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Abstract. The split of a population into two reproductively isolated subpopulations
is studied within a model including spatial heterogeneity. We find three dynamical
pathways of speciation resulting from a coupling of space, competition and mating
behaviour: (i) sympatric at small habitat heterogeneity, (ii) sympatric with subsequent
spatial differentiation at intermediate heterogeneity, and (iii) allopatric under strong
heterogeneity.

1 Introduction

Speciation is the splitting of a species into two new ones. A population of indi-
viduals forms a species if they produce viable offspring among them. Essential
steps at the beginning of speciation are differentiation in body characteristics
and the formation of two reproductively isolated subpopulations. The dynamics
of this division, which is the subject of this paper, can be rather fast. Eventually,
if interbreeding of the two subpopulations is cut for long enough, the ability to
mate successfully will be lost and the division gets irreversible. Speciation has
been a long standing issue in evolutionary biology [1,2,3,4,5,6,7,8]. As we will
show in this article, it is also a challenging problem of non-equilibrium statistical
physics.

An obvious way of species division is allopatric speciation [2]. In this case a
population gets separated by an external cause, e.g., a previously connected part
of the sea may be divided after the formation of a natural barrier, and inhabi-
tant organisms will be isolated from their relatives on the other side. Different
characteristic forms may evolve independently and eventually the two groups
will form two different species which cannot produce viable common offspring
even if the barrier gets removed again.

In sympatric speciation, on the other hand, the two dividing groups contin-
uously share a common habitat. Also in sympatry differentiation into subpopu-
lations with different characteristics can be favoured, a process called disruptive
selection. [he subpopulations fill different ecological niches, e.g., they feed from
different resources. Niche populations can be stable if their gain in fitness through
reduced competition outweighs the loss in fitness through specialisation [4,6,8].

An obstacle to sympatric speciation lies in sexual reproduction [2]. By the
rules of genetics, mating between the two opposite subpopulations always pro-
duces offspring of intermediate phenotype and prevents their drifting apart. For
a long time therefore speciation has been believed to take place predominantly
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in allopatry [2]. If speciation is to happen in sympatry, i.e., with both subpopula-
tions sharing a common habitat, some mechanism has to prevent interbreeding.

Theoretical studies, e.g., [3,4], have addressed the possibility of and condi-
tions for sympatric speciation, and tried to elaborate possible mechanisms to
prevent interbreeding. One of the proposed mechanisms is assortative mating,
where e.g. a female’s mate choice is determined by a male’s trait, how close or
different it is from her own or her preferred one. Mating preference may also
depend on a different male trait and both may mutually enhance their evolution
towards extreme characteristics [5].

In more recent years, reconstruction of phylogenetic trees from molecular data
obtained in new field studies have dramatically changed our understanding of the
processes and brought up striking empirical evidence for sympatric speciation.
The most prominent example is cichlid fishes in the great African lakes (Victoria,
Malawi), where several hundred sister species of monophyletic origin, i.e., all
descending from a single colonising species, have been found to coexist [9]. Even
more surprisingly this evolution must have taken place in a surprisingly short
time: Geological data from the bottom of Lake Victoria indicate that it was
completely dry about 12 000 years ago [10]. All species inhabiting the lake today
must have colonised it after that desiccation and subsequently have speciated.
It seems unlikely that with different low water levels the lake would have been
divided in many small lakes to give rise to the opportunity of allopatric speciation
for so many species in such a short time.

Moreover, these observations also show spatial structure in the fish popu-
lations despite the absence of barriers and their sympatric origin. They prefer
different parts of the lake due to different food supply and use. Some feed from
organisms on the ground, others from floating particles throughout the lake [9].
Encounters between such different populations may well be reduced by this spa-
tial separation. This has an important consequence on the picture of sympatric
speciation: As the subpopulations start to differ in phenotypic characteristic they
gain the possibility of a secondary spatial differentiation, also called patching.

Spatial separation plays an even larger role in organisms which are not con-
straint to a relatively small and spatially well mixed habitat such as a lake. It
is more pronounced when, e.g., the splitting populations specialise as parasites
on different host plants, or when the interaction range of individuals is small
compared to the area inhabited by the entire species. This is e.g. the case for
salamadra taxa in Europe who seem to consist of different clades whose coloni-
sation steps after the last ice age can be tracked down [11].

Speciation is more than a single event, and only the history of the entire
process yields an adequate understanding of spatially structured populations.
Different evolutionary pathways describe primary spatial (and hence allopatric)
division compared to secondary patching with originally sympatric differentia-
tion.

Present models for sympatric speciation neglect space [6,7,8], in terms of
statistical physics they are “mean field” models. In order to fully understand
the history of a speciation process one needs more refined categories than merely
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the alternative of sym- and allopatry. In this article we combine the “internal”
trait space of the populations with the “external” topographical space, i.e., to go
from a mean field model to a spatio-temporal field theory. The resulting modes
of speciation show indeed an intricate interplay of internal and external space.

This article is organised as follows: In the next Section we present the gen-
eral setup of the spatio-temporal model. Characteristic states of the system and
their biological interpretations are presented in Section 3. Section 4 then shows
the possible evolutionary pathways and the transitions between states occurring
along these pathways. A brief discussion ends the article.

2 Evolution of competing phenotypes

General form. The model in its most general form deals with competitive
interaction of different groups of a population extending over a whole spectrum
of phenotypes and living in a structured landscape. The dynamical variable is a
density N(x; r, t), depending on time t and the (“external”) spatial coordinate
r, as well as some suitable variable x denoting a character in the (“internal”)
trait space. In the example of fish this is typically the body size [9], but one can
imagine any other variable in which the split into subpopulations and finally
speciation becomes first visible. A “minimal” model equation for speciation can
be written in the form

∂tN(x; r, t) = ν∇2
rN(x; r, t)− ∇r · (λv(x; r, t)N(x; r, t)) + (1)

f(x; r)R(x; r, t)−
[
α(r) +

∫
dy β(x−y)N(y; r, t)

]
N(x; r, t).

It has the structure of a nonlinear reaction-diffusion equation and contains the
following features:

• Movement in space is due to diffusion (first term on the right hand side) and
to deterministic drift (second term), here expressed by a “velocity” field v
which could, e.g., be due to a gradient in habitat quality.

• R is the birth rate of offspring. In a purely asexual model it would be pro-
portional to N itself but here it reflects the genetic inheritance patterns, as
will be specified below. R is multiplied by f(x; r), which denotes the habitat
quality at point r and plays the role of a fitness.

• The competition is quadratic, a simple general form, familiar from Lotka-
Volterra equations, proportional to the number of encounters per time unit
between two individuals. Some function β(x−y) denotes the phenotype depen-
dence of its strength. β should be maximal at x = y and decay monotonically
as |x − y| increases.

• An overall death rate α(r) is used to tune global, e.g., climatic, changes in
living conditions.

Equation (1) gives a rather general framework for spatio-temporal population
dynamics. The results depend, in particular, on the spatial distribution of fitness
values f(x; r). Here we discuss the simplest topography relevant for speciation.
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Two-habitat topography. Topographical space is assumed to consist of two
homogeneous habitats, A and B. In our particular model choice a newborn in-
dividual with phenotype x has fitnesses

fA(x) = fB(−x) = exp
(−(x − x0)2/x2f

)
(2)

in habitats A and B respectively, which is schematically represented in Figure 1 a.
Habitat A favours positive values of x, B negative ones. The resource qualities in
both habitats decay on a scale xf and have relative difference 2x0. For simplicity
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Fig. 1. Schematic representation of habitat quality (panel a) and phenotypic inter-
actions (panel b). Habitat A favours phenotypes with larger values of x (maximal at
x0), habitat B offers maximal resource quality to phenotype −x0. The resource curves
decay on a lateral scale of xf . Competition and mate preference are maximal between
equal phenotypes and decay on scales of order xβ = 1 (top curve) and xµ respectively
(bottom curve).
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we assume symmetry between the sign of x and interchange of A and B. Without
loss of generality we take a Gaussian decay for the habitat quality. All properties
of environmental quality are then expressed by these two parameters.

It is useful to define an order parameter ρ ∈ [0, 1] describing the tendency of
the population to settle into the more favourable habitats,

ρ =

∫
x>0

(
NA(x)− NB(x)

)
∫

x>0 (N
A(x) +NB(x))

, (3)

where NA(x) denotes the number density of individuals with trait x in habitat
A, and NB(x) the same for B. Without any habitat preference, both are equally
populated and ρ = 0. Populations fully retreated into one habitat, i.e., those
with positive x to A and negative x to B, give ρ = 1.

The distribution of subpopulations, and hence the value of ρ, follow from local
fitness differences and the population flux from one habitat to another. These
quantities are described by the first two term of Equation (1). The diffusion
constant ν and the transport coefficient λ are subject to evolutionary changes.
As a consequence also ρ changes under evolution. It turns out to be a simpler
approach to take ρ itself as the primary evolving variable. This will be specified
below in detail, once the other model components have been introduced.

Competition. Competitive interaction decays with phenotypic distance, see
the top curve in Figure 1 b,

β(x−y) = exp
(−(x−y)2/x2β

)
. (4)

Again the Gaussian shape is a particular choice without any qualitative difference
to others. Moreover, we use competition to set the scale in phenotype space by
choosing xβ = 1. This gives xf in Equation (2) a simple interpretation as an
estimate for the number of subpopulations that can coexist, or in other words
for the number of possible ecological niches.

Reproduction rate. An expression for the reproduction rates R is straight-
forward to construct. As limiting factor we take the breeding capacity of the
females, which should be a reasonable assumption in many cases. The number
density of individuals of type x born per time unit is then given by

R(x) =
∫

y,z

C(x; y, z) m(z; y) N(y). (5)

One has to sum up all possible couples of parents. N(y) denotes the number
of mothers, z is the phenotype of the males, and m(z; y) the probability for a
y-female to mate a z-male.
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Inheritance and quantitative genetics. C(x; y, z) is a genetic tensor giving
the probability that a couple of parents y and z will have x-offspring. This needs
the normalisation

∫
x

C(x; y, z) = 1. It reflects the underlying genetic represen-
tation of the trait with respect to which we study the possibility of speciation.
Different explicit forms for C are possible, but as x is a quantitative trait de-
pending on many loci on the genome, we can make use of the principles of
quantitative genetics [7,12]. The distribution C(x; y, z) of offspring trait values
has a mean close to (y+ z)/2 and a variance that depends on the number of loci
involved.

Mate choice. Of course m(z; y) depends on population sizes, the frequency of
males to choose from, as well as the absolute number. In too sparse a population
females may lack suitable mating partners or be forced to choose against their
preference, which may cause interesting effects [13,14]. In this work we focus on
what sometimes is called saturated mating, where each female finds a partner,
so

∫
z
m(z; y) = 1 for all y and consequently

∫
x

R(x) =
∫

x
N(x). Other than

on the number of available males, m(z; y) depends on the preference of females
for certain types of males, which are expressed in terms of preference factors
µ(z; y). Similar to competition, in our model female attraction towards a given
male depends on their mutual phenotypic distance,

µ(z; y) = exp
(−(z − y)2/x2µ

)
, (6)

relative to a distance xµ which we define as the mating range. An example with
relatively narrow mating range is shown in the bottom curve of Figure 1 b. The
actual mating probabilities then are given by the numbers of available males
weighted by the female preference factors,

m(z; y) =
µ(z; y)N(z)∫

z′ µ(z′; y)N(z′)
. (7)

Here it becomes clear how the mating range xµ interpolates between indifferent
or “random” mating with xµ = ∞ and strong mating preference or assortativity
as xµ → 0.

Discrete phenotypes. As one more simplifying step trait space is discretised
into a finite number of “bins”. Three bins, where the population at a point is
described by the numbers N1, N2, and N3, are needed in the simplest case to tell
the difference between a population split into two independent subpopulations
(when N2 = 0) and a contiguous population profile extending over the whole
range (when N2 > 0).

The habitat preference order parameter ρ defined in Equation (3) gains a
simple meaning: (1+ρ)/2 is the fraction of 1-individuals in habitat A, and of
3 in B. Diffusion and migration between the habitats, still explicitly present in
Equation (1) are fully included into the spatial order parameter ρ in this simple
discrete case.
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There is a simple way to mimic a continuous trait space even when only
three bins explicitly appear in the model. Phenotype 2 is located in the middle
at x = 0, but the positions of 1 and 3, ±x, are adapted to an optimal value of
phenotypic width. At a given value of x we ask, whether populations at x ± dx
can invade and suppress the previous ones at x. If so, x is replaced by the new
value, until a final stable value is reached.

Evolutionary adaptations and pathways. So far we have explained the
population dynamics of competing phenotypes. For fixed external ecological pa-
rameters (resource quality and competition) and for fixed internal parameters
(mating and habitat preference) the population dynamical equations lead to
some stable fixed point describing a population dynamical equilibrium. This can
be seen as a resident population subject to the appearance of mutants with dif-
ferent strategies in mating and habitat preference. Generally mutants will be
able to invade and push out the previous residents until an evolutionary stable
state is reached [6,7,8].

We assume that the rate at which mutants with new characteristics appear is
much smaller than the relaxation rate of population dynamics. The same should
be true for the rate of global changes in the environment. In Section 4 we present
a slow decrease in the external death rate α from 1 to 0, in order to model a
slow increase in habitat quality, e.g., as a result of climatic changes. The slowest
changing variable parametrises time in the model.

For instance, α may change adiabatically and approach a transition point,
where a small change in α causes a large jump in xµ, an example of which is given
in Section 4. During this change xµ is the slowest variable and here a natural
way to measure “time” is by the rate of mutations in xµ. These evolutionary
pathways define the history of evolutionary adaptations.

For a full description one still needs the initial conditions. It makes sense
to assume no habitat and mating preference, ρ = 0 and xµ = ∞, before any
diversification in phenotypic space appears, and to see if spatial structure and
mating preference can evolve.

3 States of the system

In this Section we characterise the various states of stationary populations in
the model and their meaning with respect to speciation.

If the range of resources is narrow, only the middle population is viable,
N2 > 0, but not the outer ones and therefore N1 = N3 = 0. Then we also find
cases of coexistence where all three blocks are populated. The population profile
may be structured and show some tendency of splitting into two independent
blocks. However, there is gene flow across the population. Besides direct mating
between the two opposite outer populations there will be indirect gene flow: If
individuals of phenotype 2 mate with both 1 and 3, none of them is isolated
from its counterpart. Differentiations can take place in three ways:
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• Spatial separation. If the populations are fully retreated to their respective
more favourable habitats, if 1 lives only in A and 3 in B (in the model param-
eters this is the case ρ = 1), individuals of opposite phenotype just don’t meet
each other and therefore don’t mate. Gene flow then is suppressed by spatial
separation.

• Complete mating assortativity. Under fully developed mating preference
(or assortative mating), 0 
 xµ � x, there will be no cross mating between 1
and 3 and no offspring of intermediate phenotype from such matings.

• Trait differentiation. Absence of intermediate traits separates the popula-
tion profile. In the discrete case:N2 = 0 andN1 = N3 > 0. Trait differentiation
necessarily needs one of the first two types of separation. The inheritance rules
give a parent couple of 1 and 3 offspring of type 2 (which is at the arithmetic
mean). Absence of the middle phenotype therefore needs absence of mating
between 1 and 3.

This shows that the types of differentiation are not independent. In the evolu-
tionary model dynamics spatial separation or assortativity sets in as the primary
separation. Both cases induce trait differentiation. Spatial separation may also
come in as secondary differentiation. This case is of particular interest since trait
differentiation is stabilised by a double boundary interrupting gene flow, spatially
and by mate choice.

4 Evolutionary pathways

Let us now turn to the transitions between these states and present typical
sequences of states in an evolutionary context. We focus on a setup inspired
by the already mentioned field studies of recolonisation of Europe after the
last glacial period [11]. Initially the colonising population finds very poor living
conditions, in the model we have the external death rate α 
 1. Under such
conditions only the central population at x = 0 is viable, the system is in the
state N1 = N3 = 0 described first in the previous Section. Now we model
slowly warming climatic conditions with increasing habitat quality; α is gradually
lowered and in wider regions of phenotype space populations become viable.

When this region has opened up wide enough, two neighbouring populations
will become viable and make better use of the resources than a single one in
the middle. This gives selective advantage to any properties in the population
enhancing its outer parts. In the previous Section we have seen the different states
of the system in which this is achieved. They are reached through evolutionary
pathways during which the parameters for mating and habitat preference are
adapted. We find three different kinds, which are also illustrated in Figure 2.

• The sympatric mode of speciation, shown in Figure 2 a, at small or no
habitat heterogeneity. Mating preference slowly develops but remains only
partial until at a critical value of habitat quality full assortativity develops
with xµ → 0. At this point, mating between opposite phenotypes is suppressed
and so is its offspring as a source for the population of middle phenotype. On
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Fig. 2. Three examples of evolutionary pathways, panel a and b show two varieties
of the sympatric mode of speciation, panel c the allopatric mode. a has lowest habitat
heterogeneity (smallest value of x0) and c highest. The slowest time scale with the
gradual increase in habitat quality is shown on the horizontal axis. In panels a and b
mating preference switches rapidly from partial to full assortativity when the habitat
quality is good enough. At this point the middle phenotypes become suppressed, N2 →
0. In panel b full localisation develops after assortativity. Now the two subpopulations
are doubly isolated, spatially and by mating preference. In panel c localisation develops
more rapidly than assortativity and causes N2 → 0.
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its own this phenotype is not viable, the competition load from the two outer
ones is too large; so it disappears together with xµ. The entire population is
now in a state where 1 and 3 coexist but are reproductively isolated from each
other.

• The sympatric mode with patching, Figure 2 b, at moderate heterogene-
ity, where after establishing assortativity there is another transition in the
model. If x0 is large enough, the system will reach a point where ρ = 1 and
both 1 and 3 have fully retreated into their respective more favourable habi-
tats. Now there is a double boundary against mating and gene flow between
the subpopulations, a sexual and a spatial one.

• The third type of pathway at strong habitat heterogeneity, the allopatric
mode in Figure 2 c, is different. Here the tendency towards localisation is so
strong that the two subpopulations become spatially isolated before assorta-
tivity can develop. Patching suppresses cross mating and causes the central
phenotype to go extinct. Now mating preference becomes meaningless as dif-
ferent phenotypes do not share any pieces of habitat and xµ remains at the
value of partial assortativity reached last.

5 Discussion

The main goal of this work is to study the interplay of trait and real space,
the internal and external degrees of freedom in a population at the onset of
speciation. The model constructed for this purpose shows a complex interaction
of its degrees of freedom despite its simplicity. The pathways of speciation are
the combined result of habitat topography, genetics, and ecology. The traditional
alternative of sympatry and allopatry is obsolete.

The evolutionary history is crucial for interpreting observed states of the
system. Spatial separation can occur as primary differentiation in the allopatric
mode or as a secondary step, after trait differentiation and mating assortativity
have already evolved in sympatry.

The effect of spatial heterogeneity on (the possibility of) sympatric speciation
is twofold: On one hand it may prevent the evolution of mating preference,
as emerging extreme phenotypes retreat into their respective favourite habitat
patches before differentiation in sympatry together with mating assortativity
has fully developed. On the other hand, if they retreat after differentiation,
patching forms an additional boundary against gene flow. Sympatric speciation
with subsequent patching is the most efficient way to cut the gene flow between
two subpopulations.

Clearly, the model can be generalised in several ways. For example a more
detailed spatial model, closer to Equation (1), can be used to study the profile of
the phenotypical population structure at the interface between habitats and the
gene flow across the boundary. Moreover, mating can and will be unsaturated in
certain cases, in contrast to the definition of Equation (7). If not all females are
able to find a desired mating partner, in particular at small population sizes, the
transitions between the different states of the system and hence the evolutionary
pathways will be modified [13,14].



278 Martin Rost and Michael Lässig
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