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A key step in the process of genetic transcription is

the binding of one or several transcription factors to spe-

cific sites in the regulatory region of a gene. These bind-

ing sites may differ strongly across even closely related

species, and the generation of new binding sites is an es-

sential part of the evolution of regulatory networks. In

this paper we consider the sequence evolution of bind-

ing sites, using empirically grounded fitness landscapes.

We demonstrate how a new binding site for a given tran-

scription factor may be generated de novo and estimate

the time required for this process in terms of the neutral

mutation rate, the selection coefficient, and the effective

population size. We also consider how several sites bind-

ing to the same type of factor can co-exist in the regula-

tory region of a gene.

1. Introduction

The expression of a gene is regulated by products of
other genes, termed transcription factors, as well as
by external signals [1]. The molecular basis for this
process is the physical binding of transcription factors
to specific regions of DNA in the so-called regulatory
region of a gene. Differences in gene regulation are
believed to be a major source of diversity in higher
eukaryotes. In this sense, suitable changes in the reg-
ulatory region of a gene may be viewed as a program-
ming and reprogramming of the genetic network [2].
The driving force for such changes is evolutionary
pressure. In this paper we consider the interplay be-
tween point mutations, selection, and genetic drift for
transcription factor binding sites.

Binding sites in procaryotes consist of about 10−15
base pairs relevant for binding and are found in most
cases in the cis-regulatory region of a gene. In the
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model organism E. coli, the cis-regulatory region is
about 300 base pairs long and contains a few tran-
scription factor binding sites [3]. In any given regu-
latory region, there may be two or more sites binding
the same factor.

The binding sequences for a given factor, both in
the regulatory region of one gene as well as across dif-
ferent genes, are not identical to each other. The se-
quences constituting binding sites for the same tran-
scription factor differ from each other by about 20−30
of the relevant base pairs. This property is referred to
as the fuzziness of binding sites, and makes the identi-
fication of binding sites from the regulatory regions of
genes a challenging bioinformatical problem [4, 5, 6].

Regulation in eukaryotes is based on the same
molecular mechanisms, but is vastly more compli-
cated [7]. The cis-regulatory region is typically much
longer (a few thousand base pairs) and contains a
multitude of binding sites. At the same time, indi-
vidual sites are shorter, with about 5-8 relevant base
pairs. The sites are sometimes organized in modules

interspersed between regions containing no sites.

The molecules acting as transcription factors may
also physically interact with each other. Multiple
binding sites involving different transcription factors
and the interactions between them can be used to im-
plement logical functions (such as transcription con-
ditional on, say, the presence of two specific tran-
scription factors and the absence of a third) [2]. Fre-
quently one also finds multiple binding sites for the
same transcription factor within the same regulatory
region, suggesting that a single site may not be not be
effective enough in binding the transcription factor.

The idea that binding sites and their sequences are
at the heart of the molecular programming of regu-
latory networks puts the evolution of binding sites in
the spotlight. The programming of genetic regulation
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must be achieved via the combined effects of muta-
tion and selection, leading to new functions of genes
as a response to specific demands. In fact one finds
that over evolutionary time scales, binding sites can
appear, disappear, or alter their sequence even be-
tween relatively closely related species; see, e.g., refs.
[8, 9, 10, 11, 12]. This turnover of binding sites has
been argued to follow an approximate molecular clock
in Drosophila [13]. On the other hand, there are cases
where binding sites are preserved even among fairly
distant species. Both observations can be explained
by evolution under selection pressure. Under con-
stant external conditions, binding site sequences can
be preserved over long periods (negative selection for
change), while they respond quickly to new external
conditions (positive selection for change).

In this paper, we focus mainly on the local sequence
evolution of single binding sites. This is also the most
promising starting point for a quantitative analysis of
binding site evolution. We review a model of tran-
scription factor binding, the two-state model by Berg
and von Hippel [14], as well as the resulting fitness
landscapes. We then discuss the stochastic modeling
of the binding site evolution under point mutations,
selection, and genetic drift. Details on these results
can be found in [15]. In section 5 we consider the
evolution of several binding sites for the same tran-
scription factor in the regulatory region of a gene.

2. Factor binding and selection

The binding energy between a transcription factor
and its binding site is, to a good approximation,
the sum of independent contributions from a small
number of important positions of the binding site se-
quence, E =

∑`
i=1

εi, with ` ≈ 10 − 15 [16]. The
individual contributions εi depend on the position i
and on the nucleotide ai at that position. There is
typically one particular nucleotide a∗i preferred for
binding; the sequence (a∗1, . . . , a

∗
` ) is called the tar-

get sequence. Here we use the further approximation
εi = ε if ai = a∗i and ε = 0 otherwise, the so-called
two-state model [14]. The binding energy of any se-
quence (a1, . . . , a`) is then, up to an irrelevant con-
stant, simply given by its Hamming distance r to the
target sequence: E = εr. (The Hamming distance is
defined as the number of positions with a mismatch

ai 6= a∗i .) The resulting binding probability of the
factor in thermodynamic equilibrium is

p =
1

1 + exp[ε(r − ρ)]
, (1)

where ε is expressed in units of kBT and the offset
term ερ is a chemical potential. The parameters ε
and ρ appropriate for typical binding sites have been
discussed extensively in refs. [17, 18]. It is found that
ε should take values around 2, which is consistent
with measurements for known transcription factors
giving ε ≈ 1 − 3 [16, 19, 20]. The chemical poten-
tial depends on the number of transcription factors
present in the cell, on the binding probability to ran-

dom sites elsewhere in the genome (which have a se-
quence similar to the target sequence by chance), and
on the binding to copies of the same operator other
than the binding site in question. Binding to indi-
vidual random sites is found to be negligible at the
observed factor numbers nf of about 50−5000, which
results in values ρ ≈ (log nf )/ε ≈ 2− 4 [18]. Binding
to other copies of the same operator becomes only rel-
evant at low factor concentrations and high number
of copies, when sites compete for factors.

These binding probabilities determine fitness land-
scapes for the binding site sequences. Following the
conceptual framework of ref. [17], we assume that the
environment of the gene to be expressed can be de-
scribed by a number of cellular states (labelled by the
index α) with different transcription factor concen-
trations, i.e., with different chemical potentials ρα.
In each state, the fitness depends only on the expres-
sion level of the gene, which in turn is determined by
the binding probability pα of the transcription factor.
Assuming that both dependencies are linear (this is
not crucial) and that the states contribute additively
to the overall fitness F , we obtain

F =
∑

α

sαpα, (2)

where sα is called the selection coefficient in the state
α. Inserting (1), the fitness becomes a function of the
Hamming distance r only.

In the simplest case, there are just two cellular
states. The on state favours expression of the gene,
the off state disfavours it. Assuming selection coeffi-
cients of equal magnitude s = son = −soff , we obtain
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a crater landscape,

F (r) =
s

1 + exp[ε(r − ρon)]
−

s

1 + exp[ε(r − ρoff)]
,

(3)
with a high-fitness rim between ρoff and ρon flanked
by two sigmoid thresholds. If only the on state con-
tributes significantly to selection, this reduces to the
mesa landscape discussed in [17, 21],

F (r) =
s

1 + exp[ε(r − ρon)]
, (4)

which has a high-fitness plateau of radius ρ and one
sigmoid threshold. Hence, the parameters of the
binding model have a simple geometric interpreta-
tion: ε gives the slope and the ρα give the positions
of the sigmoid thresholds in the fitness landscape, see
fig. 1(a,b). Clearly, the above is a minimal model of
factor binding and its fitness landscapes, which ne-
glects the context dependence of the binding process
through cofactors, chromatin structure, and coopera-
tive binding. However, it is a good starting point for
order-of magnitude estimates of the adaptive evolu-
tion of binding sites.

3. Genetic drift and stochastic dynamics

The rates of nucleotide point mutations vary greatly
between different organisms. In eukaryotes it is as low
as µ ∼ 2×10−9 in Drosophila [22]. The regime where
a finite population evolves under stochastic fluctua-
tions and selection is described by the Kimura-Ohta
theory [23]. In this regime, mutants of fitness dif-
ference ∆F to an initially monomorphic population
can substitute that population. This is a stochastic
process, whose rate constant is given by

u = µN
1− exp(−2∆F )

1− exp(−2N∆F )
(5)

in a diffusion approximation valid for ∆F � 1 [24].
Here N is the effective population size (with an addi-
tional factor 2 for diploid populations). Eq. (5) has
three well-known regimes. For substantially delete-

rious mutations (N∆F <
∼ − 1), substitutions are ex-

ponentially suppressed. Nearly neutral substitutions
(N |∆F |<∼ 1) occur at a rate u ≈ µ approximately
equal to the rate of mutations in an individual.

For substantially beneficial mutations (N∆F >
∼ 1), the

substitution rate is enhanced, with u ' 2µN∆F for
N∆F � 1.

In this picture, a population has a monomorphic
majority for most of the time and occasional coex-
istence of two sequence states while a substitution
is going on. The time of coexistence is T ∼ N for
nearly neutral and T ∼ 1/∆F for strongly benefi-
cial substitutions. The picture is thus self-consistent
for Tu � 1, i.e., for µN � 1. Asymptotically, it
describes monomorphic populations moving through
sequence space with hopping rates u.

Introducing an ensemble of independent popula-
tions, this stochastic evolution takes the form of a
Master equation. For a single binding site, we obtain

∂
∂t

P (r, t) =

(c− 1)(`− r + 1) ur−1,rP (r − 1, t) +

(r + 1) ur+1,rP (r + 1, t)−

[r ur,r−1 + (c− 1)(`− r) ur,r+1]P (r, t). (6)

Here P (r, t) denotes the probability of finding a pop-
ulation at Hamming distance r from the target se-
quence (0 ≤ r ≤ `, where ` is the length of the
binding site), and ur+1,r is given by (5) with ∆F =
F (r)−F (r + 1). The combinatorial coefficients arise
since a sequence at Hamming distance r can mutate
in (c−1)(`− r) different ways that increase r, and in
r ways that decrease r, where c = 4 is the number of
different nucleotides. The stationary distribution is

Pstat(r) ∼ exp[S(r) + 2NF (r)]. (7)

Here S(r) = log[(`
r)(c− 1)r/c`] is the mutational en-

tropy (the log fraction of sequence states with Ham-
ming distance r) [21] and we have used the exact

result ur+1,r/ur,r+1 = exp{2(N − 1)∆F}. To de-
rive (7) we then simply approximated N − 1 by N .
The form of Pstat(r) reflects the selection pressure,
i.e., the scale s of fitness differences in the land-
scape F (r). For near-neutral evolution (2sN � 1),
Pstat(r) ∼ exp[S(r)] is simply a flat distribution on all
sequence states. For moderate selection (2sN ∼ 1),
Pstat(r) results from a nontrivial balance of stochas-
ticity and selection. For strong selection (2sN � 1),
Pstat(r) takes appreciable values only at points of
near-maximal fitness, where F (r) >

∼Fmax−1/2sN . In
this regime, the dynamics of a population consists of
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beneficial mutations only, i.e., the system moves up-
hill on its fitness landscape.

4. Adaptive generation of a binding site

We now apply the dynamics (6) to the problem of
adaptively generating a binding site in response to a
newly arising selection pressure. We study a case
of strong selection (sN = 100) in the crater fit-
ness landscape (3) with parameters ` = 10, ε = 2,
ρon = 3, ρoff = 1 (implying that the factor con-
centrations differ by a factor of 50), and a case of
moderate selection (sN = 7) in the mesa landscape
with parameters ` = 10, ε = 1, ρ = 3.6. (The
mesa type may be most appropriate for factors with
multiple operator sites such as the CRP repressor in
E. coli, where binding to an individual site is negligi-
ble in the off state.) The fitness landscapes for both
cases are shown in fig. 1(a,b) in units of the selection
pressure s. Substantially beneficial mutations occur
only on their sigmoid slopes, i.e., in narrow ranges
of r. The upper boundary of this region is given by
rs = ρon +log[sN(eε− 1)]/ε, which takes typical val-
ues rs = 5−7. In fig. 1(c,d), we show a sample history
of adaptive substitutions from r = 5 to lower values
of r, which are close to the point rmax of maximal fit-
ness. The statistics of this adaptation is governed by
the ensemble P (r, t); the average r(t) and the stan-
dard deviation δr(t) appear also in fig. 1(c,d). The
expected time Ts of this adaptive process can be esti-
mated by adding the expected times for each consec-
utive mutation towards a lower Hamming distance.
In the case of strong selection, the expected time for
such a mutation can be readily estimated in terms
of the uphill rates in (6) and the expression for the
fixation rate (5). Back-mutations towards a higher
Hamming-distance are exponentially suppressed in
this regime. One obtains

Ts =
1

2µN

rs∑

r=rmax+1

1

r(F (r − 1)− F (r))
, (8)

taking values of a few times 1/sµN .
Can such a selective sweep actually happen? This

depends on the initial state of the regulatory region
in question before the selection pressure for a new
site sets in. The length of the regulatory region is
denoted by L. The region is approximated as an
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Fig. 1. Fitness landscapes and adaptive evolution for

a single binding site. Strong selection (sN = 100,

left column), moderate selection (sN = 6.8, right col-

umn). (a) Crater landscape (3). (b) Mesa landscape (4).

(c,d) Adaptive dynamics as a function of time t measured

in units of 1/2sµN : Single history r(t) (dashed lines),

ensemble average r̄(t) (thick solid lines) and width given

by the standard deviation curves r̄(t) ± δr(t) (thin solid

lines). (e,f) Stationary ensembles Pstat(r) of binding site

sequences with selection (filled bars) and for neutral evo-

lution (empty bars). Histogram of Hamming distances

of CRP site sequences in E. coli from their consensus se-

quence (diamonds, from [17]).

ensemble of L1 = L − ` + 1 candidate sites under-
going independent neutral evolution, i.e., the simul-
taneous updating of ` sites by one mutation is re-
placed by independent mutations. At stationarity,
the Hamming distance at a random site then fol-
lows the distribution Pstat(r) ∼ exp[S(r)] shown as
empty bars in fig. 1(e,f). The minimal Hamming
distance rmin in the entire region is given by the
distribution P(r) = QL1

stat(r) − QL1

stat(r + 1), where
Qstat(r) =

∑
r′≥r Pstat(r

′) is the cumulative distribu-
tion for a single site. P(r) is found to be strongly
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peaked, taking appreciable values only in the range
rmin(`, L)± 1 around its average. We assume the se-
lective sweep sets in as soon as at least one site has
a Hamming distance r ≤ rs. This is likely to happen
spontaneously if rs

>
∼ rmin(`, L), leading to a joint con-

dition on `, L, and rs. For rs
<
∼ rmin(`, L)−1, there is

a neutral waiting time before the onset of adaptation
[15].

The stationary distribution Pstat(r) under selection
is given by (7) and shown as filled bars in fig. 1(e,f).
For strong selection, it is peaked at the point rmax

of maximal fitness. For moderate selection, it takes
appreciable values for r = 0 − 4: the binding site
sequences are fuzzy. Assuming that the CRP sites
at different positions in the genome of E. coli have
to a certain extent evolved independently, we can fit
Pstat(r) with their distance distribution (data taken
from [17]). At the values of ε and ρon chosen, the
two distributions fit well, see fig. 1(f).

Starting from a neutrally evolved initial state and
progressing by point substitutions one can estimate
the time for a selective sweep to generate a new site in
response to a newly arising selection pressure. Such a
selective sweep takes roughly Ts ≈ (∆r)/2sµN gen-
erations, where ∆r is the number of adaptive substi-
tutions required. For Drosophila melanogaster, with
µ ≈ 2 × 10−9 [22] and N ≈ 106, Ts is of the order
of 107 generations or 106 years even for sites with a
relatively small selection coefficient s = 10−4. Such
selective sweeps are faster than neutral evolution by a
factor of about 100 and would allow for independent
generation of sites even after the split from its clos-
est relative Drosophila simulans about 2.5×106 years
ago. Notice that new sites are more readily generated
in large populations. As discussed above, generating
a new site may also require a neutral waiting time un-
til at least one candidate site in the regulatory region
of the gene in question reaches the threshold distance
rs from the target sequence, where selection sets in.
The expectation value of this neutral waiting time is
termed T0. For site formation to be efficient, however,
selection must be able to set in spontaneously, i.e., T0

must not greatly exceed the adaptive time Ts. This
places a bound on the relevant length ` of the binding
motif that can readily form in a regulatory region of
length L. Given L ≈ 300, for example, a motif with
` = 8 and rs = 3 could still allow for a spontaneous

selective sweep. (For longer motifs, corresponding to
groups of sites with fixed relative distance, this path-
way would require regulatory regions of much larger
L.) One may speculate that this adaptive dynamics
is indeed one of the factors influencing the length of
regulatory modules in higher eukaryotes.

For weaker selection, site fuzziness increases since
Pstat extends beyond the sequence states of maximal
fitness and is influenced by mutational entropy. As
shown in fig. 1(f), one can explain in this way the
observed fuzziness in CRP sites of E. coli. It would
then reflect different evolutionary histories of inde-
pendent populations, rather than sampling in one
polymorphic population as in the quasispecies picture
of refs. [17, 25]. However, the data are also compat-
ible with strong selection if the selection coefficients
sα, and hence the value of rmax, vary between differ-
ent genes. Clearly, comparing Pstat with the distribu-
tion of sites in a single genome requires the assump-
tion that the evolutionary histories of sites at differ-
ent positions are at least to some extent independent.
Future data of orthologous sites in a sufficient num-
ber of species will be more informative. Thus, further
experimental evidence is needed to clarify the role of
mutational entropy in the observed fuzziness.

5. Evolution of multiple binding sites

Regulation in higher organisms, where regulatory re-
gions are several thousand base pairs long and often
contain multiple binding sites, is characterized by the
presence of several binding sites for a single type of
transcription factor. The resulting fitness landscape
depends in a complicated way on the Hamming dis-
tances of individual sites from the master sequence,
as well as on collective properties such as the relative
spacing of sites. Therefore, we will not attempt to
construct a detailed model of selection here. We will
ask a simpler question: assuming the function of a
gene requires a given expression level J in the ‘on’
state, what are typical sequence configurations to be
expected for multiple sites? We limit ourselves to the
simplest case where (i) the total expression level gen-
erated by a group of sites is the sum of the binding
probabilities at the individual sites and (ii) binding
at a given sites does not depend on the occupation of
other sites. The total expression level J for a group
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of M sites with Hamming distances r1, . . . rM from
the master sequence is then

J(r1, . . . , rM ) =
M∑

m=1

p(rm) , (9)

with p(r) given by equation (1).
We now consider the equilibrium distribution

Pstat(r1, . . . , rM ) under the constraint that the to-
tal current (9) remains constant. This can be ob-
tained approximately by assuming that the contribu-
tion p(rm) of a given site to the total expression level
depends on the time-averaged expression levels of all
other sites,

Pstat(r1, . . . , rM ) =

M∏

m

Pstat(rm) (10)

with
Pstat(r) ∼ exp {S(r) + sp(r)} . (11)

Here the selection pressure s must be adjusted such
that the required expression level J equals the expec-
tation value given by (9) and (10),

J =

M∑

m

〈pm〉 = M〈p〉 (12)

with the average expression level contributed per site,

〈p〉 =
∑̀

r=0

p(r)Pstat(r) . (13)

This mean-field approach neglects correlations be-
tween different sites. (Formally, it consists of
a Legendre-transformation leading from a micro-
canonical to a canonical ensemble, a standard pro-
cedure in statistical mechanics.)

Figure 2(a) shows how the equilibrium distribution
Pstat(r) changes with s for the binding probability
(1) with ρ = 1, ε = 2, and site length ` = 7. At
large values of s, all the weight of this distribution
is concentrated at r = 0. As s decreases, a bimodal
distribution emerges which a second peak near the
maximum of the entropy S(r). Thus only a certain
fraction of the sites considered will actually bind the
transcription factor. In the following, we consider a

group of M potential binding sites. In this group we
distinguish active sites, which actually bind the tran-
scription factor, and inactive sites, which do not bind
and in fact may have any sequence. A site is called
an active site as long as p(r) > 0.05 p(r = 0), which
gives a condition r < r0 (In our particular example
r0 = 3. The particular choice of the threshold in the
expression level has little influence on the results).

It is clear that the selection pressure s on an in-
dividual site decreases with increasing M . Indeed,
the fuzziness observed experimentally suggests that
the selection pressure on individual sites is rather
low. Given the distribution Pstat, the expected fuzzi-
ness of an active (i.e., observable) site is 〈r〉a ≡∑

r≤r0
rPstat(r)/

∑
r≤r0

Pstat(r). We now use our
model to predict the selection pressure s and the to-
tal number of sites, which is given by M = J/〈p〉.
Clearly, to maintain an expression level J , there
must be at least Mmin = J/p(r = 0) sites. This
is the limit of no fuzziness and high selection pres-
sure. As M increases, the selection pressure s de-
creases and the fuzziness 〈r〉a of active sites increases.
Fig. 2(b) shows these quantities as a function of the
ratio x = M/Mmin. At fixed J , the expected num-
ber of active sites remains approximately constant,
〈M〉a ≈ Mmin(J) = M/x.

As can be seen from Figure 2(b), already a moder-
ate fuzziness (say 〈r〉a ≈ 1/2) corresponds to values
of x ≈ 1/2; i.e. the total number of sites M is about
twice the number of active sites 〈M〉a. A simple pic-
ture of the evolutionary dynamics emerges. At the
observed levels of fuzziness, selection is too weak to
ensure the conservation of the sites active at one point
in time. Active sites will become defunct eventually
due to deleterious mutations fixed by genetic drift.
At the same time, other sites become active due to
advantageous mutations. The stationary value of the
expression level is maintained only at the level of the
entire module.

6. Discussion

Transcription factors and their binding sites emerge
as a suitable starting point for quantitative studies of
gene regulation. Binding site sequences are short and
their sequence space is simple. Moreover, explicit fit-
ness landscapes can be derived from empirical data
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Fig. 2. (a) The equilibrium distribution Pstat(r) for s =

4, 11, 20 (solid, dashed, and dotted lines, respectively).

(b) The selection pressure s and the average Hamming

distance of active sites 〈r〉a as a function of x = Mmin/M

(solid and dashed lines respectively).

on binding affinities. For a single site, the simplest
examples are of the mesa [17] or of the crater type,
see fig. 1(a,b). For this case, the evolutionary dynam-
ics of point mutations, selection, and genetic drift can
be analyzed in some detail. The de novo formation

of binding sites in response to an external change can
be a rapid mode of evolution given even moderate se-
lection pressures. Under neutral evolution, however,
this mode would be too slow in many cases to account
for the observed changes.

For the case of coexisting sites in eukaryotes, we
have analyzed a simplified evolutionary model relat-
ing the collective properties of a module with multiple
binding sites to the fuzziness and selection presssures
of its constituent sites. Given typical levels of fuzzi-
ness found in observations, the model predicts low se-
lection coefficient for each individual site and, hence,
a considerable turnover of sites. That is, the num-
ber of sites observed in a single species is expected
to be lower than the total number of sites observed

over longer evolutionary times, e.g., by cross-species
comparison.

In this picture, sites active at one point in time will
tend to become inactive due to deleterious mutations,
while other sites are (re-)activated due to compen-
satory selection. These large fluctuations in individ-
ual sites take place even if the regulatory module as a
whole maintains a fairly constant expression level. In
other words, compensatory selection can only be un-
derstood at the level of an entire module, not for its
constituent sites. Hence, the evolution of a module is
the collective dynamics of its sites. A consequence of
our analysis is that bioinformatics methods identify-
ing sites from inter-species sequence conservation will
miss many functional sites. A more detailed analyis
of multi-site modules and their evolutionary modes is
a challenge for future research.

The present work was aimed at obtaining some in-
sight into the molecular mechanisms and constraints
underlying the dynamics of complex regulatory net-
works, thereby quantifying the notion of their evolv-

ability. The programming of binding sites is found to
provide efficient modes of adaptive evolution whose
tempo can be quantified for the case of point muta-
tions. The formation of complicated signal integra-
tion patterns and of multi-factor interactions, how-
ever, in higher eukaryotes requires generalizing our
arguments in two ways. There are further modes of
sequence evolution such as slippage events, insertions
and deletions, large scale relocation of regulatory re-
gions, and recombination. Moreover, there are also
more general fitness landscapes describing, e.g., bind-
ing sites interacting via the expression level of the
regulated gene (such as activator-repressor site pairs)
and the coupled evolution of binding sites in different
genes.
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