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Quantized Scaling of Growing Surfaces
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The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-
theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In
particular, height correlations should satisfy an operator product expansion and, unlike the correlations
in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on
the roughness exponent and the dynamic exponent Hence the exact valueg = 2/5,z = 8/5
for two-dimensional andy = 2/7,z = 12/7 for three-dimensional surfaces are derived. [S0031-
9007(98)05491-X]

PACS numbers: 64.60.Ht, 47.27.Eq, 68.35.Fx

Strongly driven dynamic systems offer some of thethe height difference moments
most intriguing realizations of statistical scale invariance.
Hydrodynamic turbulence [1] or the growth of rough sur- ([h(r)) = )T ~ Irpl 75X, (4)
faces [2] are two classic examples, which turn out to be .
deeply connected from a theoretical point of view. In(Withriz =1 — r2), emerges on mesoscopic scaies<
such systems, a stochastic forgér,s) generates long- [Fi2l < &. For|ry;| < a, the dissipation tersz% in
ranged correlations of a fluctuating dynamic field—theEd- (1) breaks the asymptotic scale invariance. In the
local velocity v(r,7) of a fluid or the heighth(r, ) scal'lng regime (4),the height difference mqments become
of a surface. As typical differencels(ri,?) — h(ra, 1) stationary i.e., mdependent of the corre_lgtlon_lengh
or v(ry, 1) — v(r», 1) increasewith the spatial separation They are characterized by a single critical mdgxz_
Ir; — 2], the scaling properties of these fields are generid» the roughness exponerdf the surface. The scaling
cally more complex than those at a standard critical point€lationy + z = 2 follows from the Galilei invariance of
Indeed, the theoretical understanding of these universalitd- (1) [7]. Ford =1, one can show Eq. (4) to be valid
classes far from equilibrium is still fragmentary. with the roughness exponegt= 1/2, equal to that of the
The subject of this Letter is the simplest nonlinearlin€ar theory(A = 0) [2]. In higher dimensions, however,
model of stochastic surface growth, the famous Kardarlittle is known analytically. Fod > 2, the rough state of

Parisi-Zhang equation thze surface exists only if the_ rescaled driving amplitude
Ay = 02A?/v? exceeds a finite threshold valug [8].
ah = vVih + %(Vh)z + 1 1 Less rigorous theoretical arguments predict an upper

critical dimensiond~ = 4 beyond which Kardar-Parisi-
for ad-dimensional surface [3]. The driving teri(r,z),  Zhang surfaces are only logarithmically rough = 0)
which describes the random adsorption of moleculegven in the strong-coupling regims > A2 [9]. The
onto the surface, is taken to be Gauss distributed witlmumerical results presently available are consistent with
correlations over onlynicroscopicdistances, Eq. (4). Extensive simulations yiejd =~ 0.39 for d = 2,
———~ 2 / / x = 0.31 for d = 3, and smaller positive values in higher
(e O, 1) = o76(t = 1)é —r).  (2) dimensions, which are less reliable [10].
The relation of this model to the theory of turbulence It has remained a challenge for theorists to calculate the
is manifest: Eq. (1) is formally equivalent to Burgers rough asymptotic state of Kardar-Parisi-Zhang surfaces
equation for d > 1 exactly or in a controlled approximation. In
I particular, standard perturbative renormalization about the
v + (v Vv = Vv + Vn (3) linear theory fails to produce a fixed point belonging
for the driven dynamics of a vortex-free velocity field to this regime [11]—a notorious difficulty familiar from
v(r,t) = Vh(r,t) (with A = —1) [4]. In a fluid, how- the theory of turbulence. In this Letter, a quite different
ever, the driving force is correlated owaacroscopicspa- approach is taken. Guided by numerical and experimental
tial distances. This leads to important differences in theesults, | make a fewualitativeassumptions, namely, the
scaling behavior [5], which are discussed below. existence of an operator product expansion (8) and of a
A surface growing from a flat initial state(r,0) = 0  stationary state (10) that is directed (i.e., it has no up-
develops height correlations with an increasing correlatiomown symmetry). These assumptions turn out to constrain
length £, ~ ¢'/2, which defines the dynamic exponent severely the possible solutions of Eq.(1). In particular,
[6]. A self-similar growth pattern, characterized, e.g., bythey naturally lead to a quantization condition for the
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roughness exponent

2
= — 5
ko + 2 ©)

whereky is an odd integer foel = 2. Comparing with

X

the above numerical estimates [12] and using the relatio

x + z =2, then gives the main result of this Letter:
the exact valuey = 2/5,z =8/5ford =2 and y =
2/7,z = 12/7 ford = 3.

The fundamental observables describing the equal-time

surface configurations are the (connected) correlations

(h(er)- b))y = ] Dhh(e))--he)P; — - (6)

(the dots denoting the disconnected parts). The heig
probability distribution P,({#}) obeys the functional
Fokker-Planck equation

le). @

9,P, = <] dr[o-zﬁha(;2 - %J(r)

whereJ (r) = vV2h(r) + (A/2) (Vh)*(r) is the determin-
istic part of the current.

In the scaling regime (a < |r;| < &, for
i,j=1,...,n), the correlation functions (6) will

0

By writing h(r;) — h(r}) = [; ds - Vh(s), the same
property follows for the height difference correlation
functions ([1'_,[A(r;) — h(r})]), in particular, for the
moments (4). This implies a feature familiar from
ﬁimulations: one cannot recognize the valueépffrom
snapshots of the surface in a region much smaller ghan
By differentiating (8), one obtains an operator product
expansion for the gradient fiekd= Vi of the form

v(ry) - v(rg) = Z [ppp| TR0t
0
é(o( ri3 Ik

X ey
|r2] |ri2]

k

>@(r1), (11)
ht

with new scaling functionsC‘,? and the dimension
xy = —y + 1. [Both sides of (11) are tensors of rank
k whose indices are suppressed.] The fiefdlson the
right-hand side govern the time-dependent amplitudes
vr)---vr)) ~{0), ~ & ™ in analogy to (9).
Hence, the stationarity condition (10) allows in (11)
only fields O with a non-negativescaling dimension
xo, such asl (the identity field),(V4)?(r), etc. This in
turn restricts the possible terms in (8): &@hgularterms

generically become singular as some of the points apnvolving fields O (r) with xo = 0; (b) regular terms,
proach each other. Faf < d-, these singularities are where the coefficientr | < +xe C,? is a tensor of rank

assumed to follow from anperator product expansion

h(ry) - h(r) = Z [y | R0 Fxo
(0]

xC,?(

I3 Ik

[ri2]” 7 eyl

)@(rl)- (8)

N in the differencesry; (i = 2,...,k). Such terms do
not violate (10) since they have a vanishing coefficient
C,? in (11) for N < k. They can readily be associated
with composite fields of dimensions

xiN = —ky, + N. (12)

This identity is nothing but a consistency relation for The leading(N = 0) term involves the (normal-ordered)
the height correlations. Inserted in (6), it expresses anfield Oi(r) = h*(r) and governs the asymptotic singular-

n-point function as a sum ofz — k + 1)-point func-
tions in the limit|r;;| < [ry| < & (i,j = 1,...,k and
=k +1,...,n). The notion of an operator product
expansion is familiar in field theory [13] and has re-

ity (9); the higher terms correspond to fields witlfactors
h(r) andN powers ofV.

It is useful to introduce the (normal-ordered) vertex
fieldsZ,(r) = exfdqh(r)], which are the generating func-

cently been applied successfully to nonequilibrium systions of the fields:*(r). Equation (8) is then consistent
tems [14,15]. Of course, its status is still heuristic in thatwith the operator product expansion

context. The sum on the right-hand side runs over all lo- Lok
cal scaling field€0 (r). Each term contains a dimension- Z4,(r1)Z,,(r;) = ex ZCk,1W1W2 Zgi+q,(r1)
less scaling functio€ (a simple number fok = 2) and k’l(%l
a power of|r;,| given by the scaling dimensiong, and + 0(Cy," ), (13)
xp = —x (such that the overall dimension equals that of .
h x ( 9 where C,?, = C,?H(O,...,O,rlz/lrlzl,...,r12/|r12|) with

the left-hand side). The fiel®, with the smallest dimen-
sion, x;, determines, in particular, the asymptotic behavio
of the k-point functions as, — o,

(h(r) - h(re)) ~ (Op) ~ & 9

The amplitudes(Oy;), = (O, (r)), diverge with &, i.e.,
x; < 0[16]. They measure thglobal roughness, which

rthe first k arguments equal to 0 and; = g;|r;x|¥
[17,18]. Subleading singular terms (with positive-
dimensional fields®) and regular terms (with fields
containing height gradients) are omitted. The vertex
n-point functions (Z,,(r)---Z,,(r,)); behave asymp-
totically as expe’ >, g;). If >, q; = 0, they have a

increases as the surface develops higher mountains afigite limit <Z, (ry)---Z—,..—, (r,)). Since these are

deeper valleys.Local surface properties should, however,

precisely the vertex correlators that generate the height

behave quite differently. For example, the gradient corredifference correlation functions and since (13) is analytic

lation functions are assumed to have a finite limit
glim (Vh(ry)---Vh(r,)); = (Vh(r;)---Vh(r,)). (10)

in the ¢;, this leads back to the stationarity condition (10).
The operator product expansion (13) with the linear
dimensions (12) is at the heart of the field theory for
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Kardar-Parisi-Zhang systems. ltis instructive to comparesalilei invariance is expressed by the asymptotic scale in-
this theory with models of turbulence. Burgers equationvariance of the dimensionless coupling’A, while the
(3) with force correlations other coefficients become irrelevant@agy — 0. How-
n(r,H)n, t') = o*R*8(t — t)A(lr — r/|/R) (14) ever, as explained in Ref. [14] for Burgers turbulence, the
over large distance® developsmultiscaling: for ex- e.quat_ion Qf motion for the renormalizgd correlation func-
ample, the longitudinal velocity difference moments tions is quite subtle due to anomalies dictated by the opera-
Toy(ry) — v”(rz)]k> N ) (15) Lor_ pr:oduct expansion. To exhibit the anomalies for_ the
have ak-dependent singular dependencelnal andR in Slg t_correlatlons/, | mtrodlfce tlhe smeared vertex fields
Z4(r) = exfq [dr'8,(r — r')h(r')] [where §,(r) is a

the inertial scaling regimé < |r;5| < R [5,19]. Simi- . . ) !

lar multiscaling is present in Navier-Stokes turbulence:1 ggﬂ%&zzzgrg\zgggn\ggh:%BFESSE g thZSp(?i? <Uas]-
Kolmogorov's famous argument predicts the exact scal- N R AT

ing (6), (7), and (17), it is straightforward to derive

ing dimension of the velocity fields, = —1/3, from di- )
mensional analysis [20]. This determines the scaling of a_ gay _ (79, T7a. . 7a
the third moment in (15) sincg& = 0. The higher ex- ZE 2o ;q’@l JZiZs o (18)

onentsxy, Xs,... < 0 cannot be obtained from dimen- « 4 . .
gional analysis. Assuming the existence of an operato\fyhere Jzi = [QiUZS“(Q) + J(rf)JZ" . The smgulanty
product expansion (11), the term (15) is generated b>§tructure of the current is (ietermlned by (8) and (17):
the lowest-dimensional field; with a singular coeffi- a _ w5 2y—2 ky k
cient [21]. Multiscaling thus implies the existence of Jzi =g Zi +a (kzl ckaq; )Zi + 0@a®),

a (presumably infinite) number of composite fields with (29)
anomalous negative dimensions. For the velocity vertex . . = _ 0 with a/é kept constant. The field, (r) =
fields expgv(r)] of Burgers turbulence in one dimension, Vh)iz (r) denotes the finite part (')f the opergtor prod-
Polyakov has conjectured an operator product expansiouct (th)2(r)Z“(r) fora — 0, andZ; = 2, (r;). The fi
similar to (13) and consistent with multiscaling [14]. The te dissi atif)n terrr(Vzh)Z’ (r) b;comgs ;rr.elevant i
distinguishing feature of Kardar-Parisi-Zhang surfaces ig,_ .~ . >, Pe Y hqf Ti) I f .

the absence of multiscaling [22]. Notice that the resultin his limit since » ~ a¥. The singular part of (19) is a
properties (12) and (13) have been derived solely from th OWeri‘;”[?S ig; with 3symptot:|kcally constant C‘ieff'c'e”ts
assumptions (8) and (10) without using Eq. (1) explicitly. €. = ¢ ¢ 84(0) + »7er1 + g7y and C’gzi))’:_gl’k.+

To establish the consistency of the operator product ex§ “2# fork =2,3,.... Thetern;s of ordgm , org-
pansion with the underlying dynamic equation, one has gpate frozm oper/ator pr(?ductﬁ. h(x;)h(ry) -~ h(rg) ~ 1
construct correlation functions that remain finite in the con-2Nd (VA)*(r:)h(ry) - h(rg) ~ 1; their respective coeffi-
tinuum limita — 0. With the probability distribution (7), Cl€NtScix and o, are integrals over the scaling func-
the height correlations (6) develop singularities dictated b)}lons n (8.) and the regularizing functiodg(r; — r;). Of
their normalization in the linear reginiér;;| < a). The course, d|ve_rgent terms have to cancel so that Eq. (18) has
existence of a well-defined asymptotic scaling regime foP finite continuum I|m|’E
g)l/lafhgnlénepgfe\s/a‘fngérgsese Smgmarmes can be absorbed at<Zl o 'Zn>t = Z; (’Ii<Zl T JZl o 'Zn>t > (20)

h(r) — Zh(zf/VO)h(r)’ = Z’(a/,r‘))t’ (16)_ with JZ; = lim,_o JZ¢. For generic values of, this
such that the “renormalized” correlations (6) Sat'Sfyimplies]Z,» — ¢*Z:. However, ify satisfies the condition

normalization conditions independently af at some (5) for some integeky, the dissipation current contributes
mesoscopic scale, [18,23]. TheZ factors have the 4 anomaly:

asymptotic behavior Z;, ~ (a/ro)* X and Z, ~ Y . ko

(@/ro)> "% as a/ro — 0, where yo = (2 — d)/2 and JZi=gZi + viengi Zi (21)

zo = 2 are the exponents in the linear regime. Of course, Equations (20) and (21) govern, in particular,
| do not assume perturbative renormalizability (i.e., thathe stationary state of the surface. Fat =1,

the Z factors are analytic functions af). Since the scal- the stationary height distribution is knownp ~

ing dimensions (12) are linear ik, the renormalization exd—(o2/v) [dr(Vh)?]. It equals that of the linear
(16) also removes the singularities from correlations Oftheory, thus restoring the up-down symmethyr) —

the fieldsh*(r) and Z,(r), ensuring a finite limit of the (n), — —h(r) + (h), broken by the nonlinear term in
coefficientsC in (8), (11), and (13) and of the amplitudes (1). The exponenty = 1/2 satisfies (5) withky = 2
(Or); in (9). The substitution (16) also leads to new byt the up-down symmetry forces the anomaly to vanish

coefficients in (1) and (7): (c12 = 0). In higher dimensions, this symmetry is
v(a/ro) ~ Z;7 ' = v* X (a/ro), expected to remain broken in the stationary regime. The
2/x w2yl _ 2 < Nd-2+3y surface has rounded hilltops and steep valleys, just like
o(a/r) ~ Z;Z, o™ X (a/ro) > (A7) the upper side of a cumulus cloud [24]. Hence, the

o Ma,rg) ~ Z7'Z, ' = g". local slope is correlated with the relative height, resulting
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in nonzero odd moment$(Vh)>(r;) [h(r;) — h(rs)]F). [6] In a system of sizé&, the correlation length will eventually
However, this is consistent with Egs. (20) and (21) only saturate to a valu¢ ~ L. Hence, the scaling regime (4)
for odd values ok, where exists only forL > [ry|.
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