
Appendix

Sequence Data and Alignment

We have used Drosophila melanogaster sequence fragments with accession numbers AJ568984-
AJ571588 [1], from [2] and AM000058-AM003900 [3]. These fragments are scattered across
the X chromosome, and we take only those with sample of 12 individuals from a Zimbabwe
population. We then align these fragments to a single D. simulans outgroup sequence [1–3].
The aligned loci are binned into five broad genomic categories: 4-fold synonymous sites
and nonsynonymous substitutions in protein coding DNA, intergenic regions, introns, and
UTRs, using flybase Annotation Release 4.3. If we use the the classification from Releases
4.0 and 3.2 as in refs. 2 and 3, the conclusions of the paper remain unchanged. Altogether
we have 271 fragments of data spanning ∼134 kb of genomic sequence. We have not ex-
cluded regions of low recombination from the principal analysis. However, if a cutoff is
imposed for the sets [1, 3] with the recombination rate estimates provided in refs. 1 and
3, the results do not change significantly (P values need to be adjusted for the partial
linkage as discussed below).

We have used the two programs CLUSTALW1.83 [4] and MLAGAN [5] for multiple
alignment of ingroup and outgroup sequences, and we have examined the dependence of the
alignment on the scoring parameters. The primary concern is that the count distributions
Q̂(k) inferred from the alignment must not overestimate the frequency of substitutions,
which may be caused by a too stringent gap score, and thus produce a spurious signal of
adaptation. The alignment underlying the counts reported in Table 2 has been obtained by
CLUSTALW1.83 with default parameters for coding regions and more relaxed gap opening
and extension score for noncoding regions. It fulfils the following consistency criteria: The
inferred count distributions do not change significantly (i) if the MLAGAN tool with
equivalent scoring parameters is used instead, (ii) if gap opening and extension cost are
scaled down further or (iii) if counts are obtained only from the subset of “anchored” loci,
where the aligment contains no gaps in a window of 10 bp upstream and downstream.

Table 2. Total number L of loci and numbers of conserved positions (k = 0), k-fold single-nucleotide
polymorphisms (k = 1, . . . , 11), and point substitutions within the sample (k = 12).

Category L k = 0 1 2 3 4 5 6 7 8 9 10 11 12
4-fold syn. 3136 2687 69 38 21 10 9 16 12 6 11 8 10 239
Nonsyn. 14143 13824 49 12 6 3 3 4 6 2 5 1 6 222
Intergenic 59648 55250 932 276 138 104 80 73 57 74 59 64 78 2463
Intronic 47371 43293 751 235 142 92 79 64 65 43 52 60 85 2410
UTRs 10674 10076 99 23 6 9 6 7 6 9 0 3 4 426

Inference of Evolutionary Parameters

Maximum-Likelihood Procedure. The evolutionary parameters reported in Table 1
of the main text are obtained by maximizing the sum of total scores S from all five ge-
nomic categories under the fluctuating-selection model, which are given by Eq. 24. The
model parameters κ, σave, cs, µ are specific to each category (µ is shared within coding
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DNA), the evolutionary time t is a global parameter for all categories. Hence, our pro-
cedure neither assumes neutral evolution of 4-fold synonymous sites nor contains other
assumptions contained in prior distributions of model parameters. Its consistency is indi-
cated by a number of properties: (i) The maximum-likelihood values of the scaled neutral
mutation rate are very similar in all five categories: µ = 0.0263 (4-fold synonymous sites
and nonsynonymous changes), µ = 0.0334 (intergenic regions), µ = 0.0308 (introns), and
µ = 0.0340 (UTRs). (ii) The maximum-likelihood value of the scaled divergence time,
t = 1.85, gives µt = 0.048, and using the independent estimate µ = 1.5 × 10−9 (per site
per generation [6]), this translates into a divergence time t = 3.2 × 107 generations = 3.2
million years, in accordance with previous estimates [7]. (iii) The values of t, as well as
µ and σave for 4-fold sites obtained from a joint fit to all categories are very close to the
corresponding values t = 1.75, µ = 0.0260 and σave = 1.3 obtained from 4-fold sites alone.
This is nontrivial since this category contains only 2.32% of the loci. (iv) If we assign
an equal weight on the different gategories (ignoring the fact that we have different total
number of sites for each genomic category), we do not observe significant change in the
inferred parameter values, indicating that the regions with less data are not compromised
by the joint analysis. (v) The inferred level of selection in 4-fold synonymous sites is weak
(σave ≈ 1), in accordance with previous results [8]. (We impose the constraint c1 = 1
for this category, since neutral and selected sites cannot be resolved at this low level of
selection). (vi) All other categories have substantial maximum-likelihood values of σave

and of cs = 0.94[0.89, 0.97] (nonsynymous changes), 0.80[0.72, 0.85] (intergenic regions),
0.76[0.64, 0.91] (introns), 0.92[0.89, 0.99] (UTRs), in accordance with the substantial devi-
ations of the polymorphism frequency distributions from the form expected at neutrality
(see Fig. 2). However, if strong hitchhiking effects are present, these values of cs rather
estimate the combined fraction of sites subject to selection and to hitchhiking (see the
discussion below). (vii) The results do not depend on details of the fitness distribution
Ω(σ), see below.

In the same way, we obtain the maximum-likelihood neutral model and the best equi-
librium model by imposing the global constraints σave = 0 and κ = 0, respectively. The
demographic model also uses the constraint κ = 0 and introduces the initial time ti, the
duration tf − ti, and the scaled strength νb of the bottleneck as additional global param-
eters (for model details, see next section). The obtained maximum-likelihood values are
ti = 0.0, tf − ti = 0.65, νb = 0.008. The constrained models use the same value of t as
the unconstrained fit, in order to preserve the consistency property (iii) (i.e., to avoid
runaway fits with a large overestimation of µt and spurious substantial selection at 4-fold
synonymous sites).

Fitness Distributions. In order to infer selection, we have to use a parametrization of
the distribution of selection amplitudes Ω(σ) (σ ≥ 0) in a given genomic category. The
present dataset imposes a two-fold constraint on this inference: With m = 12 individuals
in the ingroup species, polymorphism spectra are informative only about a restricted
range of selection amplitudes, σ < 50 − 100. Secondly, there are of order 104 loci in a
genomic category, so detailed shape characteristics of Ω(σ) cannot be resolved. Within
this constraint, we choose distributions so as to be maximally informative of our model.
These should contain at least two independent degrees of freedom: (i) the fraction cs of
sites under substantial selection (say, σ > 2, for which adaptive changes dominate the
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Table 3. Selection parameter inference for for the fitness distributions S1, S2, S3.

cs σave κ
4-fold synonymous 0.0 0.22 0.0 1.4 1.3 1.0 0.0 0.0 0.0
Nonsynonymous 0.94 0.94 0.95 115. 116. 119. 0.12 0.12 0.14
Intergenic 0.80 0.80 0.86 17. 17. 17. 0.27 0.27 0.33
Intronic 0.76 0.76 0.83 14. 14. 14. 0.44 0.45 0.51
UTRs 0.92 0.92 0.95 39. 39. 33. 0.37 0.39 0.42

sequence turnover as given by α̃ > 1/2 in Eq. 17) versus the fraction of sites under weak
selection (for which background changes dominate, α̃ < 1/2), and (ii) the average level of
selection σave. Specific forms used include a sum of two delta functions,

Ω(σ) = Z−1
[

(1 − c1)δ(σ) + c1δ(σ − c2)
]

, [S1]

a sum of two Gaussians,

Ω(σ) = Z−1
[

(1 − c1) exp(−2(σ2)) + c1 exp(−(σ − c2)
2/3)

]

, [S2]

and two facing exponentials

Ω(σ) =

{

Z−1
[

(1 − c1) exp(−σ/3)/3 + c1 exp(−(c2 − σ)/3)/3
]

(σ ≤ c2),
0 (σ > c2)

[S3]

with appropriate normalization factors Z−1 and two basic parameters c1, c2, which can be
expressed in terms of cs and σave. Our inference procedure satisfies the following criteria:
(i) The two-parameter form is statistically significant, i.e., the single-parameter restriction
given by the constraint c1 = 1 is less likely with P < 10−11 in all categories except 4-fold
synonymous sites. (ii) Within the two-parameter forms (Eqs. S1-S3), the inferred selection
characteristics do not depend significantly on the type of parametrization used (see Table
3) nor on further details which cannot be resolved, e.g., the width of the Gaussians in
Eq. S2 or of the exponentials in Eq. S3. (iii) Adding further independent parameters
to Ω(σ) does not increase the maximum likelihood and does not lead to inconsistencies.
In particular, the data are consistent with the assumption that a fraction of the sites has
selection strengths outside our inference region (σ > 100), and this assumption increases
σave but does not affect the inferred value of κ.

Estimation of P values and Confidence Intervals. Our procedure produces the
maximum-likelihood score S∗ = 4082 for the fluctuating-selection model, and significantly
smaller values S′ = 3814 (neutral model), S′ = 3951 (equilibrium model), and S′ = 4008
(demographic model). The P values of observing the data under one of the alternative
models is given by

P ≡ Prob(S > S∗) ∼ exp(−c∆S) [S4]

in terms of the score difference ∆S ≡ S∗ − S′. The constant takes the value c = 1
for independent loci, but is modified in the dataset by partial linkage between loci. To
quantify this effect, we have simulated the evolution of a population of sequences with
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recombination. The scaled recombination rate is chosen such that the distance-dependent
correlation between polymorphic sites as measured by the Hill-Robertson coefficent [10]
matches that of the dataset, leading to levels of ρ ≈ 0.1 in accordance with previous
results [3]. This model produces a score distribution whose tail is of the form Eq. S4
with c ≈ 0.35. For the p-values reported the main text we further discount for model
complexity in the Akaike Information Criterion sense by subtracting the difference of free
parameters between the compared models from the score difference c∆S. The confidence
intervals around the maximum-likelihood parameters appearing in Table 1 are obtained
in a standard way by sampling from their Bayesian posterior distribution.

Comparison with Population-Genetic Tests. The above P values can be used for a
quantitative comparison with other tests for adaptive selection. For a set of allele counts
drawn from an input distribution Q, the difference of scores Eq. 24 between Q and an
alternative model Q′, normalized per locus, has a simple probabilistic interpretation as
the relative entropy or Kullback-Leibler distance D(Q,Q′) of the distributions Q and Q′,

∆s ≡
∆S

L
= D(Q,Q′) ≡

∑

k

Q(k) log

(

Q(k)

Q′(k)

)

. [S5]

In particular, it is independent of the reference distribution Q0 in Eq. 24. Consider now
a coarse-grained distribution Qcg of Q, which is defined by summing any subset(s) of
entries Q(k), resulting in a smaller number of new entries Qcg(k̃) (k̃ = 0, . . . , m̃), and the
analogous coarse-grained distribution Q′

cg of Q′. It is straightforward to show that any
coarse-graining leads to a loss in relative entropy, D(Qcg, Q

′

cg) ≤ D(Q,Q′), i.e., to a less
significant P value. The allele frequency information underlying the standard population
genetic tests for adaptation can be seen as such coarse-grainings of the full distributions
used here.

(i) The coarse-graining QMK underlying the McDonald-Kreitman test has three entries,

QMK ≡
{

Q(0) = 1 − Qp − Qs, Qp =
m−1
∑

k=1

Q(k), Qs = Q(m)
}

. [S6]

Adaptive evolution is inferred if QsQp
0/Q

pQs
0 > 1, where Qp

0 and Qs
0 are the polymorphism

and substitution frequencies in a neutral reference class. If we assume that the evolutionary
time t = Qs

0/Q
p
0 has been inferred correctly from the neutral class, the McDonald-Kreitman

test is equivalent to a maximum-likelihood procedure for the coarse-grained distribution
Q′

MK with the equilibrium constraint κ = 0 and with t taken from the input model Q.
The resulting score differences

∆sMK = D(QMK, Q′

MK) [S7]

then provide a quantitative comparison with our procedure, as shown in Fig. 2(a,b) of the
Main Text. In particular, is is straightforward to show that ∆sMK = 0 iff QsQp

0/Q
pQs

0 ≤ 1,
which defines the parameter region where the McDonald-Kreitman test does not infer
adaptations (marked by stripes in Fig. 2(b,d) of the Main Text).

(ii) Similarly, the inference methods using only information from the relative frequen-
cies of polymorphisms, such as Tajima’s D test [11], can be derived from the coarse-
graining

Qpoly ≡
{

Q(0) + Q(m) = 1 − Qp, Q(1), . . . , Q(m − 1)
}

[S8]
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with Qp =
∑m−1

k=1 Q(k). We can again perform a maximum-likelihood procedure for the
coarse-grained distribution Q′

poly with the equilibrium constraint κ = 0. Variation of µ
will reproduce the input value of Qp, and the maximum-likelihood score difference depends
only on the shape difference of the polymorphism spectra as given by the normalized
distributions qpoly ≡ {Q(1)/Qp, . . . , Q(m − 1)/Qp} and q′poly,

∆spoly = D(Qpoly, Q
′

poly) = QpD(qpoly, q
′

poly) + O(µ2). [S9]

Although adaptive evolution can be inferred for all σ, κ > 0, there is again a substantial
loss in significance compared to the full distributions as shown in Fig. 5.
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Fig. 5. Inference of adaptive evolution from polymorphism spectra, to be compared with Fig. 2

a and b. Statistical evidence for adaptation, as given by the likelihood score difference per locus,

∆spoly, between the input model and the best equilibrium (κ=0) model as a function of the input

selection parameters σ and κ (input µ and t as in the Drosophila datasets). Contours from bottom

to top: 0 (thick line), 5 × 10−6, 5.5 × 10−5, 1.5 × 10−4, 2.0 × 10−4, 2.5 × 10−4 (thin lines).

Model Generalizations

The model (1) has the advantage of allowing for explicit analytical predictions of allele
frequency distributions, so that the analysis of genomic data can be based on a systematic
probabilistic analysis. However, a number of features present in genomic data are not
covered by this model. Here we demonstrate by analytical and numerical analysis that
these do not affect the conclusions of this paper.

Varying Neutral Mutation Rates. The neutral rates µa→b for nucleotide point sub-
stitutions vary by factors of order 1, depending on the type of process (transition or
transversion), the neighboring nucleotides, the GC-content of the flanking region etc. Dif-
ferences in the average neutral rate µ between genomic categories are taken into account
by our maximum-likelihood parameter inference. Here we consider a bias in the neutral
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Table 4. Parameter inference for models with mutation rate bias (µa→b = 1.5µb→a) (M) or with
four alleles (F1, F2, F3), see text.

Input model ML fit

Type σ κ σml κml

M 6 0 6.1 0.0

M 12 0 11.9 0.0

M 6 0.5 6.4 0.47

M 12 0.5 12.1 0.53

Type σ21 σ31 σ41 κ σml κml

F1 0 0 6 0.0 5.8 0.02

F1 0 0 12 0.0 12. 0.01

F2 0 6 6 0.0 3.3 0.06

F2 0 12 12 0.0 3.8 0.05

F3 6 12 18 0.0 9.1 0.01

F3 12 24 36 0.0 16. 0.01

F1 0 0 6 0.5 5.5 0.45

F1 0 0 12 0.5 9.9 0.65

F2 0 6 6 0.5 3.9 0.43

F2 0 12 12 0.5 4.5 0.56

F3 6 12 18 0.5 9.2 0.53

F3 12 24 36 0.5 18. 0.69

The inferred maximum-likelihood parameters σml, κml using the two-allele standard model are a
good approximation of the corresponding (average) values of the input model. In particular, there
is no spurious inference of κ > 0.

rate between the forward and backward substitutions, µa→b = 1.5µb→a, corresponding to a
nucleotide frequency bias λeq = 0.4 at equilibrium. We obtain numerically the distribution
functions p(x, t) and p′(x, t) of the biased Fisher-Wright process along the two phyloge-
netic branches, subsequently averaging over initial conditions at the speciation point and
over many realizations of the Poisson process of selection. The recorded outgroup directed
count distribution Q̂(k) is then subject to the parameter inference using Eq. (20), which is
based on the unbiased model (1). The inferred maximum-likelihood parameters σml and
κml are consistent with the true input parameters σ and κ, as shown in Table 4.

Four-Allele Loci. A similar potential confounding factor arises from the fact that a
single-nucleotide genomic locus has four alleles (A, C, G, T ), allowing for three indepen-
dent selection coefficients and a richer scenario of selection fluctuations than our basic
model. We obtain numerical distributions Q̂(k) for three variants (F1, F2 and F3) of
the four-allele model: a single preferred nucleotide (σab = σac = σad > 0), two preferred
nucleotides of equal fitness (σab = 0, σac = σad > 0), and three different fitness values
(σab 6= σbc 6= σcd > 0), with fluctuations acting as random permutations of the nucleotide
fitness values with rate κµ. The maximum-likelihood selection parameters σml and κml

shown in Table 4 are seen to provide good estimates of the average magnitude σ and the
rate κ of the input model.

Nonrandom Samples. A sample from a limited geographical region may have a smaller
coalescence time tc to its last common ancestor than a true random sample, where tc ≈ 1 in
our rescaled units. The outgroup-directed allele frequency distribution Q̂(k) for an ingroup
sample with tc = 0.5 is obtained by propagating the solution of the Master equation on the
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ingroup branch for a time t−tc, drawing the allele of the sample ancestor, and propagating
the allele frequency distribution for its descendants for a time tc. This distribution shows a
reduced level of polymorphisms with large values of k already for neutral evolution, leading
to poorer fits with the model distributions Q(k) for random samples. The genomic count
distribution Q̂(k) for 4-fold synonymous sites does not show reduced frequencies of large-k
polymorphisms with respect to the distribution Q0(k) under neutral evolution given by
(20) (see Fig. 3), indicating that the data used in this study are indeed a good random
sample.

Demographic Effects. We consider the evolution with a time-dependent ingroup pop-
ulation N(t) = ν(t)N of the form

ν(s) =







1 0 ≤ s < ti,
νb ti ≤ s < tf ,
1 tf ≤ s ≤ t,

[S10]

where t = 0 is the speciation point and t is the divergence time. Our maximum-likelihood
inference of the bottleneck model is based by numerical integration of the Fokker-Planck
equation. Bottlenecks which do not affect the polymorphism spectrum (t−tf > 1) can also
be treated using the quasistationary approximation (10) piecewise for the time intervals
of constant ν, with scaled selection coefficients σ(t) = σν(t). The validity of this approx-
imation is shown in Fig. 6, where we compare the analytical prediction for the sequence
divergence g+− with the numerical solution.
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Fig. 6. Sequence divergence under time-dependent population size. The divergence g+− given

by (18) is plotted against µt for evolution under stationary selection (κ = 0) of strength σ = 4

(solid line), with a bottleneck with parameters ti = 0.02, tf = 0.04, νb = 0.2 on the ingroup branch

and without a bottleneck (dashed line). Analytical curves are obtained using the quasistationary

approximation, data points by propagating the distribution p(x, t) using the exact continuous-time

Master equation.

Linkage Between Loci, Hitchhiking. We estimate the hitchhiking parameter ω given
by Eq. 25 for the selected categories with Φ values from Table 1 and a conservative
value ρ = 0.05 as obtained above. The resulting ω values are of order 1, suggesting
that hitchhiking effects cannot be excluded. To address this issue, we have simulated
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the evolution of partially linked loci for ρ = 0.05 and different values of κ, cs, σave, and
have measured the influence of hitchhiking on the allele frequency distribution Q̂(k) and
the inferred parameters (see Table 5). As expected, the allele frequency distribution at
neutral loci shows a depletion of intermediate-frequency polymorphisms [9]. This can affect
parameter inference from the standard model of independent loci: cs is overestimated, but
the fitness flux Φ ' ωρ is reproduced more faithfully. At the inferred level of ω, these
effects are weak, leading to a self-consistent prediction. However, we cannot exclude that
actual values of ω are somewhat higher, which would imply that the inferred parameters
reported in Table 1 are lower bounds but would leave the conclusions unaffected.

Integrals

Here we expicitly write down the integrals needed in the Main Text. The normalizing
factor for elementary solutions pa in Eq. 4 reads

Za =
Γ(µ)2

Γ(2µ)

[

1 − e−aσ
1F1(µ, 2µ, aσ)

]

, [S11]

where Γ is Euler’s Gamma function and 1F1 is Kummer’s confluent hypergeometric func-
tion. The moments Eq. 21 are

M ε
a(k,m) = [S12]

{

(

m
k

)

Z−1
ε

Γ(k+µ)Γ(m−k+µ)
Γ(m+2µ)

[

1 − e−εσ
1F1(k + µ,m + 2µ, εσ)

]

(a = 1)
(

m
m−k

)

Z−1
ε

Γ(m−k+µ)Γ(k+µ)
Γ(m+2µ)

[

1 − e−εσ
1F1(m − k + µ,m + 2µ, εσ)

}

(a = −1).
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Table 5. Parameter inference for sequences evolving under fluctuating selection with parameters
κ, cs, σave and recombination with rate ρ = 0.05.

Input model ML fit

κ cs σave Φ κml cs,ml σave,ml Φml

0.20 0.60 9. 0.04 0.16 0.72 10. 0.04

0.30 0.60 9. 0.07 0.23 0.70 12. 0.07

0.40 0.60 9. 0.09 0.40 0.76 11. 0.11

0.50 0.60 9. 0.11 0.51 0.76 11. 0.14

0.20 0.80 12. 0.06 0.21 0.86 13. 0.07

0.30 0.80 12. 0.09 0.29 0.86 14. 0.10

0.40 0.80 12. 0.12 0.35 0.84 14. 0.12

0.50 0.80 12. 0.15 0.45 0.84 12. 0.13

0.20 0.60 15. 0.08 0.24 0.76 15. 0.09

0.30 0.60 15. 0.11 0.32 0.76 15. 0.12

0.40 0.60 15. 0.15 0.30 0.72 19. 0.15

0.50 0.60 15. 0.19 0.63 0.85 13. 0.21

0.20 0.80 20. 0.10 0.18 0.85 22. 0.10

0.30 0.80 20. 0.15 0.28 0.85 26. 0.18

0.40 0.80 20. 0.20 0.42 0.87 20. 0.21

0.50 0.80 20. 0.25 0.50 0.87 23. 0.29

0.20 0.60 21. 0.11 0.18 0.73 20. 0.09

0.30 0.60 21. 0.16 0.35 0.76 21. 0.18

0.40 0.60 21. 0.21 0.45 0.77 20. 0.23

0.50 0.60 21. 0.26 0.56 0.79 22. 0.30

0.20 0.80 28. 0.14 0.23 0.89 25. 0.15

0.30 0.80 28. 0.21 0.31 0.89 30. 0.23

0.40 0.80 28. 0.28 0.38 0.87 31. 0.30

0.50 0.80 28. 0.35 0.48 0.88 31. 0.37

0.20 0.60 27. 0.13 0.18 0.77 34. 0.15

0.30 0.60 27. 0.20 0.32 0.79 27. 0.22

0.40 0.60 27. 0.27 0.43 0.81 27. 0.28

0.50 0.60 27. 0.34 0.52 0.83 31. 0.40

0.20 0.80 36. 0.18 0.18 0.88 45. 0.20

0.30 0.80 36. 0.27 0.31 0.91 39. 0.30

0.40 0.80 36. 0.36 0.35 0.89 44. 0.38

0.50 0.80 36. 0.45 0.47 0.90 38. 0.45

0.20 0.60 33. 0.17 0.20 0.74 33. 0.17

0.30 0.60 33. 0.25 0.28 0.75 34. 0.24

0.40 0.60 33. 0.33 0.47 0.80 25. 0.30

0.50 0.60 33. 0.41 0.55 0.82 31. 0.42

0.20 0.80 44. 0.22 0.18 0.86 44. 0.19

0.30 0.80 44. 0.33 0.32 0.89 40. 0.32

0.40 0.80 44. 0.44 0.39 0.89 42. 0.41

0.50 0.80 44. 0.55 0.52 0.92 36. 0.47

0.20 0.60 39. 0.20 0.26 0.77 27. 0.18

0.30 0.60 39. 0.29 0.31 0.76 35. 0.27

0.40 0.60 39. 0.39 0.45 0.81 33. 0.37

0.50 0.60 39. 0.49 0.53 0.81 31. 0.41

0.20 0.80 52. 0.26 0.18 0.87 57. 0.26

0.30 0.80 52. 0.39 0.29 0.88 50. 0.36

0.40 0.80 52. 0.52 0.40 0.91 52. 0.51

0.50 0.80 52. 0.65 0.42 0.89 59. 0.63

Depending on the parameter ω = Φ/ρ, the inferred maximum-likelihood parameters using the
two-allele standard model can be affected by hitchhiking, which leads to overestimation of cs.
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