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Description of the algorithm.

We write the alignment score as the sum of a link

score

S`(a,b, π) =

NA
∑

i,i′

s`(aii′ , bπ(i)π(i′)) [15]

and a node score

Sn(Θ, π) = µn0 + (λn + µ)n1 + (λ′

n + µ)n2 . [16]

n0 is the number of aligned gene pairs where neither
node has an orthologous partner, n1 is the number of
orthologous aligned node pairs, and n2 is the number
aligned node pairs which are not orthologous to each
other, but where either partner has an ortholog other
than the alignment partner (see Fig 1 c). The gener-
alization of the nodescore to more general measures
such as 8 is straightforward.

Mapping alignments to permutations. It turns
out to be useful to place NB additional nodes, termed
dummy-nodes, in graph A (with dummy entries in
the adjacency matrix which do not contribute to the
score), and to add NA dummy nodes to graph B.
Formally, the two graphs now have the same number
of nodes N = NA + NB. A one-to-one alignment
π can thus be considered as a permutation π : j =
π(i), where nodes without an alignment partner are
formally aligned with a dummy node.

For the minimal scoring function s`(a, b) = ab, the
link score 15 then amounts to the trace of a prod-
uct of the adjacency matrices a,b and the permu-
tation matrix π, S`(a,b, π) = Tr

(

aπbπT
)

. Find-
ing the maximum of this trace over π is an NP -
hard problem known as the quadratic assignment

problem (1). A heuristic solution of this problem
proceeds iteratively through a series of permuta-
tions . . . , πn−1, πn, πn+1, . . ., where successive per-
mutations are solutions of a linear assignment prob-

lem πn+1 = argmaxπTr
(

aπbπn
T
)

(2). The lin-
ear assignment problem can be solved in polynomial
time (3), and algorithms are available which take
O(N3) steps per iteration. We utilize this strategy,
first to treat general scoring functions s`(a, b), and
then to treat the full score 13.

Link score. The link score 15 can be written as the
trace of a matrix as follows

S`(a,b, π) =

N
∑

i,k=1

s`(aik, bπ(i)π(k)) = Tr(πMπ) ,

where the N × N matrix Mπ has elements given by

Mπ
ij =

N
∑

k=1

s`(ajk, biπ(k)) .

We consider a series of permutations
. . . , πn−1, πn, πn+1, . . ., with

πn+1 = argmaxπTr(πMπ
n
) . [17]

We observe that for symmetric adjacency matrices,
the expression Tr(πnM

πn−1) monotonously increases
from one iteration to the next

Tr(πn+1M
πn) [18]

=
∑

i,j

s`(aij , bπn+1(i)πn(j)) ≥
∑

i,j

s`(aij , bπn−1(i)πn(j))

=
∑

i,j

s`(aji, bπn(j)πn−1(i)) = Tr(πnM
πn−1) ,

where the ≥ sign holds for any πn−1 by construction.
Thus Tr(πnM

πn−1) increases from one iteration to
the next, until it converges to a (possibly local) max-
imum. We will use a random noise term to prevent
the algorithm from getting stuck in a local score max-
imum. The same approach is applicable to directed
graphs as well, see below.

Node score. We now turn to the node score 16,
which can also be written as the trace of a matrix

Sn(Θ, π) = Tr(πR) ,

where the entries of the matrix R are defined as

Rji =















































λn + µ
if node i in A is orthologous to j in
B.

µ
if neither i nor j has an orthologous
partner.

λ′

n + µ
if either i or j has an orthologous
partner, but it is not j or i, respec-
tively.

0 if either i or j is a dummy node.
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The full alignment score 13 can now easily be written
as

S(a,b,Θ, π, m) = Tr
(

π
(

MP + R
))

. [19]

Maximizing this score over the alignment denoted by
π thus represents a mixture of a generalized quadratic
assignment problem (the link score) and a linear as-
signment problem (the node score).

Steps of the algorithm. Based on the iterative
procedure 17 and 18 our heuristic to solve the full
problem of maximizing the score 19 over the align-
ments proceeds as follows

1. Begin with π′ = 11 and set β to βstart.

2. Find the permutation π maximizing

Tr
(

π
(

Mπ′

+ R + Ξ/β
))

, where Ξ is an

N ×N matrix with entries chosen at random at
each step from a normal distribution with mean
zero and variance one.

3. Set π′ equal to π and increase β by βstep

4. Repeat from 2. a predetermined number of
times.

Throughout we increased the noise parameter β
from 0.5 to 10 in 15 steps. It turned out that the
final results depend only very little on the details of
this annealing schedule. Both for the alignment of
human-human networks, as well as for the alignment
of human-mouse co-expression data, the algorithm
converged after about 5 iterations.

We used the linear assignment routine by Jonker
and Volgenant (3), which has a running time of
O(N3) for each step. Note that the construction of
the matrix Mπ also requires of order N3 steps. The
algorithm by Jonker and Volgenant is based on find-
ing the shortest path from unassigned rows to unas-
signed columns, using the corresponding entry of the
assignment matrix as a path length. The actual run-
ning time for a single iteration for N = 3200 (allowing
for a sufficient number of dummy nodes) was about
90 minutes on a Apple PowerPC G5 at 2 GHz.

Maximum score alignments and parametric

optimization. At fixed values of the scoring param-
eters, the algorithm described above produces high-
scoring alignments. The properties of these align-
ments depend strongly on the values of the scoring

parameters. The link score function is inferred from
the alignment specified by orthologs, see main text.
For the parameters of the node score 16, this ap-
proach is not feasible: the node score parameters
quantify, for instance, the degree of deviation of the
alignment from these orthology relations. Instead, we
infer the values of the node score parameters from
maximum likelihood, by maximizing the likelihood
12 over the node score parameters. For the binary
orthology relation, the ensembles 8 can be written as

pn
0 (θ) = eζ0θ/Z0

qn
1 (θ) = e(λn+ζ0)θ/Z1

qn
2 (θ) = e(λ′

n+ζ0)θ/Z2 ,

with Z0 = 1 + eζ0 , Z1 = 1 + eλn+ζ0 , etc. Given
alignment π and the matrix of orthology relations Θ,
the maximum-likelihood values ζ∗0 , λ∗

n, λ′∗

n can easily
be determined by maximizing 12 with respect to the
parameters ζ0, λn, λ′

n. One obtains

h0 = (NA − p)(NB − p)eζ∗

0 /(1 + eζ∗

0 )

n1 = peλn+ζ0/(1 + eλn+ζ0)

n2 = p(NA + NB − 1 − p)eλ′

n+ζ0/(1 + eλ′

n+ζ0) ,

where h0 is the number of orthologous node pairs
where neither node has an alignment partner, n1 is
the number of orthologous aligned node pairs, and
n2 is the number aligned node pairs which are not
orthologous to each other, but where either partner
has an ortholog other than the alignment partner. p
denotes the number of aligned node pairs. The value
of the chemical potential µ follows immediately with

µ = log
(

1+eζ0

1+eζ0+λ

)

+(NA+NB−1−p) log
(

1+eζ0

1+eζ0+λ′

)

.

A convenient way to determine the alignment with
maximal score and the optimal scoring parameters is
to exploit the iterative nature of the alignment algo-
rithm. Following each iteration of the algorithm we
determine the maximum-likelihood values ζ∗0 , λ∗, λ

′
∗,

and use the resulting scoring parameters in the next
iteration.

Directed graphs. One can treat directed graphs in
this fashion as well. Here we focus on binary graphs,
the extension to weighted graphs is straightforward.
A directed binary graph A can be encoded in a sym-

2



metric matrix a′ with

a′

ij = 1
if aij = 1 and i < j or if aji = 1 and
i > j

a′

ij = −1
if aji = 1 and i < j or if aij = 1 and
i > j

.

Graph B is encoded analogously at each step with

b′ij = 1
if bij = 1 and π−1(i) < π−1(j) or if
bji = 1 and π−1(i) > π−1(j)

b′ij = −1
if bji = 1 and π−1(i) < π−1(j) or if
bij = 1 and π−1(i) > π−1(j)

.

The iterative step 18 now works as before, provided
the alignments at consecutive steps are sufficiently
similar to each other.

Co-expression networks

The expression data were taken from the experiments
of Su et al. (4), which give expression levels of genes
across a wide range of tissues both in humans and
mice. We selected subsets of genes of each organ-
ism to construct co-expression networks. The genes
were chosen to have a low standard deviation of the
expression patterns (housekeeping genes), or have a
high correlation with one of those genes. Subsets cho-
sen according to the opposite criterion (high variation
of the expression profiles) were also tested, the proof
of principle described in the section Results gave very
similar results.

We selected all genes with a standard deviation
of the expression pattern below 0.4 (in H. sapiens)
and 0.25 (in M. musculus), resulting in approximately
850 genes in each organism. Then all genes with a
Spearman correlation coefficient of more than 0.68
(in H. sapiens) and 0.56 (in M. musculus) with one
or more of these housekeeping genes were selected,
as well as their orthologs in either organism. The
mouse-human orthologs were taken from the Ensembl

Genome Browser (5) accessed using the R-project (6)
and the BiomaRt package (7,8). This resulted in
NA = 2165 genes of H. sapiens and NB = 2165 genes
of M. musculus with 2052 putative orthologous node
pairs between them. Some nodes have several puta-
tive orthologs; in both networks there are 2040 nodes
with one or more putative ortholog.

Then the Spearman correlation coefficients were
calculated for each pair of genes in the two gene sets.

For two sets of data {xi} and {yi} both containing N
values, the Spearman correlation coefficient ρ is de-
fined as the correlation coefficient of the ranks {rx

i }
and {ry

i } of {xi} and {yi},

ρ =

∑

i(r
x
i − r̄x)(ry

i − r̄y)
√

∑

i(r
x
i − r̄x)2

∑

j(r
y
j − r̄y)2

,

where the overbar denotes the average r̄x =
(1/N)

∑

i rx
i . Spearman’s rank correlation coefficient

is a non-parametric measure of correlation particu-
larly suited for the analysis of expression data, since
it is invariant under monotonous transformations of
the data.
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