Lässig and Kinzelbach Reply: Kar

The scales \(r_0 \) and \(t_0 \) characterize the onset of roughness [4]. We write \(w^2(t) = w^2_0(t)W[r_0(t)/L, r_0(t)] \) and \(r^2(t) = r^2_0(t)R[r_0(t)/L, r_0(t)] \). The asymptotic scaling characterized by Eqs. (1)–(3) emerges only if all arguments of the crossover functions \(W \) and \(R \) are small. Numerical simulations in low dimensions show clear evidence of a scaling regime (of size \(L/r_0 \sim 10^d \) in \(d = 1 \) for the data of Ref. [5] at \(L = 3000 \)). With increasing dimension, however, the available system sizes decrease and for the solid-on-solid model, \(r_0 \) increases. The data of Refs. [2] and [3] for \(d = 4 \) have a “scaling regime” of less than half a decade \((L/r_0 \sim 10^{0.4} \) at \(L = 100 \) [2,6] and \(r_{\text{max}}/r_0 \sim 10^{0.5} \) even if \(r_0 \sim 1 \) at low temperatures [3]). For \(d > 4 \) [2], not even the onset of scaling is reached \((L < r_0) \). Hence, these data are insensitive to the alternative of Eqs. (2) and (3).

The leading lattice correction to scaling for the solid-on-solid model can be obtained from a continuum equation

\[
\partial_t h = \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta + \mu \sin h,
\]

with an extra term that breaks the invariance under translations of \(h \). For \(d \approx d_\ast \), where \(h(r, t) \) has logarithmic corrections, we expect the vertex operators \(\exp(\pm i h(r, t)) \) to become scaling fields, just as for Gaussian surfaces \((\lambda = 0) \) in \(d = 2 \). We denote by \(y \) the scaling dimension of the conjugate coupling \(\mu \). As long as \(y < 0 \) (which is the case for the model of Ref. [2]), we then have a power-law correction \(W \sim 1 + O((t/t_0)^{y/2}) \) for \(t_0 \leq t \ll t_0(L/r_0)^2 \) to the logarithmic scaling of Eq. (2) which may indeed explain the upward curvature in the double-logarithmic plot of \(w^2(t) \) in [2]. We stress again that these lattice effects persist in the limit \(L \to \infty \), unlike the initial-time oscillations of \(w^2(t) \) [2]. The periodic driving force may even turn relevant (i.e., \(y > 0 \)) for different model parameters. In that case, the lattice model has a roughening transition at zero temperature, which does not exist for the continuum system at \(\mu = 0 \).

We thank H. Kallabis and D. Wolf for useful remarks.

Michael Lässig\(^1\) and Harald Kinzelbach\(^2\)
\(^1\)MPI für Kolloid- und Grenzflächenforschung
Kantstrasse 55
14513 Teltow, Germany
\(^2\)Universität Heidelberg, Institut für theoretische Physik
Philosophenweg 19
69120 Heidelberg, Germany

Received 11 April 1997

[\text{S0031-9007(97)05067-9}]
PACS numbers: 64.60.Ht, 05.70.Ln, 68.35.Fx

[4] The crossover from lattice-dominated to rough growth has recently been studied in detail for a related model. See H. Kallabis \textit{et al.}, Int. J. Mod. Phys. B (to be published).
[6] For \(w^2(t) \), scaling sets in at \(t_0 \approx 10^2 \) [given by \(w^2(t_0) = 1 \)] and the finite-size saturation is at \(t_c \approx 10^{3.4} \) [satisfying \(r_0(t_c) \approx L \)]. Then \(L/r_0 \sim (t_c/t_0)^{1/2} \sim 10^{0.4} \).