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Delocalization transitions of semiflexible manifolds
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Semiflexible manifolds such as fluid membranes or semiflexible polymers undergo delocalization transitions
if they are subject to attractive interactions. We study manifolds with short-ranged interactions by field-
theoretic methods based on the operator product expansion of local interaction fields. We apply this approach
to manifolds in a random potential. Randomness is always relevant for fluid membranes, while for semiflexible
polymers there is a first-order transition to the strong coupling regime at a finite temperature.
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I. INTRODUCTION

Low dimensional manifolds play an important role in
variety of different contexts, e.g., as soft matter objects o
domain boundaries in condensed matter systems. They
perform large shape fluctuations driven by entropy@1#. Ac-
cording to their fluctuations they can be divided into tw
classes.Flexible manifolds, such as interfaces, polymeriz
membranes, and long polymers, fluctuate under atension
controlling their area or length. The other class is govern
by bending energy; i.e., regions of highcurvatureare penal-
ized. Examples are polymers not much longer than their
sistence length, like actin or DNA, and fluid membran
These objects are stiffer, and we call themsemiflexiblemani-
folds.

Whenever, a fluctuating manifold is attracted toward so
other ‘‘defect’’ manifold, there is a competition betwee
freely fluctuating configurations favored by entropy and co
figurations bound to the defect, which are preferred by
ergy. This competition can lead to a phase transition, the
called delocalization or unbinding transition. It is often
second order, that is, the amplitude of the fluctuations
verges continuously as the transition point is approac
from within the bound phase. This leads to a scaling reg
close to the transition whose universal characteristics ca
described by a continuum field theory. Well-known examp
of delocalization are wetting phenomena@2#. For interfaces
and polymers, these transitions have been widely studied@3#.
In the case of polymers, even the generalized problem oN
mutually attracting objects can be treated. Analytically co
tinued toN50, this describes a directed polymer in a ra
dom medium@4#, which in turn is related to theories of sto
chastic surface growth@5#. The delocalization transition the
corresponds to a roughening transition between a smooth
a rough growth mode.

For flexible manifolds, there is a well-established fiel
theoretical framework to understand these phenomena
unified footing@6–9#. The goal of this communication is t
develop a corresponding field-theoretical description
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semiflexiblemanifolds with local interactions. For semiflex
ible manifolds, we find that it is important to take theirori-
entation into account in addition to their position in spac
This leads us to the introduction of an orientation depend
interaction operator, which can be shown to fulfill an ope
tor algebra. This is a well-known concept in field theory~see,
e.g., Ref.@10#!, which has been applied extensively in th
case of flexible manifolds before@11#. Here, it allows us to
write down renormalization group equations for the gene
local interactions of semiflexible manifolds. This leads
results for the delocalization of semiflexible polymers a
fluid membranes. Most importantly, the bound state o
semiflexible manifold turns out to be maintained by cont
interactions at fixed orientation, while the bound state o
flexible manifold involves orientation independent intera
tions as it is depicted in the case of polymers in Fig. 1.

Our one-loop results for the critical behavior at the u
binding transitions are in agreement with previous resu
obtained by approximate renormalization methods@12,13#
and by approaches specific to polymers@14–16#. They are
exact for polymers and can be improved systematically
higher dimensional manifolds.

Furthermore, they can be applied to a semiflexible ma

er-
FIG. 1. ~a! A flexible and ~b! a semiflexible polymer param

etrized by their shape functionsr (t) bound to an attractive defec
indicated by the dashed lines. The unbound segments join the d
at arbitrary orientation and at fixed orientation dr /dt50,
respectively.
©2002 The American Physical Society02-1



al

nt
e
ib
de

t
he
th

tly
ds
th
a

a
e
n

f a
in

ld-

ta

c

a

-

i-
to

i-

is-

ng
.
ir

ult
x-
in

d

,
il-
in

-
n-
-
two
ta-

ld
nt.

ter-

of
ese

ing
ill
ect
e

all
r
not
t to
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fold in a quenched random potential. In the replica form
ism, this is equivalent toN interacting semiflexible manifolds
in the limit of vanishingN. For fluid membranes, any amou
of disorder is relevant and leads to a strong coupling phas
can be easily checked by power counting. For semiflex
polymers, however, we find that small amounts of disor
are irrelevant~unlike for their flexible counterparts!. There is
now a first-order transition to the strong coupling phase a
finite amount of disorder. A quantitative description of t
disordered strong coupling phase is, however, beyond
means of perturbation theory.

The paper is organized as follows: In Sec. II we shor
review the field-theoretical treatment of flexible manifol
and introduce the necessary notation. Section III treats
case of unbinding transitions in the presence of a hard-w
constraint, which turns out to be the more transparent c
for setting up our field-theoretical treatment. In Sec. IV w
then discuss the more difficult case of unbinding transitio
without a wall. Section V is dedicated to the behavior o
single semiflexible manifold in a random medium and
Sec. VI we summarize our results.

II. SCALING ANALYSIS

In order to prepare for the development of a fie
theoretical description ofsemiflexiblemanifolds with short-
ranged interactions we want to first discuss briefly the es
lished field theory forflexible manifolds. Here, we also
introduce the notation used later and make some simple s
ing analysis.

The configurations of manifolds are described by
d-dimensional displacement fieldr (t), which depends on a
D-dimensional internal variablet. The energy of a configu
ration r (t) is given by a continuum Hamiltonian of the form

H5E F1

2
~¹kr !21V~r ,¹r !GdDt, ~1!

where

~¹kr !2[ (
a51

D

(
i 51

d

@]kr i~ t !/]ta
k #2 ~2!

is the leading tension (k51) or curvature (k52) energy in a
small-gradient expansion. The casek51 corresponds to
flexible manifolds and is physically realized, e.g., for d
rected polymers and flux lines in a type II superconduc
(D51, d52) @17,18#, steps on a tilted crystal surface (D
51, d51), and domain walls in a ferromagnet (D52, d
51). The potentialV describes the interaction of the man
fold with an external object or boundary atr50, or the mu-
tual interaction between two manifolds with relative d
placementr (t).

Short-ranged interactions are interactions with a ra
much shorter than typical displacements of the manifold
they are of definite sign~i.e., repulsive or attractive over the
entire range!, they can be represented asV@r (t)#5gF(t) in
terms of the localcontact field
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F~ t ![d@r ~ t !#. ~3!

The scaling dimension of this field,

xF5dx ~4!

is given in terms of the roughness exponentx, which in turn
can be determined by simple power counting with the res
x5(22D)/2 for k51. This interaction has been treated e
haustively in a well-established perturbative framework
D51 @6,7# and in generalD @8,9#. This has also been applie
extensively to the problem of self-avoiding manifolds@19–
23#. More complicated short-ranged@24# and long-ranged
@25# interactions have been studied as well.

The case ofsemiflexiblemanifolds with local interactions
which is the focus of this paper, is described by the Ham
tonian ~1! with k52. Physically interesting cases are aga
polymers (D51, d51,2) @14–16# and, in particular, fluid
membranes (D52, d51) @26#. Since a semiflexible mani
fold has a locally well-defined orientation, we have to co
sider interactionsV@r (t),¹r (t)# that depend both on the dis
placement and on the orientation. Thus, there are now
important scaling fields: Local contacts at arbitrary orien
tion are still represented by the fieldF(t) given by Eq.~3!,
which has dimension

xF5dx ~5!

with

x5
42D

2
. ~6!

As it will turn out, however, contacts for which the manifo
is oriented parallel to the defect are especially importa
Such contacts are described by the field

V~ t ![d@r ~ t !#d@¹r ~ t !#, ~7!

which has a different scaling dimension. This is again de
mined by power counting,

xV5dx1dD~x21!. ~8!

In what follows we will argue that the unbinding transition
semiflexible manifolds can be described in terms of th
two interaction fields.

III. UNBINDING IN THE PRESENCE OF A WALL

In order to understand the basic mechanism underly
the unbinding transition of semiflexible manifolds we w
first study the simpler case in which the manifold is subj
to a hard wall constraint, i.e., the components of the shap
function r (t) are restricted to positive values. Such a w
constraint is natural ind51 for a fluid membrane at a plana
system boundary, or for a pair of membranes that can
intersect. We generalize this natural hard wall constrain
arbitrary d in such a way that the Hamiltonian~1! remains
factorizable.

To this end, we study the manifold displacement fieldr (t)
2-2
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DELOCALIZATION TRANSITIONS OF SEMIFLEXIBLE . . . PHYSICAL REVIEW E 65 061502
in a hypercube of longitudinal extension 0<ta<T (a
51, . . . ,D) and of transversal extension 0<r i<R ( i
51, . . . ,d). The hypercube geometry implies that the fr
system, i.e., the manifold without any short-range inter
tions, separates intod independent free manifolds for each
the components ofr .

By the definition of the roughness exponentx, regions in
t space of sizeRD/x are independent from each other. Thu
for T@R1/x the free energy becomes extensive and, for
mensional reasons, takes the form

F;TDR2D/x. ~9!

In what follows we will always assume that we are in th
regime. The perturbation series for the free energy den
f [F/TD then becomes invariant under translations int.

A. Interaction operator

In the presence of the walls, the probability dens
r(r 8)[^d@r (t)2r 8#& is forced to vanish at the boundary o
the hypercube, in particular along the ‘‘edge’’r50. The den-
sity then takes the asymptotic scaling form

r~r !;~r 1•••r d!uR2d(11u) for ur u!R, ~10!

with an exponentu.0 expressing long-ranged suppressi
of the configurations close to the boundary.

Thus, short-ranged interactions with the manifoldr50
now have to be described in terms of a local field who
expectation values remain finite even in the presence
wall. To this end, a direction of approaching the ‘‘edge’’
r50 has to be chosen and the local operator at a point
proaching the edge has to be multiplied by the appropr
power of the distance from the edge according to Eq.~10! to
compensate for the diminishing density at the wall. While
specific choice of the direction of approach only affects
irrelevant numerical prefactor of the operator, we use
‘‘diagonal’’ ( r , . . . ,r ) and define

V~ t ![ lim
r→0

r 2du)
i 51

d

d@r i~ t !2r #. ~11!

It is important to notice that due to the constraint, t
manifold always has the fixed orientation¹r50 in the vi-
cinity of r50. Hence, we have used the same symbolV as
for the field Eq.~7! of the unconstrained system. The corr
lation functions

^V~ t !&;R2xV /x, ~12!

^V~ t !V~ t8!&;ut2t8u2xV^V~ t !&1•••~ ut2t8ux!R!
~13!

define the scaling dimensionxV , which will be different
from its value given in Eq.~8! in the absence of a wall. In th
constrained system, we cannot do simple power counting
more in order to obtain this scaling dimension. However,
can obtain its value by noting that the density Eq.~12! is
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linked to the pressure of the system by a wall theorem. T
applies independently to thed components ofr and yields
together with Eq.~9!,

^V&;~] f /]R!d;R2d(11D/x). ~14!

This immediately determines the exponent value@27#

xV5d~x1D !, ~15!

which is in agreement with a conjecture from function
renormalization@28# for generalD and a direct calculation
@29# for D51.

B. Perturbation theory

The interaction partd f (h,R)[ f (h,R)2 f (0,R) of the
free energy density of the system withV@r (t),¹r (t)#
5hV(t) can be formally expanded as a power series

d f 5h^V&1
h2

2 E dDt^V~0!V~ t !&c1O~h3! ~16!

containing the connected correlation functions

^V~0!V~ t !&c[^V~0!V~ t !&2^V&2, ~17!

etc., taken ath50. Since all the integrals in this perturbatio
series diverge, it has to be regularized. We will choose
this purpose a dimensional regularization scheme. To
end, we have to identify the dimension in which the intera
tion V is marginal, i.e., wherexV5D. By Eq. ~15!, this
happens on a wholeline in the (D,d) plane. This line is
given by

d* ~D !5
2D

41D
. ~18!

Thus, the divergences in the perturbation series~16! can be
written as poles in the distance

e[D2xV5D2d~21D/2! ~19!

from the line of marginality~18!. As discussed in Ref.@19# in
the case of flexible manifolds, these poles can be regular
aroundany pointof this line.

The singularity of the two-point function~17! can be de-
termined on physical grounds. The presence of the wall
the stiffness of the manifold implies that the configuratio
of the manifold that contribute to an expectation value co
taining a productV(t)V(t8) are those that are closeand
parallel to the wall at positionst andt8. As t andt8 approach
each other being close and parallel to the wall at positiot
implies being close and parallel to the wall at positiont8 as
well. Thus, the product of the two operators can be repla
by simply one of them times a characteristic divergencet
and t8 are close together. That suggests the operator pro
expansion

V~ t !V~ t8!;ut2t8u2xVV~ t !1•••. ~20!
2-3
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RALF BUNDSCHUH AND MICHAEL LÄSSIG PHYSICAL REVIEW E65 061502
The exponent of the divergence has to be the scaling dim
sion xV of the operatorV for dimensional reasons. The un
known numerical prefactor of this operator product exp
sion can always be absorbed in the definition of the oper
V.

The singularity in the operator product expansion de
mines in a standard way@11# the one-loop renormalization
group equation of the dimensionless coupling constant

v[hRe/x ~21!

associated with the operatorV. In an appropriate scheme
this takes the form

v̇5ev2v21O~v3!. ~22!

The unstable fixed pointv* 5e1O(e2) represents the un
binding transition. Linearizing Eq.~22! around the fix point
valuev* yields v̇5e* (v2v* )1••• with

e* 52e1O~e2!. ~23!

This immediately determines the scaling of the transve
localization lengthj[^r2&1/2,

j;~v* 2v !2x/e* ~v,v* !, ~24!

within the bound phase and the scaling dimension

xV* 5D2e* 52D2xV1O~e2!, ~25!

which takes the place ofxV in the correlations~12! and~13!
at the transition point. These relations describe the scalin
a bound state maintained by contact forces at fixed orie
tion. Typical configurations look similar to those of Fig. 1~b!
but are confined to the regionr i.0.

C. Special cases

The most interesting application of Eqs.~24! and ~25! is
the delocalization transition of a fluid membrane from a h
wall (D52, d51), where the one-loop result leads toj
;(Tc2T)21 ~since the effective coupling is temperature d
pendent! andxV* 51. These predictions are in agreement w
those from functional renormalization@12#. They also fit
very well the numerical values of Ref.@13#, which implies
that higher-order corrections must be small. The system w
wall constraint ath50 can be regarded as an unconstrain
system in the limit of a large repulsive interaction. Co
versely, the scaling at the transition point of the constrain
system may be related to that of the free unconstrained
tem. Indeed, the one-loop valuexV* from Eq. ~25! equals the
dimensionxV51 of the free field Eq.~7!, indicating that the
sum of the higher-order corrections in Eqs.~22! and ~25!
may vanish altogether at the specific point (D52, d51).

For the case of polymers (D51) it is easy to show tha
the multipoint correlations entering Eq.~16! factorize after
‘‘time ordering’’ the interaction points,

^V~ t1!•••V~ tn!&5^V~ t1!&R~ t22t1!•••R~ tn2tn21!,
~26!
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for t1,•••,tn . The factorsR(t)[^V(0)V(t)&/^V& can
be interpreted as ‘‘return’’ probabilities to the wall. Equatio
~26! provides the same factorization structure for the high
order correlation functions as in the casek51. Thus, the
perturbation expansion~16! becomes formally identical to
the casek51. Therefore, studies of the perturbation expa
sion in the latter case@8,11# imply that also the polymer
perturbation series~16! studied here isone-loop renormaliz-
able; i.e., the connected two-point function̂V(0)V(t)&c
generates the only primitive singularity, and there are
higher-order terms in Eq.~22!. The implications of Eqs.~24!
and~25! on general semiflexible polymers are discussed
verified numerically in Ref.@30#. Here we have given auni-
fied derivationof these relations, stressing the theoretic
analogies with their known counterparts fork51 @31,11#.

IV. UNBINDING WITHOUT A WALL

We now turn to systems without the wall constraint a
restrict ourselves toD51, namely mutually interacting
semiflexible polymers. In the absence of a wall constra
we have to study generic contact interactions

V~ t !5gF~ t !1hV~ t ! ~27!

involving the fieldsF andV as defined in Eqs.~3! and~7!.
The perturbation series then contains connected correlat
^F(t1)•••F(tn)V(t18)•••V(tm8 )&c in the free theory (g5h
50). In D51 the configurations of the polymer beforet and
after t become independent from each other as long as
position r and slopev at t are fixed. Thus, inD51 all the
correlation functions can be expressed in terms of the pro
gatorGDt(r 8,v8ur ,v) of the free theory, i.e., in terms of th
probability to find the semiflexible polymer at positionr 8
with slopev8 if it was at positionr with slopev a longitu-
dinal distanceDt before. This is a particularity of the one
dimensional case. ForDÞ1 ~e.g., for membranes withD
52) it is not possible any more to express the correlat
functions in terms of the two-point function alone. Thus, t
derivation of an operator algebra analogous to our result E
~30!–~32! remains a difficult outstanding problem in the ca
DÞ1.

The propagatorGDt(r 8,v8ur ,v) can be calculated exactl
@16#. It is given by

GDt~r 8,v8ur ,v !5S A3

pDt2D d

expF2
6

Dt
SDt~r 8,v8ur ,v !G ,

~28!

where

SDt~r 8,v8ur ,v !5~r 82r2vDt !21
Dt2

3
~v82v !2

2Dt~r 82r2vDt !~v82v ! ~29!

is the action of the minimal energy path.
From this propagator, a closed operator expansion alge

for the two operatorsF andV can be derived. To this end
we have to calculate correlations involving the two operat
2-4
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DELOCALIZATION TRANSITIONS OF SEMIFLEXIBLE . . . PHYSICAL REVIEW E 65 061502
in question. Let us start with the expectation val
^•••F(t)F(t8)•••& where we always assume some suita
chosen infrared cutoff. We are interested in the limitt8→t
from above. Due to the Markov property governingD51,
we can subsume the contributions of all operators with
argument less thant into the expectation valueGt

,(r ,v) sub-
ject to the condition that the polymer is at positionr with
slope v at ‘‘time’’ t and the contributions of all operator
with an argument larger thant8 into the corresponding ex
pectation valueGt8

.(r 8,v8). Then, we get

^•••F~ t !F~ t8!•••&5E dDrE dDvE dDr 8E dDv8,

Gt
,~r ,v !d~r !Gt82t~r 8,v8ur ,v !d~r 8!Gt8

.
~r 8,v8!

5E dDvE dDv8Gt
,~0,v !Gt82t~0,v8u0,v !Gt8

.
~0,v8!.

Using the explicit form~28! of the propagator, we find

Gt82t~0,v8u0,v !5S A3

p~ t82t !2D d

expF2
2

t82t
~v82v !2

2
6

t82t
vv8G

5
1

~ t82t !d S A3

p~ t82t !
D d

expF2
1

t82t
~vv8!T

3S 2 1

1 2D S v

v8
D G

'
1

~ t82t !d
d~v !d~v8!

in the limit t8→t. This finally yields

^•••F~ t !F~ t8!•••&'Gt
,~0,0!~ t82t !2dGt

.~0,0!

5~ t82t !2d^•••V~ t !•••&.

Similar calculations using

Gt82t~0,0u0,v !

5S 3

2p D d/2S 1

t82t
D (3/2)dS 2

p~ t82t !
D d/2

e[ 2(2/t82t)v2]

and

Gt82t~0,0u0,0!5SA3

p D dS 1

t82t
D 2d

yield the complete operator product expansion

F~ t !F~ t8!5ut2t8u2dV~ t !1•••, ~30!
06150
n

F~ t !V~ t8!5S 3

2p D d/2

ut2t8u2(3/2)dV~ t !1•••, ~31!

V~ t !V~ t8!5SA3

p D d

ut2t8u22dV~ t !1•••. ~32!

These relations can be understood very intuitively. They
thatanypair of close-by contacts with the defect looks fro
larger distances like a singletangential contact, multiplied
by a singular prefactor. This is rather obvious for Eqs.~31!
and ~32! for which at least one of the original contacts
already forced to be tangential on the left-hand side. T
more surprising relation~30! on the other hand is a conse
quence of the stiffness of the polymer: configurations t
cross the defect line at two very close positionst and t8
without being tangential to the defect necessarily
strongly bent and, therefore, strongly suppressed ener
cally. In the end, only the tangential contacts with the def
line keep an appreciable weight.

Within this intuitive picture it is also clear why the case
membranesD52 is more complicated. If the membrane
forced to have a contact at two close-by positions this
most can force the membrane to be tangential to the defe
the direction of the line connecting the two points. In t
direction perpendicular to this line the membrane is free
take any slope without any energetic penalty. Thus, the
erator algebra inD52 must be more complicated than Eq
~30!–~32! in order to distinguish between longitudinal an
transversal components of the slope. It cannot even be
rived by some power counting approach since inD52 the
slopev @and thus also the operatord(v)# is dimensionless in
the free theory and thus any function of the slopev can
appear on the right-hand side of the operator algebra.
note, however, that this operator degeneracy is a somew
technical problem of the Gaussian theory. In all physica
interesting cases of self-avoiding or mutually avoiding me
branes~which may be difficult for other reasons! this degen-
eracy is lifted again.

Returning toD51, an important feature of Eqs.~30!–
~32! is that the operatorF(t) never appears on the right-han
sides. Thus its dimensionless coupling

u[gR(123d/2)/x ~33!

will not be renormalized and obeys the trivial renormaliz
tion flow equation

u̇5~123d/2!u. ~34!

On the other hand, the dimensionless coupling constant

v[hRe/x ~35!

of V(t) with

e[12xV5122d ~36!

has to be renormalized in order to absorb the short dista
singularities in the operator algebra Eqs.~30!–~32!. The
three ways to obtain the operatorV(t) in Eqs. ~30!–~32!
2-5



n

n-
a

he

e

-
in

e
-

s
o

t

f d
s

p

a
To

to
.

pair
on
n-
as

n-
t
f
ries
to

d-
at

s
nt as
y-
llel
ia-

al-

m
rong
for
ing

wer
er

tual
of
n-
ds
al-
he
rs.
xact
ti-
her
sys-
os-
he
hed

G.
R.

r a
s

RALF BUNDSCHUH AND MICHAEL LÄSSIG PHYSICAL REVIEW E65 061502
then lead in the usual way@11# to the three quadratic terms i
the one-loop renormalization group equation

v̇5ev2v22u22cuv ~37!

for the dimensionless couplingv wherec is an undetermined
constant.

The corresponding flow diagram ford51 is shown in
Fig. 2. The unique delocalization fixed point (u* 50,v*
5e) is on the lineu50. This property ensures that the co
stantc in Eq. ~37! drops out of the critical exponents. It is
simple consequence of the fact that the fieldF(t) is not
renormalized at all and is irrelevant in any dimensiond
.2/3. Thus, this feature will be preserved also at hig
orders. As long asd.2/3, u will be driven toward zero by
the renormalization group flow and the operatorF(t) does
not play any role in identifying the critical behavior of th
system.

The remaining perturbation series atu50, however, is
factorizable according to Eq.~26! and one-loop renormaliz
able in exactly the same way as with the wall constra
Hence, the~in D51) exact relations Eqs.~24! and~25! still
hold @with e given by Eq.~36! andxV52d#, resulting inj
;(Tc2T)3/(224d) for 2/3,d,1 andxV* 5222d. This scal-
ing dimension turning negative ford.1 indicates that the
transition becomes of first order; see the discussion and
tensive numerics in Ref.@30#. An analogous first-order re
gime is known for flexible polymers@31#.

V. SEMIFLEXIBLE MANIFOLDS IN A RANDOM MEDIUM

We will now turn our attention to semiflexible manifold
in a random medium. We describe this medium by an unc
related Gaussian potentialV(r ,¹r ) characterized by its firs
two moments as

V~r ,¹r !̄50, ~38!

V~r ,¹r !V~r 8,¹r 8!5sd~r2r 8!, ~39!

where the bar denotes the average over the ensemble o
order configurations. We will apply the results of the la
section to this problem in the caseD51 of a semiflexible
polymer. The latter system has a possible biostatistical ap
cation in the theory of sequence alignment@32#.

FIG. 2. Renormalization group flow of contact interactions fo
semiflexible polymer in (111) dimensions. The flow equation
~34!,~37! have the single unstable fixed point (u,v)5(21,0) mark-
ing the delocalization transition.
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The critical behavior of a semiflexible polymer in such
random potential can be obtained using the replica trick.
this end, a system ofN replicas in the same potential has
be studied and finally the limitN→0 has to be considered
The ~annealed! disorder average of theN replica system is
easy to perform and yields a system ofN semiflexible poly-
mers with an attractive contact interaction between each
of them. This contact interaction is given by the correlati
Eq. ~39! of the random potential. For the uncorrelated pote
tial of interest here, this amounts to pairwise interactions
described by the short-range interaction operatorF(t).

If the pairwise interaction operator is given by the orie
tation dependent operatorV(t), the arguments from the las
section can be immediately generalized to the case oN
semiflexible polymers. The time-ordered perturbation se
of this N polymer problem can be mapped term by term on
the perturbation series offlexible polymers withF interac-
tions. Its leading divergences are known to be due to ‘‘la
der’’ diagrams with the same pair of polymers interacting
subsequent pointst i @33,34#.

The presence ofF interactions for semiflexible polymer
does not change these singularities by the same argume
for N52. Due to their stiffness, any two semiflexible pol
mers interacting twice in a short interval have to be para
to each other, or, in other words, the leading divergent d
grams behave like diagrams involving onlyV operators. For
the V system, however, the results of@33,34# immediately
carry over and imply that the critical behavior at the deloc
ization transition does not depend onN. In particular, the
random limit of vanishingN becomes trivial. We conclude
that a (11d)-dimensional semiflexible polymer in a rando
potential has a phase transition between a weak and a st
coupling phase at a critical strength of the randomness
d.2/3. This phase transition corresponds to the roughen
transition of the Kardar-Parisi-Zhang equation in 4d dimen-
sions. For fluid membranes, on the other hand, simple po
counting shows that an arbitrarily small amount of disord
is relevant and leads to a strong coupling phase.

VI. CONCLUSIONS

In this paper we have established a unified concep
framework for the description of the unbinding transitions
semiflexible manifolds. The main new ingredient is the ide
tification of a short-ranged interaction field, which depen
on the orientation of the manifold. The one-loop renorm
ization group treatment of this interaction field is exact in t
case of the unbinding transition of semiflexible polyme
For fluid membranes our one-loop results are no longer e
but they coincide very well with previous numerical es
mates. The origin of this remarkably good agreement furt
deserves a more detailed investigation. This requires a
tematic study of the higher-order corrections, which is p
sible in the field-theoretic formalism developed here. T
nonperturbative aspects of fluid membranes with quenc
randomness also deserve future attention.
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@25# M. Lässig, Phys. Rev. Lett.77, 526 ~1996!.
@26# R. Lipowsky, in Structure and Dynamics of Membrane

Handbook of Biological Physics1, edited by R. Lipowsky, E.
Sackmann~Elsevier, Amsterdam, 1995!.

@27# G. Gompper~private communication!; G. Gompper and D.
Kroll, J. Phys. I1, 1411~1991!.

@28# R. Lipowsky, Z. Phys. B: Condens. Matter97, 193 ~1995!.
@29# T.W. Burkhardt, J. Phys. A26, L1157 ~1993!.
@30# R. Bundschuh, M. La¨ssig, and R. Lipowsky, Eur. Phys. J. E3,

295 ~2000!.
@31# R. Lipowsky, Europhys. Lett.15, 703 ~1991!.
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