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Natural selection favors fitter variants in a population, but actual
evolutionary processes may decrease fitness by mutations and
genetic drift. How is the stochastic evolution of molecular bio-
logical systems shaped by natural selection? Here, we derive a
theorem on the fitness flux in a population, defined as the
selective effect of its genotype frequency changes. The fitness-
flux theorem generalizes Fisher’s fundamental theorem of natural
selection to evolutionary processes including mutations, genetic
drift, and time-dependent selection. It shows that a generic state
of populations is adaptive evolution: there is a positive fitness flux
resulting from a surplus of beneficial over deleterious changes. In
particular, stationary nonequilibrium evolution processes are pre-
dicted to be adaptive. Under specific nonstationary conditions,
notably during a decrease in population size, the average fitness
flux can become negative. We show that these predictions are in
accordance with experiments in bacteria and bacteriophages and
with genomic data in Drosophila. Our analysis establishes fitness
flux as a universal measure of adaptation in molecular evolution.

adaptive evolution | fitness landscapes | fluctuation theorems in statistical
physics | fundamental theorem of natural selection

Adaptive processes have taken center stage in molecular evo-
lutionary biology. Deep sequencing of populations opens

unprecedented opportunities to trace the genomic basis of adap-
tation in population-genetic studies within and across species as
well as in time series of evolution experiments. Various methods
are used to infer natural selection from such data; however, their
results lack a common gauge and are sometimes difficult to com-
pare. This paper develops the concept of fitness flux in a pop-
ulation as a genericmeasure of adaptation applicable tomolecular
data. Whereas fitness characterizes the state of a population at a
given point in time, fitness flux can be accumulated in a pop-
ulation’s history over a period (a precise definition of this quantity
will be given below). Fitness flux, not fitness, turns out to be the
right variable to show that adaptive evolution is a generic state of
natural populations. The notion of fitness flux is already implicitly
contained in Fisher’s fundamental theorem of natural selection
(1), which states that any fitness difference within a population
leads to adaptation in an evolution process governed by natural
selection alone. Thefitnessfluxof this deterministic process equals
the (additive) fitness variance in the population. Hence, the flux is
positive when adaptation occurs and zero otherwise.
Generalizing this picture to realistic processes of molecular

evolution has been a long-standing problem (2–8). The solution
presented here involves a number of important conceptual steps.
First, molecular processes are always stochastic because of genetic
drift and mutations, and we include these forces into a stochastic
theory of fitness flux. Second, we extend the observation of this
dynamics to the time scales of genomic data, describing pop-
ulations by histories of genotype composition and demography
that may extend beyond their coalescence time. Third, natural
selection itself is treated as dynamic on these time scales. We
generalize static fitness landscapes, a concept introduced by
S. Wright (9), to explicitly time-dependent models of selection
referred to as fitness seascapes. The time dependence of selection
reflects the changing ecology of a species. It has complex and
opposing effects on adaptation (10–15): rapid fluctuations
enhance the stochasticity of the evolutionary process and impede

long-termadaptation (11), but persisting changes openwindows of
positive selection and are the very cause of adaptive evolution and
fitness flux (13, 15). The production of fitness flux by adaptive
processes is a nonequilibrium phenomenon and does not neces-
sarily imply any increase in fitness. Surprisingly, this production
obeys a general theorem, which provides a basis for quantifying
adaptation in stochastic evolution. The theorem and its proof
establish an important conceptual link between evolutionary
genetics and stochastic nonequilibrium thermodynamics. A close
analogy of the fitness-flux theorem to its deterministic counter-
part, Fisher’s theorem, emerges in the case of stationary evolution.
The average fitness flux is positive in nonequilibrium stationary
states , which are associated with adaptive evolution (15). The flux
is zero at evolutionary equilibrium, where no adaptations occurs.
The power of thefitness-flux theoremwill be shownby a number of
applications to evolution experiments in microbes and to cross-
species genome comparison in flies.

Theory of Fitness Flux
Population Histories and Fitness Flux. We start by introducing the
notionoffitnessflux and its relationship tofitness.Considerfirst the
microevolution of a population containing a resident and a mutant
genotype. The genotype evolution of the population can be
described by a series of observations x= (x0 , x1, . . ., xn) of mutant
frequencies at successive times (t0 , t1, . . ., tn), which we refer to as
the history of thepopulation.Natural selection governs this process
by a difference in reproductive rate of the mutant against the res-
ident genotype, s, which may depend on frequencies and time.
Here, we consider selection coefficients s(x, t) with persistence
times of many generations that affect the evolution of genotype
frequencies and can be measured, for example, by growth-com-
petition experiments in a microbial population. Measurements of
population histories are assumed to be sufficiently dense so that the
changes in selection aswell as frequency changes (Δxi= xi+1− xi) in
each time interval (Δti= ti+1 – ti) are small. Thefitnessflux can then
be defined as a measure of adaptation at a given point of the
population history: ϕ(ti) = s(xi, ti)Δxi/Δti is the product of the
selection coefficient and the rate of frequency change. The cumu-
lative fitness flux (Eq. 1)

ΦðxÞ ¼ ∑
n− 1

i¼0
ϕðtiÞΔti ¼ ∑

n− 1

i¼0
sðxi; tiÞΔxi [1]

measures the total adaptation of the entire population history
(13). For a history containing a substitution process (i.e., a
transition from initial frequency x0 = 0 to final frequency xn = 1)
under constant selection, the flux Φ equals the selection coef-
ficient s of the new genotype against the old genotype. This
picture is easily extended to sequences of length L with 4L

Author contributions: V.M. and M.L. designed research, performed research, analyzed
data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Hinxton, United Kingdom.

2To whom correspondence should be addressed. E-mail: lassig@thp.uni-koeln.de.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0907953107/DCSupplemental.

4248–4253 | PNAS | March 2, 2010 | vol. 107 | no. 9 www.pnas.org/cgi/doi/10.1073/pnas.0907953107

mailto:lassig@thp.uni-koeln.de
http://www.pnas.org/cgi/content/full/0907953107/DCSupplemental
http://www.pnas.org/cgi/content/full/0907953107/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.0907953107


possible genotypes, where x and s become vectors with 4L – 1
independent components. The genotype-based approach is use-
ful for compact genomic units such as transcription factor-
binding sites, where recombination can be neglected. Our results
equally apply to the evolution of populations measured by allele
frequencies at individual genomic loci (i.e., by vectors x and s
with 3L independent components). This picture, which neglects
correlations between coexisting alleles at different genomic loci
(linkage disequilibrium), is valid in populations with sufficiently
efficient recombination (SI Text). Including all accessible
sequence states in the description of population histories, not
just those coexisting at a given point in time, makes it possible to
describe processes over longer evolutionary time. Such processes
involve fixed population states interspersed with polymorphic
time intervals and may contain substitutions at multiple genomic
loci, which contribute additively to the cumulative fitness flux.

Fitness Land- and Seascapes. A particularly intuitive picture of fit-
ness flux emerges if the selection coefficients are the gradient of a
time-independent fitness landscape. The relation s(x) = ∇F(x)
defines this landscape up to an arbitrary constant (and implies
that F differs in general from the mean population fitness; SI
Text). Selection coefficients at one locus depending on the allelic
state at another locus define fitness interactions between
genomic loci (epistasis); fitness landscapes with pervasive epis-
tasis are often called rugged. Such interactions generate linkage
disequilibrium within a population and also correlations between
alleles fixed at different genomic loci in subsequent states of
a population history, which reflect compensatory modes or
complex adaptive pathways of molecular evolution (16). In any
fitness landscape, the frequency change Δxi in each time interval
between successive measurements results in a fitness change
Δxi∇F(xi), as illustrated in Fig. 1A. By Eq. 1, the cumulative
fitness flux ΦðxÞ ¼ ∑n− 1

i¼0 Δxi∇FðxiÞ of the entire population his-
tory is then simply the fitness change between the initial and final
population, Φ(x) = F(xn) – F(x0). This picture can be extended to
evolution in a fitness seascape F(x, t) describing time-dependent
selection coefficients s(x, t) = ∇F(x, t), as illustrated in Fig. 1B.
The fitness flux (Eq. 1) takes the form ΦðxÞ ¼ ∑n− 1

i¼0 Δxi∇Fðxi; tiÞ
and remains a well-defined observable of the adaptive process,

because it involves only growth-rate differences between geno-
types within a population at a given point in time. However,
the fitness flux is no longer equal to the fitness difference bet-
ween the initial and final population. This is because its defi-
nition does not include the explicit fitness change during a
population history, ∑n− 1

i¼0 Δtið∂F=∂tÞðxi; tiÞ, which depends on ar-
bitrary constants and is unrelated to the adaptive process. In the
example of Fig. 1B, the initial state is fitter than the final state in
the original landscape, F(x0 , t0) > F(xn , t0), but the roles of both
states are reversed in the final landscape, F(xn , tn) > F(x0 , tn).
The example shows that fitness differences between populations
at different times cannot even be defined in an unambiguous way
under time-dependent selection and hence, cannot serve as a
universal measure of adaptation. The same is true in more
general cases in which the selection coefficients s(x, t) cannot be
expressed as gradient of any fitness function F(x, t). An example
is cyclic selective advantage between three or more genotypes as
in the well-known rock-paper-scissors game, which is shown in
Fig. 1C and has been observed, for example, in bacterial and
lizard populations (22, 23). We include these cases into the
picture of fitness seascapes, associating nongradient selection
coefficients s(x, t) with water currents unrelated to the height
pattern F(x, t) of the waves. Fitness flux ϕ and cumulative flux Φ
as given by Eq. 1 are well-defined measures of response to
selection pressures for population histories in any fitness sea-
scape. This is why we can infer fitness fluxes, but not fitness
differences, between populations from experimental and
genomic data. Positive values of ϕ, or an increase of Φ, signal
adaptation in a population history. But when does Φ increase?

Deterministic Versus Stochastic Evolution, Fisher’s Theorem. The first
to address the increase of Φ and to establish a measure of
adaptation different from fitness was R.A. Fisher in his funda-
mental theorem (1), whose rationale has been elucidated deca-
des later by Price (25) and Ewens (26). Fisher’s partial rate of
fitness increase caused by natural selection (25) is just the fitness
flux ϕ defined for allele frequencies at genomic loci (SI Text).
The fundamental theorem equates this flux to the additive
genetic fitness variance in the population. As long as there are
any fitness differences between coexisting alleles, this flux is

A B C

Fig. 1. Evolution in fitness landscapes and seascapes. The evolutionary history of a population is described by a series of genotype or allele frequency states
x = (x0, . . ., xn) at times (t0, . . ., tn) (here, n = 3). Evolutionary time increases between the initial state (◇) and the final state (□). The cumulative fitness flux in
each time interval (gray-filled vertical arrows) is the product of the frequency change Δxi = xi+1 – xi between successive states (horizontal arrows) and the
selection coefficient s(xi, ti) of this change; the cumulative flux Φ(x) of the entire history is the sum of these terms. The reverse history xT = (xn, . . ., x0) evolves
through the same states in reverse order from the initial state (□) to the final state (◇). Each transition has the opposite fitness effect as the corresponding
transition of the original history, resulting in a cumulative fitness flux Φ(xT) = – Φ(x) (the direction of all arrows is reversed). (A) Evolution in a fitness landscape
F(x). The gradient of this function defines time-independent selection coefficients s(x) = ∇F(x). A linear landscape corresponds to a frequency-independent
selection, and a nonlinear landscape as shown here corresponds to frequency-dependent selection. The cumulative fitness flux Φ(x) of a population history
measures the fitness difference ΔF = F(xn) – F(x0) between initial and final population. In general, the function F(x) is not equal to the mean population fitness,
as discussed in SI Text. (B) Evolution in a fitness seascape F(x, t). The gradient of this function defines time-dependent selection coefficients s(x, t) = ∇F(x, t). The
cumulative fitness flux of a population history is defined in terms of selection coefficients and frequency changes as before. However, it no longer equals the
fitness difference between initial and final population, because its definition does not include the explicit time dependence of fitness during the history that is
unrelated to adaptation (unfilled vertical arrows). (C) Evolution in a fitness seascape with selection coefficients s(x, t) not of gradient form. The example shows
cyclic selective advantage as in the rock-paper-scissors game (i.e., each of the transitions from x0 to x1, from x1 to x2, etc., and from x2 to xn = x0 involves a
positive selection coefficient). The fitness flux is defined as before and is again unrelated to a fitness difference between final and initial population state.
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positive (i.e., the cumulative flux Φ increases), and there is
adaptation: Fisher’s populations move uphill on fitness land-
scapes. However, the theorem is valid only under the restrictive
assumption that evolution is deterministic and dominated by
natural selection, which excludes mutations and genetic drift.
Hence, Fisher’s theorem applies only to microevolution of
established alleles in the limit of large populations under strong
selection, a regime that is violated by low-frequency alleles in any
finite population.
To describe realistic processes of molecular evolution over

longer evolutionary times, we must include mutations and
genetic drift in our scenario. These stochastic evolutionary forces
compete with natural selection and invalidate Fisher’s theorem.
The fixation of slightly deleterious mutations and mutation load
are well-known examples for such effects. Thus, the fitness flux of
an individual population can become negative: stochastically
evolving populations can move downhill on fitness landscapes
(27). Of course, stochastic evolutionary theory no longer
addresses single populations but ensembles of evolving pop-
ulations with time-dependent distributions P(x, t) of genotype or
allele frequencies. The interpretation of such distributions is
strictly probabilistic, because genotype space and allele-fre-
quency space for multiple genomic loci are very high dimensional
and can never be sampled by the time course of a single pop-
ulation or by an actual ensemble of populations. Simple
observables in populations and their histories, however, can be
sampled and compared with predictions of the probabilistic
theory. This is the case for the theorem to be established below,
which is an identity involving the cumulative fitness flux.

Evolutionary Equilibria and Fitness. We first show how fitness and
fitness flux can be evaluated in stochastic population ensembles.
The evolution of the frequency distribution P(x, t) is determined
by the conditional probabilitiesG(x′, t′, x, t) of the transition from
initial frequencies x at time t to frequencies x′ at a later time t′. We
define evolutionary equilibrium as a stationary (time-independent)
distribution Peq(x), which satisfies the so-called detailed balance
condition G(x′, t′, x, t)Peq(x) = G(x, t′, x′, t)Peq(x′) for arbitrary
times and frequencies. Detailed balance says that in equilibrium,
the probability of any evolutionary transition equals the proba-
bility of the reverse transition. This definition is well-known in
statistical physics, but it is more restrictive than the definitions in
much of the population-genetics literature, where any stationary
state is called equilibrium. For simplicity, we assume that the
mutation-drift process in the absence of selection has an
(approximate) equilibrium P0(x). This is the case if the mutation
rates are independent of time and satisfy mild additional con-
ditions (Methods). We do not require that the actual process has
reached this equilibrium. Given a neutral equilibrium, the full
process in an arbitrary time-independent fitness landscape F(x)
also has an equilibrium, and its frequency distribution is of
remarkably simple form (Eq. 2),

PeqðxÞ ¼ P0ðxÞeNFðxÞ [2]

(Methods). Here, N is the effective population size, and the
additive constant of the fitness landscape is given by normal-
ization of the distribution Peq. Kimura’s (27) U-shaped dis-
tributions for a single two-allele locus at neutrality and under
directional selection are classic examples of evolutionary equi-
libria and the fitness relation (Eq. 2). Various forms of this
relation have been used to infer scaled fitness landscapes NF(x)
from histograms of the distributions P0(x) and Peq(x) obtained
from genomic data (28, 29) (for a recent review, see ref. 15). The
fitness relation has an obvious information-theoretic inter-
pretation (30): the function NF(x) is the relative log-likelihood of
the distributions Peq(x) and P0(x), and its expectation value

NhFi ¼ ∑x NFðxÞPeqðxÞ equals the relative (Kullback–Leibler)
entropy of these distributions, N〈F〉 = H(Peq|P0).

Reverse Histories and Fitness Flux.Equilibriummaybe the exception
rather than the rule in the evolution of biological systems under
natural selection. A generic process evolves from arbitrary initial
conditions in an arbitrary (time-dependent or nongradient) fitness
seascape, generating a frequency distributionP(x, t) thatmay be far
from equilibrium. This distribution can still be compared with the
neutral equilibrium distribution P0(x) by the relative log likelihood
Hðx; tÞ ¼ log½Pðx; tÞ=P0ðxÞ�, which, however, no longer equals the
scaled fitness NF(x) as in equilibrium. We now derive a non-
equilibrium identity similar to Eq. 2 for the probability distribution
PðxÞ of population histories in a given time interval (t0, tn). We
define for each history x a reverse history xT = (x0

T, . . . , xn
T).

Starting from the point x0
T = xn at time t0, the history xT evolves

through the population states of x in reverse order, and each
transition has the opposite fitness effect as the corresponding
transition in the original history (Fig. 1). Using methods originally
developed in nonequilibrium thermodynamics (31–34), we can
show that the probability of the reverse history is given by (Eq. 3)

PðxTÞ ¼ PðxÞe−NΦðxÞþΔHðxÞ; [3]

where Φ(x) is the cumulative fitness flux and
ΔHðxÞ ¼ Hðxn; tnÞ−Hðx0; t0Þ is the difference in relative log
likelihood between the initial and final point of the original
(forward) history (Methods).

Fitness-Flux Theorem. We can now state the theorem: an evolu-
tionary process with mutations, genetic drift, and selection given
by an arbitrary fitness seascape satisfies the identity (Eq. 4)

�
e−NΦþΔH� ¼ 1: [4]

The angular brackets denote an average over the probability
distribution of population histories, hf i ¼ ∑x f ðxÞPðxÞ, in a given
time interval (t0, t). Using Eq. 3, we recognize this history aver-
age as the sum ∑xTPðxTÞ, which equals unity by normalization of
the probability distribution of reverse histories. The identity
(Eq. 4) is a genuine nonequilibrium relation: it is valid for
arbitrary initial conditions P(x, t0) and arbitrary time-dependent
selections. It belongs to a set of relations known as fluctuation
theorems, which have played an important role in the non-
equilibrium statistical physics of mesoscopic systems over the
past decade (31–34). As an immediate consequence of Eq. 4, the
fitness flux in any fitness seascape has a lower bound,

NhΦi ≥ ΔH; [5]

where ΔH ¼ hΔHi ¼ HðPðtÞjP0Þ−HðPðt0ÞjP0Þ is the relative
entropy difference between initial and final frequency dis-
tribution. If the underlying assumption of existence of a neutral
equilibrium is dropped, relations analogous to Eq. 4 and the
inequality 5 still hold for the total nonequilibrium flux, which is
the sum of fitness flux and neutral mutation flux (SI Text).

Applications of the Theorem
Population histories and fitness fluxes are increasingly accessible
to experimental observation (17– 21). As an example, consider a
recent experiment describing the adaptation of a bacterial pop-
ulation to antibiotic stress (17). This process involves five amino
acid substitutions in a specific protein (i.e., 25 = 32 different
genotypes and 5! = 120 different population histories differing in
the order of these substitutions). The selection coefficient of
each substitution in each genetic background has been meas-
ured, and the cumulative fitness flux of a population history is
simply the sum of the selection coefficients of its substitutions in
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their specified order. More generally, polymorphism and sub-
stitution data from a growing number of sequenced genomes can
be used to estimate rate and selection coefficients of sequence
changes (an example is discussed below). Such estimates provide
copious data on fitness fluxes and adaptation on macroevolu-
tionary scales. It can be shown, for example, that the well-known
McDonald–Kreitman method (24) is a test not merely for pos-
itive selection but also for the positivity of fitness flux (13).

The fitness-flux theorem provides a classification of these
observations into different scenarios of Darwinian evolution at
the molecular level. We now discuss such scenarios and their
relevance to experiments and genomic studies.

Evolutionary Equilibrium. The equilibrium distribution (Eq. 2) is
the unique population ensemble in which the identity
NΦðxÞ ¼ NΔFðxÞ ¼ ΔHðxÞ holds for each population history.

A

B

C

Fig. 2. Fitness evolution of genomic population histories under three different scenarios of selection and demography. (A) Evolutionary equilibrium in a time-
independent fitness landscape. (Upper Left) Fitness evolution of a single two-allele genomic locus (schematic). The two alleles a, b have time-independent
fitness values fa, fb (black lines). The mean population fitness of this locus (red line) evolves by a series of beneficial or deleterious substitutions (red arrows),
which have selection coefficients s = fb – fa and – s, respectively. This process obeys detailed balance (i.e., beneficial substitutions occur at the same rate as
deleterious ones). (Lower Left) Fitness evolution of sequences with L = 12 independent two-allele loci, additive fitness and a uniform mutation rate of μ per
locus. Fitness flux NΦ (red lines) and the negative of the log-likelihood change, -ΔH (green lines), between initial and final population state in the interval (0, t)
are shown as time series of an individual history (solid lines) and as ensemble averages over 105 independently evolving populations (dashed lines). Each
population history obeys the detailed balance relation NΦ ¼ NΔF ¼ ΔH (in the equilibrium ensemble, log likelihood H equals scaled fitness NF). Evolutionary
time is measured in units of the inverse neutral genomic mutation rate 1/μL. Polymorphism lifetimes are short, and substitution processes (vertical line segments
and arrows) appear instantaneous on this time scale. For simulation details, see SI Text. (Lower Right) Histograms ofNΦ (red), -ΔH (green), andNΦ-ΔH (blue) at a
given time t = 28.8/μL for an ensemble of 105 populations, with averages marked by dashed vertical lines. (B) Nonequilibrium stationary state in a stochastic
fitness seascape. Diagrams are the same as in A. Selection coefficients s(t) = fb(t) – fa(t) at individual genomic loci fluctuate between two values following a
Poisson process, which generates independent selection histories at each locus (for details, see SI Text). Because the rate of selectionfluctuations is much smaller
than the inverse polymorphism lifetime, a switch of selection generates a persistent window of positive selection. The average cumulative fitness flux N〈Φ〉
increases with time at a constant positive rate, signaling adaptive substitutions. Most individual population histories have a flux NΦ close to this average, but
there are rare drift-dominated histories with NΦ< -ΔH. (C) Transitions between equilibria under demographic changes. Diagrams are the same as in A. Pop-
ulation size first decreases from an initial value N0 to a bottleneck value Nb = N0/2, remains constant during the bottleneck, and later increases to the original
valueN0. This process results in time-dependent scaled-allele fitness valuesN(t)fa,N(t)fb and selection coefficientsN(t)(fb – fa). The population decline generates
a loss in scaled fitness,Δ1H =Δ1〈NF〉 < 0 and a negative scaled fitness fluxN0〈Φ1〉 < 0 in the time interval (0, t1 = 26.6/μL). The recovery in the time interval (t1, t2 =
57.6/μL) restores the initial fitness, Δ2H = Δ2〈NF〉 = – Δ1H > 0, and generates a positive scaled fitness flux N0〈Φ2〉 that exceeds the flux N0〈Φ1〉 of the decline in
magnitude (for details, see Methods and SI Text).
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Numerical simulations of equilibrium populations shown in Fig.
2A illustrate the identical statistics of NΦ and ΔH for individual
histories and the resulting ensemble distributions. By Eq. 3, the
identity NΦ ¼ ΔH implies that the probability of any history
equals that of its reverse history, PðxÞ ¼ PðxTÞ, which expresses
detailed balance of the equilibrium ensemble: beneficial sub-
stitutions of selection coefficient s > 0 occur at the same rate as
deleterious substitutions of selection coefficient −s. Hence, the
average fitness flux 〈ϕ〉 vanishes, and the average fitness 〈F〉
remains constant. Evolutionary equilibrium has been realized, for
example, in an experiment with bacteriophages (35). Under sta-
tionary experimental conditions, the phage populations have been
found to relax to constantfitness values that are independent of the
previous history of the population and increase with population
size, consistent with the behavior of the ensemble average 〈F〉
predicted by Eq. 2 . This self-averaging of individual populations
suggests that the phage genome has a sufficient number of inde-
pendently evolving loci.
For the approach to equilibrium, the inequality 5 implies that

the free fitness N〈F〉 – H always increases monotonically with
time and is maximal at equilibrium (4, 36), which is an evolu-
tionary analog of Boltzmann’s H theorem. Consistent with this
scenario, the recent analysis of a long-term experiment of bac-
terial evolution under constant conditions has found an increase
of fitness and a decrease of fitness flux ϕ over time (21).

Nonequilibrium Stationary States. In a generic population ensem-
ble, the maximum principles of equilibrium (4, 36) and the
detailed balance condition NΦ ¼ ΔH for individual histories are
violated. For any stationary nonequilibrium ensemble, the
inequality 5 with ΔH = 0 predicts that the average fitness flux
〈ϕ〉 = d〈Φ〉/dt is a positive constant: populations steadily accu-
mulate a surplus of beneficial over deleterious changes. Thus,
adaptation takes place, although the average fitness 〈F〉 remains
constant. For most individual populations, the cumulative flux
over a sufficiently long time interval Δt is close to the ensemble
average, Φ ≈ 〈Φ〉 = 〈ϕ〉Δt > 0. The full theorem (Eq. 4) shows
that selection is overcome by genetic drift and NΦ<ΔH in an
exponentially small subset of populations. Muller’s ratchet, the
scenario of degradation by an excess of deleterious substitutions,
is, thus, very unlikely as a stationary process but requires, for
example, a dwindling population size.
Stationary nonequilibrium evolution can be caused by time-

dependent selection (15). Here, we consider a minimal stochastic
fitness seascape defining independently fluctuating selection
coefficients at individual genomic loci. This process generates an
ensemble of populations with joint histories of selection and
genotype, which is shown in the numerical simulations of Fig. 2B.
In accordance with the fitness-flux theorem, the cumulative flux
〈Φ〉 in the stationary state increases at a constant positive rate
〈ϕ〉. Typical populations adapt to changing selection pressures by
a surplus of beneficial over deleterious substitutions. Recent
population-genetic studies of Drosophila genomes have shown
evidence for adaptive evolution at a genome-wide level (37, 13,
38). Positive fitness flux (with values NΦ of order 10 per genomic
substitution) (13) has been inferred from joint estimates of rate
and average selection coefficient of point mutations, supporting
the conclusion that a substantial fraction of the observed sub-
stitutions is adaptive at substantial levels of selection.

Demographic Nonequilibrium. The fitness-flux theorem also cap-
tures nonequilibrium processes generated by the demographic
history of a population (Methods). A simple example is a pop-
ulation bottleneck with a decline transition from equilibrium at
an initial population size to an (approximate) equilibrium at a
lower population size, which is followed by a recovery transition
to equilibrium at the initial population size. This is exactly the
protocol of the bacteriophage experiment discussed above (35).

By Eq. 2, the population decline leads to a loss in scaled fitness,
Δ1H = Δ1〈NF〉 < 0, which is exactly compensated by the gain
during recovery, Δ2H = Δ2〈NF〉= – Δ1H. The cumulative fitness
flux 〈Φ1〉 of the decline transition is allowed to become negative
but is more than offset by the flux 〈Φ2〉 of the recovery transition,
such that the total flux 〈Φ1 + Φ2〉 becomes positive. These
predictions are confirmed by numerical simulations as shown in
Fig. 2C. They imply that the positivity of fitness flux is not limited
to stationary evolution at constant population size. Any pop-
ulation whose size changes periodically or fluctuates stochasti-
cally around some average will, over sufficiently long periods of
time, acquire a positive cumulative flux.

Strong-Selection Limit and Fisher’s Theorem. Laboratory evolution
experiments often involve very high selection pressures. In this
regime, the probability of fitness-lowering frequency transitions
becomes very small according to Eq. 3, and only evolutionary
histories with monotonically increasing fitness flux are acces-
sible to the system. This reduction of histories has been
observed in the bacterial evolution experiment of ref. 17. The
evolutionary process over longer time intervals remains sto-
chastic, because every new mutation appears by chance in an
individual and its fate at small-population frequencies is always
governed by genetic drift. The remainder of its substitution
process, however, becomes deterministic and follows the single,
most probable evolutionary history. The cumulative flux of the
deterministic history grows at a rate equal to the fitness var-
iance in the population. In this limit, the stochastic theory of
fitness flux contains Fisher’s theorem (Methods).

Conclusions
Here, we have established fitness flux as a measure of adaptation
in molecular evolution under time-dependent selection and
population size, mutations, and genetic drift. The fitness-flux
theorem lays the statistical foundation of this measure and
makes testable predictions in diverse contexts of experiment and
genomics. The concept of fitness flux and the theorem can be
formulated for the evolution of genotypes, as we have done here,
but also for the evolution of complex molecular phenotypes.
The applications of the fitness-flux theorem discussed in this

paper show that an increase of Φ is an almost universal evolu-
tionary principle of biological systems. Positive contributions to
the fitness flux arising from adaptive genotype changes accu-
mulate over evolutionary periods of time. Negative contributions
are limited to time intervals with a systematic loss of adaptation
(ΔH < 0), which cannot occur continuously in viable pop-
ulations. In this sense, fitness flux is a more fundamental char-
acteristic of evolution than fitness, for which no comparable
growth law holds.
Ever since Fisher speculated about a connection between the

fundamental theorem and the second law of thermodynamics
(1), conceptual links between biological evolution and statistical
thermodynamics have been discussed (39, 40). Here, we have
established a generic connection away from equilibrium, which
links molecular evolution and thermodynamics as stochastic
processes driven by time-dependent forces. The fitness-flux the-
orem shows that this dynamics follows common statistical prin-
ciples in both fields.

Methods
Evolution Equation and Equilibrium Distributions. In a space of k different
genotypes or genomic alleles, we describe the evolution of a population by
time-dependent frequencies x(t) = (x1, . . . , xk)(t) with the normalization
∑k

α¼1x
αðtÞ ¼ 1 and, the evolution of an ensemble of populations by a time-

dependent frequency distribution P(x, t) with the normalization∑xPðx; tÞ ¼ 1.
For populations of large effective size N, it is convenient (but not necessary) to
approximate frequencies by continuum variables and to describe their evolu-
tion by a diffusion equation (Eq. 6) (41),
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∂
∂t

Pðx; tÞ ¼ ∑
k− 1

α;β¼1

∂
∂xα

�
1
N

∂
∂xβ

gαβðxÞ− υαðx; tÞ
�
Pðx; tÞ: [6]

The matrix gαβ(x) characterizes genetic drift, and the evolution rates
υαðx; tÞ ¼ mαðxÞ þ∑βg

αβðxÞsβðx; tÞ contain the contributions of mutations and
time-dependent selection with coefficients sβ(x, t) (for details, see SI Text). A
stationary neutral process with mutation rates μαβ satisfying the detailed
balance conditions μαβ/μβα = p0

β/p0
α can be shown to have an asymptotic

equilibrium distribution P0(x) in the regime μNL � 1 for genotypes or μN � 1
for allele frequencies in linkage equilibrium (SI Text). Under the same con-
ditions, the corresponding process in any time-independent fitness landscape
F(x) has an equilibrium distribution Peq(x) of the form (Eq. 2), as shown by
inspection of the diffusion equation (Eq. 6).

Derivation of the Fitness-Flux Theorem. Consider the ensemble of population
histories x = (x0, . . ., xn) with a sufficiently dense set of observation times ti = t0 +
iδ (i= 0, . . .,n). For a generic diffusionprocess of the form (Eq.6), this ensemble is
characterized by a probability distribution PðxÞ of histories, which determines
the frequency distribution Pðxn; tnÞ ¼ ∑x0 ; ... ;xn− 1

PðxÞ and has the normalization
∑xPðxÞ ¼ 1. Using standard methods of statistical mechanics, we compute the
conditional probability of a history for a given initial state,
GðxÞ ¼ PðxÞ=Pðx0; t0Þ, and its neutral counterpart G0(x). These enjoy the rela-
tion GðxÞ ¼ G0ðxÞexp½NΦðxÞ þ Nδ

4 ∑
n− 1
i¼0 ½υ2ðxi ; tiÞ−m2ðxi ; tiÞ� with scalar prod-

ucts v2 andm2 defined in SI Text. We now consider the reverse history xT = (x0
T,

. . . , xn
T), which is given by xi

T = xn–i (i = 0, . . . , n), and, by definition, evolves in
the time-reversed fitness landscape FT(x, t) = F(x, tn – t + t0) (Fig. 1). Using the

method of refs 32–34, we compare the conditional probabilities of original and
reverse history (Eq. 7),

GT
�
xT

�
GðxÞ ¼ GT

0

�
xT

�
G0ðxÞ e−NΦðxÞ ¼ P0ðxnÞ

P0ðx0Þ e
−NΦðxÞ: [7]

Inserting the definition of the relative log likelihood, Pðx; tÞ ¼ P0ðxÞeHðx;tÞ,
then yields Eq. 3, and the theorem (Eq. 4) follows by summation over all
histories. For a time-dependent population size parameterized in terms of a
reference size, N(t) = ζ(t)N0, and the scaled fitness flux defined as
N0ΦðxÞ ¼ ∑n− 1

i¼0 NðtiÞΔxisðxi ; tiÞ, the identity (Eq. 4) remains valid in very good
approximation for low mutation rates. This is shown by an inhomogeneous
rescaling of time by a factor 1/ζ(t) in the evolution equation (Eq. 6). A more
detailed derivation of the theorem is given in SI Text.

Fisher’s Theorem. In the strong-selection limitof theevolutionaryprocess (Eq.6),
the evolution of a polymorphic population is dominated (except for small fre-
quenciesofx<1/Ns) by itsmostprobablehistory,whichfollowsthedeterministic
evolution equation ðdxα∗=dt ¼ ∑βg

αβðx∗ðtÞÞsβðx∗ðtÞ; tÞ. Hence, its fitness fluxΦ*

increases at a rate ϕ�ðtÞ ¼ dΦ�=dt ¼ ðdx�=dtÞ sðx�ðtÞ; tÞ ¼ ½sðx�ðtÞ; tÞ�2, which is
thefitness variance in the population (SI Text). Fisher’s theorem is the projection
of this identity from genotype frequencies to gene-allele frequencies.
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