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Quantized Scaling of Growing Surfaces
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The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact fi
theoretic methods. From previous numerical results, a few qualitative assumptions are inferred
particular, height correlations should satisfy an operator product expansion and, unlike the correla
in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition
the roughness exponentx and the dynamic exponentz. Hence the exact valuesx  2y5, z  8y5
for two-dimensional andx  2y7, z  12y7 for three-dimensional surfaces are derived. [S0031
9007(98)05491-X]

PACS numbers: 64.60.Ht, 47.27.Eq, 68.35.Fx
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Strongly driven dynamic systems offer some of th
most intriguing realizations of statistical scale invarianc
Hydrodynamic turbulence [1] or the growth of rough su
faces [2] are two classic examples, which turn out to
deeply connected from a theoretical point of view. I
such systems, a stochastic forcehsr, td generates long-
ranged correlations of a fluctuating dynamic field—th
local velocity vsr, td of a fluid or the heighthsr, td
of a surface. As typical differenceshsr1, td 2 hsr2, td
or vsr1, td 2 vsr2, td increasewith the spatial separation
jr1 2 r2j, the scaling properties of these fields are gene
cally more complex than those at a standard critical poi
Indeed, the theoretical understanding of these universa
classes far from equilibrium is still fragmentary.

The subject of this Letter is the simplest nonlinea
model of stochastic surface growth, the famous Karda
Parisi-Zhang equation

≠th  n=2h 1
l

2
s=hd2 1 h (1)

for a d-dimensional surface [3]. The driving termhsr, td,
which describes the random adsorption of molecul
onto the surface, is taken to be Gauss distributed w
correlations over onlymicroscopicdistances,

hsr, tdhsr0, t0d  s2dst 2 t0ddsr 2 r0d . (2)

The relation of this model to the theory of turbulenc
is manifest: Eq. (1) is formally equivalent to Burger
equation

≠tv 1 sv ? =dv  n=2v 1 =h (3)

for the driven dynamics of a vortex-free velocity field
vsr, td  =hsr, td (with l  21) [4]. In a fluid, how-
ever, the driving force is correlated overmacroscopicspa-
tial distances. This leads to important differences in t
scaling behavior [5], which are discussed below.

A surface growing from a flat initial statehsr, 0d  0
develops height correlations with an increasing correlati
length jt , t1yz , which defines the dynamic exponentz
[6]. A self-similar growth pattern, characterized, e.g., b
0031-9007y98y80(11)y2366(4)$15.00
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the height difference moments

kfhsr1d 2 hsr2dgkl , jr12j
2kx , (4)

(with r12 ; r1 2 r2), emerges on mesoscopic scalesã ø

jr12j ø jt . For jr12j & ã, the dissipation termn=2h in
Eq. (1) breaks the asymptotic scale invariance. In th
scaling regime (4), the height difference moments becom
stationary, i.e., independent of the correlation lengthjt .
They are characterized by a single critical indexx $

0, the roughness exponentof the surface. The scaling
relationx 1 z  2 follows from the Galilei invariance of
Eq. (1) [7]. Ford  1, one can show Eq. (4) to be valid
with the roughness exponentx  1y2, equal to that of the
linear theorysl  0d [2]. In higher dimensions, however,
little is known analytically. Ford . 2, the rough state of
the surface exists only if the rescaled driving amplitud
l

2
0 ; s2l2yn3 exceeds a finite threshold valuel2

c [8].
Less rigorous theoretical arguments predict an upp
critical dimensiond. # 4 beyond which Kardar-Parisi-
Zhang surfaces are only logarithmically roughsx  0d
even in the strong-coupling regimel2

0 . l2
c [9]. The

numerical results presently available are consistent wi
Eq. (4). Extensive simulations yieldx ø 0.39 for d  2,
x ø 0.31 for d  3, and smaller positive values in higher
dimensions, which are less reliable [10].

It has remained a challenge for theorists to calculate th
rough asymptotic state of Kardar-Parisi-Zhang surface
for d . 1 exactly or in a controlled approximation. In
particular, standard perturbative renormalization about th
linear theory fails to produce a fixed point belonging
to this regime [11]—a notorious difficulty familiar from
the theory of turbulence. In this Letter, a quite differen
approach is taken. Guided by numerical and experimen
results, I make a fewqualitativeassumptions, namely, the
existence of an operator product expansion (8) and of
stationary state (10) that is directed (i.e., it has no up
down symmetry). These assumptions turn out to constra
severely the possible solutions of Eq. (1). In particula
they naturally lead to a quantization condition for the
© 1998 The American Physical Society
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k0 1 2
, (5)

wherek0 is an odd integer ford $ 2. Comparing with
the above numerical estimates [12] and using the relati
x 1 z  2, then gives the main result of this Letter:
the exact valuesx  2y5, z  8y5 for d  2 and x 
2y7, z  12y7 for d  3.

The fundamental observables describing the equal-tim
surface configurations are the (connected) correlations

khsr1d · · · hsrndlt 
Z

D hhsr1d · · · hsrndPt 2 · · · , (6)

(the dots denoting the disconnected parts). The heig
probability distribution Ptshhjd obeys the functional
Fokker-Planck equation

≠tPt 

µZ
dr

∑
s2 d2

dhsrd2
2

d

dhsrd
Jsrd

∏
Pt

∂
, (7)

whereJsrd ; n=2hsrd 1 sly2d s=hd2srd is the determin-
istic part of the current.

In the scaling regime sã ø jrij j ø jt for
i, j  1, . . . , nd, the correlation functions (6) will
generically become singular as some of the points a
proach each other. Ford , d., these singularities are
assumed to follow from anoperator product expansion

hsr1d · · · hsrkd 
X
O

jr12j
2kxh1xO

3 CO
k

√
r13

jr12j
, . . . ,

r1k

jr12j

!
O sr1d . (8)

This identity is nothing but a consistency relation fo
the height correlations. Inserted in (6), it expresses a
n-point function as a sum ofsn 2 k 1 1d-point func-
tions in the limit jrij j ø jrilj ø jt (i, j  1, . . . , k and
l  k 1 1, . . . , n). The notion of an operator product
expansion is familiar in field theory [13] and has re
cently been applied successfully to nonequilibrium sy
tems [14,15]. Of course, its status is still heuristic in tha
context. The sum on the right-hand side runs over all lo
cal scaling fieldsO srd. Each term contains a dimension-
less scaling functionCO

k (a simple number fork  2) and
a power ofjr12j given by the scaling dimensionsxO and
xh  2x (such that the overall dimension equals that o
the left-hand side). The fieldOk with the smallest dimen-
sion,xk, determines, in particular, the asymptotic behavio
of thek-point functions asjt ! `,

khsr1d · · · hsrkdlt , kOklt , j
2xk
t . (9)

The amplitudeskOklt  kOksrdlt diverge with jt, i.e.,
xk , 0 [16]. They measure theglobal roughness, which
increases as the surface develops higher mountains
deeper valleys.Local surface properties should, however
behave quite differently. For example, the gradient corr
lation functions are assumed to have a finite limit

lim
jt!`

k=hsr1d · · · =hsrndlt ; k=hsr1d · · · =hsrndl . (10)
on
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By writing hsrid 2 hsr0
id 

Rr0
i

ri
ds ? =hssd, the same

property follows for the height difference correlation
functions k

Qn
i1fhsrid 2 hsr0

idglt, in particular, for the
moments (4). This implies a feature familiar from
simulations: one cannot recognize the value ofjt from
snapshots of the surface in a region much smaller thanjt .

By differentiating (8), one obtains an operator produc
expansion for the gradient fieldv ; =h of the form

vsr1d · · · vsrkd 
X
O

jr12j
2kxv 1xO

3 C̃O
k

√
r13

jr12j
, . . . ,

r1k

jr12j

!
O sr1d , (11)

with new scaling functionsC̃O
k and the dimension

xv  2x 1 1. [Both sides of (11) are tensors of rank
k whose indices are suppressed.] The fieldsO on the
right-hand side govern the time-dependent amplitude
kvsr1d · · · vsrkdlt , kO lt , j

2xO

t in analogy to (9).
Hence, the stationarity condition (10) allows in (11)
only fields O with a non-negativescaling dimension
xO , such as1 (the identity field),s=hd2srd, etc. This in
turn restricts the possible terms in (8): (a)singular terms
involving fields O srd with xO $ 0; (b) regular terms,
where the coefficientjr12j

2kxh1xO CO
k is a tensor of rank

N in the differencesr1i si  2, . . . , kd. Such terms do
not violate (10) since they have a vanishing coefficien
C̃O

k in (11) for N , k. They can readily be associated
with composite fields of dimensions

xk,N  2kx 1 N . (12)

The leadingsN  0d term involves the (normal-ordered)
field Oksrd  hksrd and governs the asymptotic singular-
ity (9); the higher terms correspond to fields withk factors
hsrd andN powers of=.

It is useful to introduce the (normal-ordered) vertex
fieldsZqsrd ; expfqhsrdg, which are the generating func-
tions of the fieldshksrd. Equation (8) is then consistent
with the operator product expansion

Zq1 sr1dZq2sr2d  exp

√X
k,l

C1
k,lw

k
1 wl

2

!
Zq11q2 sr1d

1 OsCO fi1
k,l d , (13)

where CO
k,l ; CO

k1ls0, . . . , 0, r12yjr12j, . . . , r12yjr12jd with
the first k arguments equal to 0 andwi ; qi jr12j

x

[17,18]. Subleading singular terms (with positive-
dimensional fieldsO ) and regular terms (with fields
containing height gradients) are omitted. The verte
n-point functions kZq1sr1d · · · Zqn

srndlt behave asymp-
totically as expsjx

t
Pn

i1 qid. If
P

i qi  0, they have a
finite limit kZq1 sr1d · · · Z2q1···2qn21 srndl. Since these are
precisely the vertex correlators that generate the heig
difference correlation functions and since (13) is analyti
in theqi , this leads back to the stationarity condition (10)

The operator product expansion (13) with the linea
dimensions (12) is at the heart of the field theory fo
2367
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Kardar-Parisi-Zhang systems. It is instructive to compa
this theory with models of turbulence. Burgers equatio
(3) with force correlations

hsr, tdhsr 0, t0d  s2R2dst 2 t0dDsjr 2 r0jyRd (14)
over large distancesR develops multiscaling: for ex-
ample, the longitudinal velocity difference moments

kfyksr1d 2 yksr2dgkl , jr12j
2kxv 1x̃k R2x̃k (15)

have ak-dependent singular dependence onjr12j andR in
the inertial scaling regimẽa ø jr12j ø R [5,19]. Simi-
lar multiscaling is present in Navier-Stokes turbulenc
Kolmogorov’s famous argument predicts the exact sc
ing dimension of the velocity field,xv  21y3, from di-
mensional analysis [20]. This determines the scaling
the third moment in (15) sincẽx3  0. The higher ex-
ponentsx̃4, x̃5, . . . , 0 cannot be obtained from dimen-
sional analysis. Assuming the existence of an opera
product expansion (11), the term (15) is generated
the lowest-dimensional fieldÕk with a singular coeffi-
cient [21]. Multiscaling thus implies the existence o
a (presumably infinite) number of composite fields wit
anomalous negative dimensions. For the velocity vert
fields expfqysrdg of Burgers turbulence in one dimension
Polyakov has conjectured an operator product expans
similar to (13) and consistent with multiscaling [14]. Th
distinguishing feature of Kardar-Parisi-Zhang surfaces
the absence of multiscaling [22]. Notice that the resultin
properties (12) and (13) have been derived solely from t
assumptions (8) and (10) without using Eq. (1) explicitly

To establish the consistency of the operator product e
pansion with the underlying dynamic equation, one has
construct correlation functions that remain finite in the co
tinuum limit ã ! 0. With the probability distribution (7),
the height correlations (6) develop singularities dictated
their normalization in the linear regimesjrijj ø ãd. The
existence of a well-defined asymptotic scaling regime f
jrij j ¿ a implies that these singularities can be absorb
by a change of variables

hsrd ! Zhsãyr0dhsrd, t ! Ztsãyr0dt , (16)
such that the “renormalized” correlations (6) satisf
normalization conditions independently of̃a at some
mesoscopic scaler0 [18,23]. The Z factors have the
asymptotic behavior Zh , sãyr0dx2x0 and Zt ,
sãyr0dz2z0 as ãyr0 ! 0, where x0  s2 2 ddy2 and
z0  2 are the exponents in the linear regime. Of cours
I do not assume perturbative renormalizability (i.e., th
theZ factors are analytic functions ofl

2
0). Since the scal-

ing dimensions (12) are linear ink, the renormalization
(16) also removes the singularities from correlations
the fieldshksrd and Zqsrd, ensuring a finite limit of the
coefficientsC in (8), (11), and (13) and of the amplitude
kOklt in (9). The substitution (16) also leads to new
coefficients in (1) and (7):

nsãyr0d , Z21
t . np 3 sãyr0dx ,

s2sãyr0d , Z 2
hZ21

t . sp2 3 sãyr0dd2213x , (17)

r
x0

0 lsã, r0d , Z21
t Z21

h . gp.
2368
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Galilei invariance is expressed by the asymptotic scale i
variance of the dimensionless couplingr

x0

0 l, while the
other coefficients become irrelevant asãyr0 ! 0. How-
ever, as explained in Ref. [14] for Burgers turbulence, th
equation of motion for the renormalized correlation func
tions is quite subtle due to anomalies dictated by the ope
tor product expansion. To exhibit the anomalies for th
height correlations, I introduce the smeared vertex field
Za

q srd ; expfq
R

dr0dasr 2 r0dhsr0dg [where dasrd is a
normalized function with support in the spherejrj , a]
and the abbreviationsZa

i ; Za
qi

srid, Zi ; Zqi
sridZ. Us-

ing (6), (7), and (17), it is straightforward to derive

≠tkZa
1 · · · Za

n lt 
nX

i1

qikZa
1 · · · J Za

i · · · Za
n lt , (18)

where J Za
i ; fqis

2das0d 1 JsridgZa
i . The singularity

structure of the current is determined by (8) and (17):

J Za
i  gpẐi 1 a2x22

√X̀
k1

ckakxqk
i

!
Zi 1 Osax d ,

(19)

for a, ã ! 0 with ayã kept constant. The field̂Zqsrd ;
s=hd2Zqsrd denotes the finite part of the operator prod
uct s=hd2srdZa

q srd for a ! 0, and Ẑi ; Ẑqi srid. The fi-
nite dissipation terms=2hdZqi

srid becomes irrelevant in
this limit since n , ax . The singular part of (19) is a
power series inqi with asymptotically constant coefficients
c1  sp2addas0d 1 npc1,1 1 gpc2,1 and ck  npc1,k 1

gpc2,k for k  2, 3, . . . . The terms of orderas21kdx22 orig-
inate from operator products=2hsridhsr0

1d · · · hsr0
kd , 1

and s=hd2sridhsr0
1d · · · hsr0

kd , 1; their respective coeffi-
cients c1,k and c2,k are integrals over the scaling func-
tions in (8) and the regularizing functionsdqsri 2 r0

jd. Of
course, divergent terms have to cancel so that Eq. (18) h
a finite continuum limit

≠tkZ1 · · · Znlt 
nX

i1

qikZ1 · · · J Zi · · · Znlt , (20)

with J Zi  lima!0 J Za
i . For generic values ofx, this

impliesJ Zi  gpẐi . However, ifx satisfies the condition
(5) for some integerk0, the dissipation current contributes
an anomaly:

J Zi  gpẐi 1 npc1,k0 q
k0
i Zi . (21)

Equations (20) and (21) govern, in particular
the stationary state of the surface. Ford  1,
the stationary height distribution is known,P ,
expf2ss2ynd

R
drs=hd2g. It equals that of the linear

theory, thus restoring the up-down symmetryhsrd 2

khlt ! 2hsrd 1 khlt broken by the nonlinear term in
(1). The exponentx  1y2 satisfies (5) withk0  2
but the up-down symmetry forces the anomaly to vanis
sc1,2  0d. In higher dimensions, this symmetry is
expected to remain broken in the stationary regime. Th
surface has rounded hilltops and steep valleys, just li
the upper side of a cumulus cloud [24]. Hence, th
local slope is correlated with the relative height, resultin
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in nonzero odd momentsks=hd2sr1d fhsr1d 2 hsr2dgkl.
However, this is consistent with Eqs. (20) and (21) onl
for odd values ofk0, where

kẐqsr1dZ2qsr2dl 2 kẐ2qsr1dZqsr2dl

 2snpygpdc1,k0 q
k0 kZqsr1dZ2qsr2dl , (22)

and, hence, for odd values ofk $ k0,

ks=hd2sr1d fhsr1d 2 hsr2dgkl

 2snpygpdc1,k0 kfhsr1d 2 hsr2dgk2k0l . (23)

The directedness of the stationary growth pattern thu
requires a nonzero anomalyc1,k0 with an odd integerk0.
The roughness exponent is then determined by Eq. (5
The valuesk0  3 for d  2 and k0  5 for d  3
give the exponents quoted above, in reasonable agreem
with the numerical results [10,12].

In summary, the scaling of growing surfaces has bee
determined by requiring consistency of the effective large
distance field theory subject to a few phenomenologic
constraints. The Galilei symmetry of the dynamic equa
tion conspires with these constraints to allow only dis
crete values of the roughness exponent in two and thr
dimensions. The underlying solutions of Eq. (1) are dis
tinguished by a dynamical anomaly in the strong-couplin
regime: The dissipation term contributes a finite part t
the effective equation of motion (20) despite being for
mally irrelevant. The anomaly manifests itself in identi-
ties such as (23) between stationary correlation function
The quantization rule (5) is analogous to the exact Ko
mogorov scaling of the third velocity difference momen
in Navier-Stokes turbulence. The deeper reason for th
rigidity is yet to be explained.

I am grateful to D. Wolf for useful discussions.
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