsequences
ending at a given pair of elements. Mutual correla-
tions between sequences generate a second characteris-
tic scale, the correlation length t. (Hwa and Léssig 1996;
Drasdo, Hwa, and Lassig 1998). This is the scale above
which the optimal global alignment of the correlated se-
quences becomes significantly different from alignments
of uncorrelated sequences at the same scoring parame-
ters. The scales t; and ¢, have a strong dependence on



the scoring parameters whose functional form has been
studied in detail (Drasdo, Hwa and Léssig 1998; Hwa
and Lassig 1998) and is summarized below. We find
that high-fidelity alignments are obtained when ¢, and
t. are of the same order of magnitude and are jointly
minimized. This condition can be used to select the
scoring parameters for optimal similarity detection by
local alignment.

Review of alignment algorithms

We study local alignments of pairs of Markov sequences
@ = {Q:i} and Q' = {Q}} with an approximately
equal number of elements ~ N/2. Each element Q;
or (). is chosen with equal probability from a set of
c diﬁzerent alphabets. We mostly take ¢ = 4 as ap-
propriate for nucleotide sequences, although the re-
sults can be easily generalized to arbitary values of c.
An alignment is defined as an ordered set of pairings
(Qi, Q%) and of gaps (Q;, —) and (—,Q}) involving the
elements of two contiguous subsequences {Q;,, .- ., @i, }
and {Q}l,. .+»Q}, }; see Fig. 1(a). We define the length
of an alignment as the total number of aligned elements
of both sequences, L = iy — i1 + j2 — J1-

A given alignment is conveniently represented as a
directed path on a two-dimensional grid as shown in
Fig. 1(b) (Needleman and Wunsch 1970). Using the
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Figure 1: (a) One possible local alignment of two nucleotide
sequences, @ = {GGACATA...} and Q' = {CGT AT AG...}.
The aligned subsequences are shown in boldface, with 4 pair-
ings (three matches, one mismatch) and one gap. The length
L of an alignment is the total number of elements partici-
pating in that alignment. For the example shown, L = 9.
(b) The alignment in (a) can be represented uniquely as a
directed path (the thick path) directed along the diagonal
of the alignment grid; each vertical (horizontal) bond of the
path corresponds to a gap in sequence Q (Q’). L equals the
projected length of the directed path onto the diagonal.

rotated coordinates r = i — j and t = i + j, this path
is described by a single-valued function r(¢) measuring
the “displacement” of the path from the diagonal of the
alignment grid. The length L of the alignment equals
the projected length of its path onto the diagonal.
Each alignment is assigned a score S, maximization
of which defines the optimal alignment. We use here
the simplest class of linear scoring functions, with §
given by the total number N, of matches (Q; = @),
the total number N_ of mismatches (Q; # Q}), and

the total number N, of gaps. The most general such
function involves three scoring parameters:

S=U+N++U_N_+0'9Ng 5 (1)

with o4, o_, and o, denoting the score of a match,
mismatch, and gap, respectively. However, the optimal
alignment configuration of a given sequence pair ) and
Q' is left invariant if all three scoring parameters in
(1) are multiplied by the same factor. Without loss of
generality, we can therefore use the scoring function
1
S=0L++vVc—1Ny \/c——lN_ YN, (2)
which is normalized in such a way that a pairing of two
independent elements has the average score 20 and the
variance 1. Here L = 2N, + 2N_ + N, denotes again
the length of the alignment defined above, and c¢ is the
size of the alphabet set. The two scoring parameters
entering Eq. (2) have a simple interpretation: o is an
overall score gain for each element aligned, and 7 is
the cost of each gap. Hence o controls the length L
of the optimal alignment, while changing v affects its
number of gaps, i.e., the displacement of the optimal
alignment path !. Note that for global alignment, we
can take L = N fixed. For this case, the first term
in (2) becomes an overall additive constant which does
not affect the alignment. Hence, the statistics of global
alignments depends only on the single parameter +.
The dynamic programming algorithm obtains opti-
mal alignment paths from the “score landscape” S(r, ),
where S(r,t) denotes the optimal score for the set of
all alignment paths ending at the point (r,t). The
score landscape for local alignments is computed by the
Smith-Waterman (1981) recursion relation

Sr—Lt—1)4+0—v
Sr+1Lt—1)4+0c—x (3)
S(r,t —2) + s(r,t) + 20

0

S(r,t) = max

with

H —_ !
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T V=1 if Qa2 7 Q(t—r)/2
(4)
Evaluation of this relation starts with the initial condi-
tion S(r,t = 0) = 0 and stops at t = N. (We have used
various versions of the algorithm and boundary con-
ditions; see Appendix B of Drasdo, Hwa, and Léssig

(1998) for a detailed discussion.)

The score landscape S(r,t) has the absolute maxi-

mum
Y= ma%.xS(r, t) . (5)

In statistical physics, such a path is known as a di-
rected polymer; see Krug and Spohn (1991), Halpin-Healy
and Zhang (1995) for recent reviews. The scoring parame-
ters v and o can be interpreted as the line tension (governing
the displacements) and the chemical potential (governing the
length) of the polymer, respectively.



The optimal alignment path ends at the point (r2,12),
where S(rq,t2) = X. The path is found by back track-
ing 2 from this endpoint to the initial point (r1,t;) given
by S(ri,t1) = 0. The length of the optimal path is
L =ty —t;. For global alignments, one uses the simpler
recursion relation (Needleman and Wunsch, 1970)

SC(r—1,t—1)+0 —v

SCr+1,t—1)4+0—v . (6)
S%(r,t —2) + s(r,t) + 20

S%(r,t) = max

The optimal global alignment path ends at the point
(ro = 0,ts = N) and is tracked back to the initial point
(7‘1 = O,tl = 0)

Alignment of Uncorrelated Sequences

The cornerstone of the theory of alignment with gaps
is the global alignment statistics of mutually uncorre-
lated Markov sequences. (We distinguish their score
data by the subscript 0 from those of mutually corre-
lated sequences to be discussed below.) Consider the

average score S§'(t) obtained from global alignment of
long sequence pairs (N > 1). We can take this quantity
to be either S§(r = 0,t) or max, S%(r,t). The over-
bar denotes an ensemble average over sequence pairs,
although in practice, ensemble averaged quantities can
often be obtained from a single sequence pair (Hwa and
Lissig, 1998; Drasdo, Hwa, and Lassig 1998). For large

values of t, it is easy to show that S§ (t) is asymptoti-
cally linear in ¢ (Arratia and Waterman 1994), with

5§(t) ~ (0 + Eo(7))t - (7)

From the definition of the scoring function (2), it is
clear that the prefactor has a nontrivial dependence
only on v. The function Ey(y) is monotonically de-
creasing and can be calculated asymptotically for large
v, with the result Eo(y) ~ 1/v (Hwa and Léssig, un-
published). Numerically, we find this function to be
well approximated by the form Eo(7y) oc 1/(v + const)
over the interval v > v9 = 1/(2v/c — 1) (Drasdo, Hwa
and, Lissig 1998) 3.

A number of other quantities are governed by non-
trivial power laws, e.g., the variance of the score land-
scape

(ASF(1)* = (S)2(8) = (S (1))* = B*(m) /> (8)

and the mean square displacement of between two
points ¢; and t» of the optimal alignment path,

(ro(t2) —r0(t1))2 = A%(7) [t2 — ta|*/3 . (9)

2There is an exponential number of degenerate paths
having the same score. Since most of these paths overlap
each other very closely we can resolve the degeneracies by
random choices during back tracking.

3For v < 7, it is always favorable to replace a mis-
match by two gaps, and the algorithm becomes biologically
irrelevant.

These power laws reflect the statistical scale invari-
ance of global alignments without inter-sequence cor-
relations. The exponents 2/3 and 4/3 governing the ¢
dependence are “universal”, that is, the dependence on
the scoring parameters is contained entirely in the am-
plitude functions B(y) and A(7y). These functions are
well approximated by the form A%/4(y) ~ B=3(y) ~
Eo(y). The scaling laws (8) and (9) are believed to
be exact for the closely related problem of first-passage
percolation (Licea, Newman, and Piza 1996; Licea and
Newman 1996; see also Krug and Spohn (1991) and
Halpin-Healy and Zhang (1995) for reviews on recent
progress from the statistical physics perspective.) That
the same scaling laws apply to global alignment of un-
correlated sequences * was conjectured only recently
(Hwa and Lé&ssig 1996) and has since been verified
by extensive numerical simulations (Drasdo, Hwa, and
Lassig 1998). The same scaling has been found for pairs
of unrelated cDNA sequences; an example is shown in
Fig. 2 (Drasdo, Hwa, and Léassig 1998).
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Figure 2: Score fluctuations for a pair of unrelated cDNA
seqences (P.lividius cDNA for COLL2alpha gene with N =
5511 (Exposito et al. 1995) and Drosophila melanogaster
(cDNAT1) protein 4.1 homologue (coracle) mRNA, complete
cds. with N = 5921 (Fehon, Dawson, and Artavanis-
Tsakonas 1994)). The straight line is a least mean square fit
to the data which is in very good agreement to the expected
power law given by Eq. (8).

The score statistics for local alignments of mutually
uncorrelated Markov sequences can be inferred from
that of global alignments. Of foremost importance is
the existence of a phase transition (Arratia and Water-
man 1994) at o + Eo(y) = 0. This defines the phase
transition line o.(y) = —Fo(y) o 1/(y + const). The
two phases are distinguished by the asymptotics of the
average optimal score Xo (V) for long sequences, which
is of order N for ¢ > o, and of order log N for ¢ < o,

“Note that the global alignment problem differs signifi-
cantly from the usual first-passage percolation problem since
the former contains O(XN) random numbers while the lat-
ter contains O(N?) random numbers; see also Arratia and
Waterman (1994). This difference is, however, irrelevant
for the asymptotic scaling behavior (Hwa and Lissig, un-
published). A detailed heuristic discussion addressing the
correspondence of these two problems is given by Cule and
Hwa (1998) in the context of a number of closely related
physics problems.



(Arratia and Waterman 1994). A comprehensive un-
derstanding ° of the score statistics in the vicinity of
the phase transition line follows from the scaling laws
(7) and (8), as we now show.

Consider an optimal path of local alignment ending
at a point (r,t). Let the average score be Sy(t) and the
average alignment length be Lo(t) < t. We discuss first
the linear phase where o = 0 — o, > 0. For large t, we
have So(t) ~ do -t and Lo(t) ~ t as in global alignment,
since the typical optimal score Sp(t) ~ So(t) £ AS§ ()
becomes large for large ¢ and is thus unaffected by the
constraint S > 0 special to local alignment. But this
condition can be violated at small ¢ if Sp(t) < AS§ (2).
Using the score variance in Eq. (8), we find the linear
behavior to hold only for ¢ exceeding a characteristic
length scale

ts(o,7) ~ B2 (7)|do| /2. (10)

Note that t; diverges as the phase transition line is
approached, i.e., as do — 0. This indicates that
the preasymptotics for ¢ < ts is given by the “crit-
ical” behavior right along the transition line where
60 = 0. There, global alignments yield score in the
range —AS§ (t) to AS§ (). For local alignment, the av-
erages are dominated by the finite fraction of sequence
pairs with S§(t) > 0 for all ¢. Since such sequences
have scores of the order AS§(t), we obtain the impor-
tant result o

Ss(t) ~ B(y)t'/? (11)
describing the average alignment score right at the
phase transition line.

Slightly on the other side of the phase transition line,
i.e., for do < 0, the score experiences a small negative
drift, —|do| t. As do — 07, this effect is negligible
for small ¢ and the average score follows the critical
behavior (11) until the negative drift “catches up”, i.e.,
when S§(t) ~ |do|t. Hence, the average length Lo(t)
saturates to a value ¢, = lim;_,o, Lo(t) whose parameter
dependence is given by Eq. (10). The corresponding
saturation value of the score, Ssay = limy_ ;o So(t), is
given by

Ssat(0,7) ~ S5 (ts) ~ B*/2(7)]do| 712 (12)

This behavior of the average alignment length and
score close to the phase transition can be written in the
form (Hwa and Lassig 1998)

SO_(t)ZSi(i) Lo :zi<i) . a3)

Ssat ts ts ts

The scaling functions S+ and L. are again universal;
i.e., the entire dependence on the scoring parameters
is contained in the constants (10) and (12). The sub-
script of the scaling functions refers to the sign of do;
the two branches correspond to the linear and the log-
arithmic phase, respectively. The branches Si share

®For a discussion in the context of a related physics prob-
lem, see Muiioz and Hwa (1998).
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Fig. 3: Local alignment of Markov sequences without mu-
tual correlations. (a) The score average So(t) for various
values of v and o obtained from an ensemble of 1000 ran-
dom sequence pairs of 10000 elements each. The curves
correspond to v = 3.0 and do /o¢(y) = 0.05 to —0.05 (top to
bottom). (b) The same data plotted according to the scal-
ing form of Eq. (13) exhibits the two branches of the scaling
function S+. The asymptotic behavior is seen to follow the
scaling theory; the expected power laws are indicated by
dashed lines.

the same asymptotic behavior Si (1) ~ 7'/ for 7 < 1.
For 7> 1, §4(1) ~ 7 but S_(r) — O(1) signaling a
finite saturation score. The scaling form (13) has been
verified numerically (Hwa and Lassig 1998). Fig. 3(a)
shows Sy(t) for various values of v and o close to the
transition (|dc|/o.(y) < 0.05). Plotting So(t)/Ssat as
a function of ¢/t shows a clear data collapse to a two-
branched function S4 with the predicted asymptotics,
see Fig. 3(b).

Given the saturation values t; and Ssa¢, we can esti-
mate the average optimal score Xo(NN) = max;y So(t)
and length Ag(N) = max;cn Lo(t). The probabil-
ity of the length Lo(t > t;) being much larger than
Lo = t, is expected to be Poisson distributed (Wa-
terman and Vingron 1994b). For sequences of lengths



of the order N > tg, the probability of finding some
ts < t < N such that Lo(t) > ts is of the order
(N/Lg) exp(—const - Lo/t,). Since Ag is given by the
largest Ly for which this probability remains finite, we
find asymptotically the result

Ao(N) ~ ts(0,7) log(N/t) + O(loglog(N/ts)) . (14)
Similarly, the optimal score is
E(N) ~ Ssat(0,7) log(N/ts)+0(loglog(N/ts)) . (15)

It is instructive to compare the score statistics de-
scribed above with that of gapless local alignments
widely used in large-scale database searches (Altschul
et. al. 1990). In gapless alignments (y — o0), the align-
ment paths are constrained to a single value of r. Since
the score value for each pairing is an independent ran-
dom variable with average 20 and variance 1, we have
S§ () = ot and AS§ (t) = t1/2 for the “global version”
of the gapless alignment. Using these expressions in
place of Egs. (7) and (8), and repeating the above anal-
ysis, we obtain the following properties for gapless local
alignment: There is a phase transition at 0 = o, = 0
where S5 ~ t'/2. For ¢ < 0, the average length and
score of the optimal alignment are still of the form
Ao(N) ~ tslog(N/ts) and Xo(N) ~ Sgat log(N/ts), re-
spectively, but with a different dependence on o given
by ts ~ |o| 2 and Set ~ |o|!. These results are
of course well known (Karlin and Altschul 1990; Kar-
lin, Dembo, and Kawabata 1990; Dembo and Karlin
1991)%. While gapless local alignment is sufficiently
simple so that even the complete distribution function
P(%y) is known, the inclusion of gaps greatly compli-
cates the problem. Indeed, even the first moment X,
(i-e., the form of the coefficient Ssu¢(c,7)) has not been
analyzed systematically prior to this work. Knowledge
of the leading moments can be used to construct an
effective description for P(Xo) (Bundschuh et al., un-
published); this is a direction currently being pursued
by many groups (Waterman and Vingron 1994a, 1994b;
Altschul and Gish 1996).

Alignment of Correlated Sequences

Evolution acts on DNA by local substitutions, inser-
tions, and deletions of nucleotides, as well as by rear-
rangements of large segments of the sequence. Hence
DNA sequences in different organisms can have subse-
quences that differ only by local mutations, with many
pairs of conserved elements (i.e., elements that are nei-
ther deleted nor substituted at any point of the evolu-
tion process) inherited from a common ancestor. We
model such mutations by a simple Markov process, al-
lowing for local deletions and insertions (of random el-
ements) at an average frequency ¢, as well as random

5Note that the parameter ¢ here plays the role of the
important parameter A in gapless local alignment (Karlin
and Altschul 1990). It is straightforward to verify that in
the vicinity of the phase transition (¢ — 07), |o] x A.

point substitutions with probability p per element; see
Drasdo, Hwa, and Lissig (1998) for details. The av-
erage fraction U = (1 — p)(1 — q) of ancestor elements
conserved in the daughter sequence quantifies the de-
gree of correlations between the two sequences. In the
sequel, we consider pairs of Markov sequences QAand
Q' with mutually correlated subsequences () and Q' of
approximately equal length N /2 <« N; the remainder
of the sequences () imd Q' Ahas no mutual correlations.
The subsequences () and @' are related by a realiza-
tion of the above Markov process characterized by the
parameters U an(Ai q. The pairs of conserved elements
(Qi, Q%) € @ x Q" are to be identified by local align-
ment; the fraction F of correctly detected conserved
pairs defines the fidelity of an alignment.

The local alignment statistics of correlated sequences
is again based on the properties of global alignments.
Hence consider first the optimal global alignment of the
sequences () and @' for given values of v and o. If the
alignment covers a finite fraction F of the conserved
pairs, it will have an increased number of matches and
hence a higher score than alignments of uncorrelated
sequences. Indeed, the average score SE(t) has the
asymptotic form

SG(t) ~ (0 + E(v;U,q)) t = (60 + 6E(v; U, q)) t (16)

for large values of ¢, with a finite score gain
6E(v;U.q) = E(v;U,q) — Eo(y) > 0 per unit of ¢
over uncorrelated sequences. Mutual correlations be-
tween sequences introduce a length scale into global
alignment, the correlation length t. (Hwa and Léassig.
1996; Drasdo, Hwa, and Léssig, 1998). For t > t.,
the alignment becomes statistically different from the
global alignment of mutually uncorrelated sequences.
Hence, t. is the threshold length for similarity detec-
tion by global alignment. Its value can be estimated by

equating the score gain E(tc) — S§(t.) = 0E - t. with
the r.m.s. score for random sequences, AS§ (t.), given
by Eq. (8). We obtain

te ~ 33/2 (7) (6E)_3/2 ’ (17)

which should be compared with (10) for the saturation
length of local alignments.

The scaling theory of global alignments (Drasdo,
Hwa, and Lassig, 1998) establishes the parameter de-
pendence of the score gain JE. This is found to have
the approximate scaling form 6E(vy; U, q) /U = 6&(z, y),
where x = C(7)/U, y = q/U?, and C(v) =~ Eo(y) is
another amplitude function. Similar scaling forms are
found for the correlation length ¢. and for the average
fidelity F. Fig. 4 shows numerical data for the scaled
score gain 6&(z,y) obtained from single sequence pairs
with various values of U, ¢ and 7. As predicted by the
scaling theory, the curves of Fig. 4 have clear maxima,
which turn out to be close to the maxima of F and to
the minima of ¢, (Drasdo, Hwa, and Lassig, 1998). We
conclude that global alignments can be optimized effi-
ciently by maximization of the score gain 6FE. Notice
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Fig. 4: Global alignment of Markov sequences with mu-
tual correlations. The score gain 6€(z,y) obtained from
single sequence pairs with various evolution parameters U, ¢
and alignment parameters 7. The data for different (U, g, )
corresponding to the same values of (z,y) collapse approxi-
mately, as predicted by the scaling theory. The lines are the
theoretical loci of the maxima (dashed) and the theoretical
limit curve 6&(z,0) (solid). See Drasdo, Hwa, and Lissig
(1998) for details.

that this is quite different from maximizing of the total
score, which is frequently (but erroneously) used in ap-
plications. JE can be extracted directly from alignment
data. An efficient method based on the score landscape
approach is described by Hwa and Lassig (1998).
_The optimal global alignment of the subsequences
@ and @' is to be reproduced as a local alignment of
the entire sequences ) and ', at least approximately.
Therefore its score given by (16) must be the absolute
score maximum, i.e.,

(60 + 0E) N > T4(N) . (18)

This requires (i) doc > —d0F so that the L.h.s. of (18)
is positive and (ii) do < 0 so that the r.h.s. is small,
i.e., only of order log N as given by Eq. (15). Hence
weak correlations (E — 0) can only be detected with
scoring parameters set in the logarithmic phase close to
the transition line. )

According to Eq. (18), detection is possible if N ex-
ceeds the threshold length Ny = ¥¢(N)/(d0 + SE).
Minimizing Ny by using (15) and (12) determines the
optimal value of ¢ for given 7,

60*(v;U,q) = —36E(v; U, q) - (19)

By Egs. (10) and (17), this is equivalent to the condi-
tion ts ~ t., producing an optimal detection threshold
No ~ t.log(N/t.). The optimal value of « is then de-
termined as for global alignments (Drasdo, Hwa, and
Lissig 1998). Hence local alignments are efficiently
optimized by maximization of the score gain §E while
keeping 60 = —0E/3.

Discussion

The scaling theory of alignment with gaps is based
on the scale-invariant statistics of global alignments
of mutually uncorrelated Markov sequences. In local
alignments of correlated sequences, this scale invari-
ance is broken by the simultaneous presence of two
length scales: the saturation length ¢, and the corre-
lation length t.. The theory presented here provides a
coherent description of local alignments both in the lin-
ear and the logarithmic phase, including a quantitative
understanding of the phase transition. This is impor-
tant for similarity detection since scoring parameters
suitable for the analysis of weak correlations are found
to be close to the phase transition line in the logarithmic
phase. We show that minimizing the length scale ¢, and
keeping t5 of the order t. produces alignments with high
fidelity and low detection threshold Ny ~ t.log(N/t.).
These conditions can be turned into an optimization
procedure for local alignments based on score data. A
crucial question is, of course, whether these findings
carry over to the mutation statistics of real sequences
and to the algorithmic variants commonly used (which
have scoring functions with more than two parameters).
An important empirical result indicates that this may
well be the case: As pointed out by Vingron and Wa-
terman (1994), optimal alignments of weakly correlated
sequences are indeed found in the vicinity of the phase
transition line, just as predicted by this theory.
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