PHYSICAL REVIEW E, VOLUME 65, 061502
Delocalization transitions of semiflexible manifolds
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Semiflexible manifolds such as fluid membranes or semiflexible polymers undergo delocalization transitions
if they are subject to attractive interactions. We study manifolds with short-ranged interactions by field-
theoretic methods based on the operator product expansion of local interaction fields. We apply this approach
to manifolds in a random potential. Randomness is always relevant for fluid membranes, while for semiflexible
polymers there is a first-order transition to the strong coupling regime at a finite temperature.
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[. INTRODUCTION semiflexiblemanifolds with local interactions. For semiflex-
ible manifolds, we find that it is important to take theit-

Low dimensional manifolds play an important role in a entationinto account in addition to their position in space.
variety of different contexts, e.g., as soft matter objects or adhis leads us to the introduction of an orientation dependent
domain boundaries in condensed matter systems. They cdteraction operator, which can be shown to fulfill an opera-
perform large shape fluctuations driven by entr¢py Ac-  tor algebra. This is a well-known concept in field thetsge,
cording to their fluctuations they can be divided into two€.d., Ref.[10]), which has been applied extensively in the
classesFlexible manifolds, such as interfaces, polymerizedcase of flexible manifolds befofel1]. Here, it allows us to
membranes, and long polymers, fluctuate undeerssion Wwrite down renormalization group equations for the generic
controlling their area or length. The other class is governedocal interactions of semiflexible manifolds. This leads to
by bending energyi.e., regions of higtcurvatureare penal- results for the delocalization of semiflexible polymers and
ized. Examples are polymers not much longer than their peifluid membranes. Most importantly, the bound state of a
sistence length, like actin or DNA, and fluid membranes.semiflexible manifold turns out to be maintained by contact
These objects are stiffer, and we call theemiflexiblenani-  interactions at fixed orientation, while the bound state of a
folds. flexible manifold involves orientation independent interac-

Whenever, a fluctuating manifold is attracted toward somédions as it is depicted in the case of polymers in Fig. 1.
other “defect” manifold, there is a competition between Our one-loop results for the critical behavior at the un-
freely fluctuating configurations favored by entropy and con-binding transitions are in agreement with previous results
figurations bound to the defect, which are preferred by enobtained by approximate renormalization meth¢d®,13
ergy. This competition can lead to a phase transition, the sand by approaches specific to polymgtd—16. They are
called delocalization or unbinding transition. It is often of exact for polymers and can be improved systematically for
second order, that is, the amplitude of the fluctuations dihigher dimensional manifolds.
verges continuously as the transition point is approached Furthermore, they can be applied to a semiflexible mani-
from within the bound phase. This leads to a scaling regime
close to the transition whose universal characteristics can be ry (2)
described by a continuum field theory. Well-known examples
of delocalization are wetting phenomeff. For interfaces
and polymers, these transitions have been widely sty@ied
In the case of polymers, even the generalized problei of
mutually attracting objects can be treated. Analytically con-
tinued toN=0, this describes a directed polymer in a ran-
dom medium 4], which in turn is related to theories of sto-
chastic surface growtfs]. The delocalization transition then (b)
corresponds to a roughening transition between a smooth and
a rough growth mode.

For flexible manifolds, there is a well-established field-
theoretical framework to understand these phenomena on a
unified footing[6—9]. The goal of this communication is to
develop a corresponding field-theoretical description for

_ _ _ FIG. 1. (a) A flexible and(b) a semiflexible polymer param-
*Present address: Department of Physics, The Ohio State Univegtrized by their shape functiongt) bound to an attractive defect

sity, 174 W. 18th Avenue, Columbus, OH 43210-1106. indicated by the dashed lines. The unbound segments join the defect
TPresent address: Institut rfutheoretische Physik, Zpicher at arbitrary orientation and at fixed orientationr/dt=0,
Strasse 77, 50937 Km Germany. respectively.
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fold in a quenched random potential. In the replica formal- d(t)=[r(t)]. ®)
ism, this is equivalent tdl interacting semiflexible manifolds

in the limit of vanishingN. For fluid membranes, any amount The scaling dimension of this field,

of disorder is relevant and leads to a strong coupling phase as

can be easily checked by power counting. For semiflexible Xp=dx (4)
polymers, however, we find that small amounts of disorder . . C
are irrelevantunlike for their flexible counterpartsThere is IS given In tef"?s of the r_oughness expongr_ntzvhlc_h in turn
now a first-order transition to the strong coupling phase at &an be determined by 5|r_np_le power counting with the result
finite amount of disorder. A quantitative description of the X =(2—D)/2 fork=1. This interaction has been treated ex-

disordered strong coupling phase is, however, beyond th austively in a well-established perturbative framework in
means of perturb%tion E[)hegr;.) y =1[6,7] and in generaD [8,9]. This has also been applied

The paper is organized as follows: In Sec. Il we Shomyextensively to th? problem of self-avoiding manifoldd—
review the field-theoretical treatment of flexible manifolds 23]. .More c.ompllcated short-range[(?4] and long-ranged
and introduce the necessary notation. Section IIl treats the?>] interactions have been studied as well. - .
case of unbinding transitions in the presence of a hard-wall . "€ case osemiflexiblemanifolds with local interactions,
constraint, which turns out to be the more transparent cas\e,{h'_Ch IS thg focus of this paper, 1S desgrlbed by the Ham.|l-
for setting up our field-theoretical treatment. In Sec. IV wetonian (1) with k=2. Physically interesting cases are again
then discuss the more difficult case of unbinding transition0'ymers ©=1,d=1,2) [14-1§ and, in particular, fluid

without a wall. Section V is dedicated to the behavior of ameémbranes@=2, d=1) [26]. Since a semiflexible mani-
single semiflexible manifold in a random medium and infc_;ld h_as a locally well-defined orientation, we have to con-
Sec. VI we summarize our results. sider interaction®/[r(t),Vr(t)] that depend both on the dis-

placement and on the orientation. Thus, there are now two
important scaling fields: Local contacts at arbitrary orienta-
IIl. SCALING ANALYSIS tion are still represented by the fiedbi(t) given by Eq.(3),

In order to prepare for the development of a field-Which has dimension
theoretical description aemiflexiblemanifolds with short-

ranged interactions we want to first discuss briefly the estab- Xp=dx ®)
lished field theory forflexible manifolds. Here, we also ith
introduce the notation used later and make some simple scal-
ing analysis. 4-D
The configurations of manifolds are described by a X=— (6)

d-dimensional displacement fielqt), which depends on a

D-dimensional internal variable The energy of a configu-  As it will turn out, however, contacts for which the manifold

rationr(t) is given by a continuum Hamiltonian of the form s oriented parallel to the defect are especially important.
Such contacts are described by the field

1
H=f {g(v"r)%v(r,Vr) d°t, 1) Q)=48[r(t)]8[Vr(t)], 7)
which has a different scaling dimension. This is again deter-
where mined by power counting,
D d Xg=dy+dD(xy—1). (8
(V2= 3 [ar(n/ats]? 2 !
a=1i=1

In what follows we will argue that the unbinding transition of

. ) ) . semiflexible manifolds can be described in terms of these
is the leading tensiork=1) or curvature K=2) energy ina  two interaction fields.

small-gradient expansion. The cake=1 corresponds to
flexible manifolds and is physically realized, e.g., for di-
rected polymers and flux lines in a type Il superconductor
(D=1,d=2) [17,18, steps on a tilted crystal surfac® ( In order to understand the basic mechanism underlying
=1,d=1), and domain walls in a ferromagneb €2, d the unbinding transition of semiflexible manifolds we will
=1). The potentiaV describes the interaction of the mani- first study the simpler case in which the manifold is subject
fold with an external object or boundary et 0, or the mu- to ahard wall constrainti.e., the components of the shape
tual interaction between two manifolds with relative dis- function r(t) are restricted to positive values. Such a wall
placement (t). constraint is natural id=1 for a fluid membrane at a planar
Short-ranged interactions are interactions with a rangsystem boundary, or for a pair of membranes that cannot
much shorter than typical displacements of the manifold. Ifintersect. We generalize this natural hard wall constraint to
they are of definite sigfi.e., repulsive or attractive over their arbitraryd in such a way that the Hamiltoniafl) remains
entire rangg they can be represented ¥r (t) ]=g®(t) in  factorizable.
terms of the locatontact field To this end, we study the manifold displacement figlg

IIl. UNBINDING IN THE PRESENCE OF A WALL
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in a hypercube of longitudinal extension<@,<T (« linked to the pressure of the system by a wall theorem. This
=1,...D) and of transversal extension<0;,<R (i applies independently to th& components of and yields
=1,...d). The hypercube geometry implies that the freetogether with Eq(9),
system, i.e., the manifold without any short-range interac-
tions, separates inindependent free manifolds for each of (Q)~(9f/9R)I~R™ AP0, (14
the components aof. o ) .

By the definition of the roughness exponantregions in  1Nis immediately determines the exponent vée]
t space of siz&RP'X are independent from each other. Thus,
for T>RY the free energy becomes extensive and, for di-
mensional reasons, takes the form

Xo=d(x+D), (15

which is in agreement with a conjecture from functional
__TDp-D/x renormalization[28] for generalD and a direct calculation
F~T"R . (9)
[29] for D=1.

In what follows we will always assume that we are in this
regime. The perturbation series for the free energy density B. Perturbation theory
f=F/TP then becomes invariant under translations. in The interaction partsf(h,R)=f(h,R)—f(O,R) of the

free energy density of the system with[r(t),Vr(t)]
A. Interaction operator =hQ(t) can be formally expanded as a power series

In the presence of the walls, the probability density h2
p(r')=(d[r(t)—r"]) is forced to vanish at the boundary of sf=h(Q)+ ?f d°t(Q(0)Q(t))c+0(h%)  (16)
the hypercube, in particular along the “edge= 0. The den-

ity then takes th mptoti ling form - . .
sity then takes the asymptotic scaling fo containing the connected correlation functions

~ 0 —d(1+0) <
P M TR for |rl<k, (0 (QO)QD)=(Q00QM) (2, (A7)

with an exponent®y>0 expressing long-ranged suppression , ) o i
of the configurations close to the boundary. etc., taken ah=0. Since all the integrals in this perturbation

Thus, short-ranged interactions with the manifold 0 series diverge, it has to be regularized. We will choose for
now have to be described in terms of a local field whosdhiS purpose a dimensional regularization scheme. To this
expectation values remain finite even in the presence of §"d: We have to identify the dimension in which the interac-
wall. To this end, a direction of approaching the “edge” at fion (} is marginal, i.e., where,=D. By Eg. (15), this
r=0 has to be chosen and the local operator at a point ag!2PPens on a wholéne in the (D,d) plane. This line is
proaching the edge has to be multiplied by the appropriat§!Ven by
power of the distance from the edge according to (@) to

compensate for the diminishing density at the wall. While the d* (D)= 2 (18)
specific choice of the direction of approach only affects the 4+D
irrelevant numerical prefactor of the operator, we use the
“diagonal” (r, ... r) and define Thus, the divergences in the perturbation se(lés can be
written as poles in the distance
d
Q(t)= Iimr““’Hl S[ri(t)—r]. (12) e=D—xo=D—d(2+D/2) (19
r—0 1=

from the line of marginality(18). As discussed in Ref19] in
It is important to notice that due to the constraint, thethe case of flexible manifolds, these poles can be regularized
manifold always has the fixed orientatidfr =0 in the vi-  aroundany pointof this line.

cinity of r=0. Hence, we have used the same synibas The singularity of the two-point functiofiL7) can be de-
for the field Eq.(7) of the unconstrained system. The corre-termined on physical grounds. The presence of the wall and
lation functions the stiffness of the manifold implies that the configurations
of the manifold that contribute to an expectation value con-
(Q(t))~R*alX, (12  taining a productQQ(t)Q(t’) are those that are closand
parallel to the wall at positionsandt’. Ast andt’ approach
(QOQ))~[t—t'|7*2(Q(t))+ - - - (Jt—t'|¥*<R) each other being close and parallel to the wall at position

(13)  implies being close and parallel to the wall at posittoras
well. Thus, the product of the two operators can be replaced
define the scaling dimensior,, which will be different by simply one of them times a characteristic divergende if
from its value given in Eq(8) in the absence of a wall. Inthe andt’ are close together. That suggests the operator product
constrained system, we cannot do simple power counting angxpansion
more in order to obtain this scaling dimension. However, we
can obtain its value by noting that the density EfR) is QOQ)~[t—t'| Q1)+ - - -. (20)
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The exponent of the divergence has to be the scaling dimerder t,<---<t,. The factorsR(t)=(Q(0)Q(t))/{Q) can
sion x, of the operatoK) for dimensional reasons. The un- be interpreted as “return” probabilities to the wall. Equation
known numerical prefactor of this operator product expan{26) provides the same factorization structure for the higher-
sion can always be absorbed in the definition of the operatoorder correlation functions as in the case 1. Thus, the
Q. perturbation expansioil6) becomes formally identical to
The singularity in the operator product expansion deterthe casek=1. Therefore, studies of the perturbation expan-
mines in a standard wajjl1] the one-loop renormalization sion in the latter cas¢8,11] imply that also the polymer
group equation of the dimensionless coupling constant perturbation serie€l6) studied here i®ne-loop renormaliz-
. able i.e., the connected two-point functioff2(0)Q (1))
v=hRX (21) generates the only primitive singularity, and there are no
higher-order terms in Eq22). The implications of Eqs.24)
and(25) on general semiflexible polymers are discussed and
verified numerically in Ref[30]. Here we have given ani-
fied derivationof these relations, stressing the theoretical

associated with the operat6). In an appropriate scheme,
this takes the form

v=ev—v®+O@v?). (22) analogies with their known counterparts for=1 [31,11].
The unstable fixed point* = e+ O(€?) represents the un-
binding transition. Linearizing Eq22) around the fix point IV. UNBINDING WITHOUT A WALL
valuev* yieldsv=e* (v —v*)+ - with We now turn to systems without the wall constraint and
& —— e+ 0(e?). 29 restrict ourselves toD=1, namely mutually interacting

semiflexible polymers. In the absence of a wall constraint,

This immediately determines the scaling of the transversaf’® have to study generic contact interactions

localization lengthe=(r?)/2, V(1) =gd (1) + hQ(1) @7
E~(*—v) X (u<v*), (24 involving the fields® andQ as defined in Eqg3) and (7).

ithin the bound oh dth ling di . The perturbation series then contains connected correlations
within the bound phase and the scaling dimension (D(ty)---D(t) QL) - - - Q(t})), in the free theory g=h
x5 =D— e* =2D —x+O(€?), (25) =0). InD=1 the configurations of the polymer befdrand

aftert become independent from each other as long as the

which takes the place of, in the correlationg12) and(13) ~ Positionr and slopev att are fixed. Thus, iD=1 all the
at the transition point. These relations describe the scaling dforrelation functions can be expressed in terms of the propa-
a bound state maintained by contact forces at fixed orientdator G (r',v’[r,v) of the free theory, i.e., in terms of the

tion. Typical configurations look similar to those of Fighl ~ Probability to find the semiflexible polymer at position

but are confined to the regian>0. with slopev’ if it was at positionr with slopev a longitu-

dinal distanceAt before. This is a particularity of the one-

dimensional case. FAD#1 (e.g., for membranes witlD

] ) o . =2) it is not possible any more to express the correlation
The most interesting application of E¢24) and(25)is  functions in terms of the two-point function alone. Thus, the

the delocalization transition of a fluid membrane from a hardyerivation of an operator algebra analogous to our result Egs.

wall (D=2,d=1), where the one-loop result leads 0 (30—(32) remains a difficult outstanding problem in the case

~(T.—T) 1 (since the effective coupling is temperature de-p £1.

pendentandxg = 1. These predictions are in agreement with  The propagato6 ,,(r’,v’|r,v) can be calculated exactly

those from functional renormalizatiofl2]. They also fit [16]. It is given by

very well the numerical values of Rdf13], which implies

that higher-order corrections must be small. The system with (

C. Special cases

wall constraint ah=0 can be regarded as an unconstrained Ga(r’,v’[r,v)=

y3 ¢ 6
5| ex ——AtSm(r’,v’lr,v) ,
system in the limit of a large repulsive interaction. Con- mAt

versely, the scaling at the transition point of the constrained (28)
system may be related to that of the free unconstrained sygyhere
tem. Indeed, the one-loop valug from Eq.(25) equals the
dimensionxy =1 of the free field Eq(7), indicating that the o ) ) 2 ) )
sum of the higher-order corrections in Eq22) and (25) Sae(r’v'[r,v)=(r'=r—vAt) +5 o)
may vanish altogether at the specific poibt£2, d=1).
For the case of polymerd(=1) it is easy to show that —At(r'=r—vAt)(v' —v) (29)
the multipoint correlations entering E@L6) factorize after | ) o
“time ordering” the interaction points, is the action of the minimal energy path. _
From this propagator, a closed operator expansion algebra
(Q(ty) - Q)Y =(Q(t))R(t—t1) - - R(th—th_1), for the two operator$ and() can be derived. To this end,

(26)  we have to calculate correlations involving the two operators
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in question.

chosen infrared cutoff. We are interested in the limit-t
from above. Due to the Markov property governibg=1,

we can subsume the contributions of all operators with an

argument less thaninto the expectation valug; (r,v) sub-
ject to the condition that the polymer is at positiorwith

slopev at “time” t and the contributions of all operators
with an argument larger thari into the corresponding ex-

pectation vaIuer,(r’,v’). Then, we get
<--.c1>(t)c1>(t')-.->=fdDrdevder'de a
Gy (r,v)8(r)Gy _(r',v'[r,v)8(r' )G, (r'v')
=f deJ dPv' G (00)Gy—(00'|00)G, (0p").

Using the explicit form(28) of the propagator, we find

’ \/§ )d 2 ’ 2
Gy —¢(0p |0,v)—(m ex _t’—t(v —v)

1 \/§ ’ 1 T
(t’—t)d(w(t’—t)> ex‘{‘ﬂ(”” )

T LULE

in the limit t’ —t. This finally yields
(- DOD() - )~G(0,0(t'~1)"9G (0,0
:(tf_t)—d<. Q).
Similar calculations using

Gt,,t(O,QO,v)

a2 (3/2)d dr2
:(i) (L (L) e[*(Z/I'ft)vz]
2 t'—t m(t' —t)

Gt/—t(o'qo’o):(g)d(i) ;

t'—t

and

yield the complete operator product expansion

O()D(t)=|t—t'|79Q(t)+ - - -, (30

Let us start with the expectation value
(- D(t)D(')- - -) where we always assume some suitably

PHYSICAL REVIEW E 65 061502

3 d/2
‘D(t)Q(t/):(z) [t—t'| -G (t)+-.., (31
d
Q(t)Q(t,)z(\/—E> |t—t'|72dQ(t)+.... (32)

These relations can be understood very intuitively. They say
thatany pair of close-by contacts with the defect looks from
larger distances like a singlangential contact, multiplied

by a singular prefactor. This is rather obvious for E(@l)

and (32) for which at least one of the original contacts is
already forced to be tangential on the left-hand side. The
more surprising relatioi30) on the other hand is a conse-
quence of the stiffness of the polymer: configurations that
cross the defect line at two very close positianand t’
without being tangential to the defect necessarily are
strongly bent and, therefore, strongly suppressed energeti-
cally. In the end, only the tangential contacts with the defect
line keep an appreciable weight.

Within this intuitive picture it is also clear why the case of
membraned =2 is more complicated. If the membrane is
forced to have a contact at two close-by positions this at
most can force the membrane to be tangential to the defect in
the direction of the line connecting the two points. In the
direction perpendicular to this line the membrane is free to
take any slope without any energetic penalty. Thus, the op-
erator algebra id =2 must be more complicated than Eqgs.
(30—(32) in order to distinguish between longitudinal and
transversal components of the slope. It cannot even be de-
rived by some power counting approach sinceDir 2 the
slopev [and thus also the operaté(v)] is dimensionless in
the free theory and thus any function of the slapecan
appear on the right-hand side of the operator algebra. We
note, however, that this operator degeneracy is a somewhat
technical problem of the Gaussian theory. In all physically
interesting cases of self-avoiding or mutually avoiding mem-
branes(which may be difficult for other reasonthis degen-
eracy is lifted again.

Returning toD=1, an important feature of Eq$30)—

(32) is that the operatob (t) never appears on the right-hand
sides. Thus its dimensionless coupling

uEgR(1—3d/2)/)( (33)

will not be renormalized and obeys the trivial renormaliza-
tion flow equation

u=(1-3d/2)u. (34)
On the other hand, the dimensionless coupling constant
v=hRx (35)
of Q(t) with
e=1-xo=1-2d (36)

has to be renormalized in order to absorb the short distance
singularities in the operator algebra Eq80)—(32). The
three ways to obtain the operaté¥(t) in Egs. (30)—(32)
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The critical behavior of a semiflexible polymer in such a
random potential can be obtained using the replica trick. To
this end, a system dfl replicas in the same potential has to
be studied and finally the limiN— 0O has to be considered.
The (annealed disorder average of thN replica system is
easy to perform and yields a systemMv&emiflexible poly-
mers with an attractive contact interaction between each pair
of them. This contact interaction is given by the correlation
Eq. (39) of the random potential. For the uncorrelated poten-
FIG. 2. Renormalization group flow of contact interactions for atial of interest here, this amounts to pairwise interactions as

semiflexible polymer in (+1) dimensions. The flow equations described by the short-range interaction operdt¢t).

(34),(37) have the single unstable fixed point,¢) = (— 1,0) mark- _If the pairwise interaction operator is given by the orien-
ing the delocalization transition. tation dependent operatér(t), the arguments from the last

section can be immediately generalized to the casé of

the one-loop renormalization group equation of thisN polymer prqblem can be mapped term by term onto
the perturbation series dfexible polymers with® interac-

tions. Its leading divergences are known to be due to “lad-
der” diagrams with the same pair of polymers interacting at
subsequent points [33,34].

The presence ob interactions for semiflexible polymers

v=e€v—v2—U?—cu (37

for the dimensionless couplingwherec is an undetermined

constant. - "
: . . . does not change these singularities by the same argument as

_The corresponding flow diagram faf=1 is s*hown N for N=2. Due to their stiffness, any two semiflexible poly-
Fig. 2. The unique delocalization fixed point(=0u mers interacting twice in a short interval have to be parallel
=€) is on the lineu=0. This property ensures that the con- 5 each other, or, in other words, the leading divergent dia-
sfcantc in Eq. (37) drops out of the critical exponentls. Itis a grams behave like diagrams involving orfly operators. For
simple consequence of the fact that the fidit) is not  the O system, however, the results [#3,34 immediately
renormalized at all and is irrelevant in any dimension carry over and imply that the critical behavior at the delocal-
>2/3. Thus, this feature will be preserved also at higheiization transition does not depend ®h In particular, the
orders. As long asl>2/3, u will be driven toward zero by random limit of vanishing\ becomes trivial. We conclude
the renormalization group flow and the operadoft) does that a (1+d)-dimensional semiflexible polymer in a random
not play any role in identifying the critical behavior of the potential has a phase transition between a weak and a strong
system. coupling phase at a critical strength of the randomness for

The remaining perturbation series a0, however, is d>2/3. This phase transition corresponds to the roughening

factorizable according to Eq26) and one-loop renormaliz- transition of the Kardar-Parisi-Zhang equation it dimen-
able in exactly the same way as with the wall constraintSions. For fluid membranes, on the other hand, simple power
Hence, the(in D=1) exact relations Eq¢24) and (25) still counting shows that an arbitrarily sma!l amount of disorder
hold [with € given by Eq.(36) andx,=2d], resulting in&é IS relevant and leads to a strong coupling phase.
~(Te— T)3’(.2*4d) for 2/3<d<1 andxf):?—_Zd. This scal- V1. CONCLUSIONS
ing dimension turning negative fai>1 indicates that the
transition becomes of first order; see the discussion and ex- In this paper we have established a unified conceptual
tensive numerics in Ref30]. An analogous first-order re- framework for the description of the unbinding transitions of

gime is known for flexible polymerg31]. semiflexible manifolds. The main new ingredient is the iden-
tification of a short-ranged interaction field, which depends
V. SEMIFLEXIBLE MANIFOLDS IN A RANDOM MEDIUM on the orientation of the manifold. The one-loop renormal-

ization group treatment of this interaction field is exact in the

We will now turn our attention to semiflexible manifolds case of the unbinding transition of semiflexible polymers.
in a random medium. We describe this medium by an uncorFor fluid membranes our one-loop results are no longer exact

related Gaussian potentisl(r,Vr) characterized by its first but they coincide very well with previous numerical esti-

two moments as mates. The origin of this remarkably good agreement further
deserves a more detailed investigation. This requires a sys-
V(r,Vr)=0, (38)  tematic study of the higher-order corrections, which is pos-
sible in the field-theoretic formalism developed here. The
VLDV Vi) =ad(r—r'), (39) nonperturbative aspects of fluid membranes with quenched
randomness also deserve future attention.
where the par dgnotes the average over the ensemble of dis- ACKNOWLEDGMENTS
order configurations. We will apply the results of the last
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