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Here, we present a more self-contained derivation of the fitness-flux
theorem and describe the numerical simulations presented in the main
text.

Genotype and Allele Frequencies. We consider the evolution of a
population with k possible genotypes aα (α = 1, . . . , k), in which
each genotype is a sequence (aα,1, . . . ,aα,L) of length L. This dy-
namics is defined on the space of genotype frequencies xα with the
constraints xα ≥ 0 (α = 1, . . . , k) and

Pk
α=1 x

α = 1, which is
a (k − 1)dimensional simplex denoted by Σk−1. Here, we use the
set of k− 1 linearly independent frequencies x = (x1, . . . , xk−1) as
coordinate system on Σk−1; however, most of the equations below
do not depend on the choice of any particular coordinate system. Un-
less otherwise specified, coordinate indices α, β, . . . take the values
1, . . . , k − 1, and we use the convention that if the same coordinate
appears in a product as upper and lower index, it is summed over,
e.g., sαxα ≡

Pk−1
α=1 sαx

α. The shorthand ∂α ≡ ∂/∂xα denotes
partial derivatives with respect to these coordinates.

The evolutionary dynamics can be projected from genotypes onto
allele frequencies ((x1,1, . . . , x1,4), . . . , (xL,1, . . . , xL,4)), where
the frequency xν,a of an allele a = A,C,G, T at locus ν is given
by

xν,a =
X

α: aα,ν=a

xα. (S1)

With the normalization constraints
P4
a=1 x

ν,a = 1 (ν = 1, . . . , L),
the space of allele frequencies has dimension 3L. This projection
involves no loss of information if and only if the genotypes in the
population are at linkage equilibrium, i.e., if the frequency x of each
sequence a is the product of the frequencies of its alleles,

x =

LY
ν=1

xν,aν . (S2)

Since most of the following derivations are valid in both spaces, we
use the common notation x = (x1, . . . , xk−1) for the vectors of
genotype and allele frequencies. The conditions for linkage equilib-
rium and the applicability of genotype and allele picture to evolution
under selection will be discussed below.

Selection, Fitness Landscapes and Seascapes. Selection is given
by genotype fitness values fα(x, t), which determine the determinis-
tic change of genotype frequencies in the absence of mutations and
genetic drift,

1

xα
dxα

dt
= fα(x, t)−

kX
α=1

xαfα(x, t), (S3)

for α = 1, . . . , k. The second term on the right hand side ensures
conservation of the constraint

Pk
α=1 x

α(t) = 1. In terms of the lin-
early independent frequencies x = (x1, . . . , xk−1), these evolution
equations take the form

dxα

dt
= sα(x, t) ≡ gαβ(x)sβ(x, t) (S4)

with selection coefficients

sβ(x, t) = fβ(x, t)− fk(x, t) (S5)

and response coefficients

gαβ(x) =


−xαxβ if α 6= β
xα(1− xα) if α = β.

(S6)

The inverse of this matrix, gαβ = (gαβ)−1, plays the role of a met-
ric on Σk−1. In writing the continuum evolution equations (S4), it is
assumed that the selection coefficients are small on the time scale of
a generation and have temporal correlations over much larger times
than a generation. By eq. (S5), the selection coefficient sα can be ex-
pressed as partial change of the mean population fitness in response
a change in the frequency xα at constant genotype fitness values,

sα(x, t) =

24 ∂

∂xα

kX
β=1

xβfβ(y, t)

35
y=x

. (S7)

A different question is whether the selection coefficients can be
expressed as the gradient of a scalar potential function for selec-
tion, sα(x, t) = ∂αF (x, t). Eq. (S7) shows that if the reproduc-
tive rates fα of all genotypes are constant, F is time-independent
and equals the mean population fitness up to a constant, F (x) =Pk
α=1 x

αfα+F0. In general, however, we have to distinguish mean
population fitness and selection potential. The former governs the
overall growth rate of population size, the latter depends only on
growth rate differences between genotypes, according to eq. (S5).
For example, consider a mutant with frequency x and fitness f(x) in
a resident population of fitness f0(x). If the mutant has a constant
competitive advantage s = f(x) − f0(x) = ∂F (x)/∂x > 0 over
the resident population, the invasion process will lead to an increase
F (x = 1) − F (x = 0) = s, whereas the mean population fitness
xf(x) + (1− x)f0(x) may increase or decrease during this process.

Depending on existence and form of a potential function F , we
can distinguish the following types of natural selection acting on
genotypes:

1. The selection coefficients sα are constant, i.e., the gradient of a
linear fitness landscape,

sα = ∂αF (x) = ∂α(sβx
β). (S8)

The function F (x) is determined up to an arbitrary constant. Such
fitness landscapes can capture epistatic interactions between ge-
nomic loci; see the discussion in ref. [1].

2. The selection coefficients sα(x) are the gradient of a generic fit-
ness landscape [2],

sα(x) = ∂αF (x), (S9)

which describes frequency-dependent selection.
3. The selection coefficients sα(x, t) are the gradient of a time-

dependent fitness seascape [3],

sα(x, t) = ∂αF (x, t). (S10)

4. The selection coefficients sα(x, t) are given by a non-gradient fit-
ness seascape (which may also depend on time),

sα(x, t) = ∂αF (x, t) + šα(x, t) (S11)

with ∂β šα(x, t) − ∂αšβ(x, t) 6= 0. Non-gradient selection coef-
ficients šα describe, for example, cyclic selective advantage be-
tween three or more genotypes [4].

We will show below that the time-independent gradient form (S9) is
related to the existence of an evolutionary equilibrium under selec-
tion, mutations, and genetic drift. This equilibrium no longer exists
in a (time-dependent or non-gradient) fitness seascape (S10) or (S11).

Formulae analogous to (S3 - S11) hold in allele frequency space.
Assuming linkage equilibrium, the response coefficients (S6) for al-
lele frequencies factorize between loci,

gαβ(x) =

LY
ν=1

gabν (xν), (S12)
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and the same is true for the metric gαβ(x). Epistatic interactions
between loci, i.e., selection coefficients ∂F/∂xν1 depending on the
allele frequencies xν2 at another locus, now appear as nonlinearities
of the fitness landscape.

Mutations. In the absence of selection and genetic drift, the allele
frequency change due to mutations takes the form

dxα

dt
= mα(x) =

kX
β=1

µαβx
β −

` kX
β=1

µβα
´
xα (S13)

given by the mutation rates µβα ≡ µ(aα → aβ) between genotypes
(α, β = 1, . . . , k), which we assume to be time-independent over the
interval of observation. We can rewrite the rate mα(x) in terms of
the linearly independent frequencies x = (x1, . . . , xk−1),

mα(x) = µ̂αβx
β + µαk (S14)

with

µ̂αβ =


µαβ − µαk (α 6= β)

−
Pk
γ=1 µ

γ
α − µαk (α = β).

(S15)

The “covariant” rates mα(x) = gαβm
β(x) are defined in analogy

to (S4). We assume the evolutionary process is in the low mutation
regime µN � 1 (where N is the effective population size) and the
substitution rates µβα satisfy the detailed balance conditions

µβα
µαβ

=
pβ0
pα0

(S16)

for α, β = 1, . . . , k. These conditions, which are fulfilled in all stan-
dard models of nucleotide mutation rates, imply that the neutral sub-
stitution dynamics in the discrete space of genotypes a1, . . . ,ak has
an equilibrium probability distribution pα0 . It is then straightforward
to show that the rates mα(x) are asymptotically of gradient form,

mα(x) = ∂αM(x) +O(µ2NL). (S17)

The gradient property is tied to the existence of an evolutionary
equilibrium under mutations and genetic drift, which is a techni-
cal assumption for the proof of the fitness-flux theorem. The equi-
librium frequency distribution P0(x) turns out to be simply related
to the mutation potential M(x); see eq. (S47) below. Deviations
from the form (S17) arise only from multiple simultaneous muta-
tions and are negligible for compact genomic units (µNL � 1)
such as transcription factor binding sites. For longer sequences, we
will turn to a description of population states in terms of allele fre-
quencies. In this case, the asymptotic gradient form mν,a(xν) =
∂Mν(xν)/∂xν + O(µ2N) holds at each locus (no summation over
ν) and, assuming linkage equilibrium, the mutation potential for an
arbitrary number of loci is given by

M(x) =

LX
ν=1

Mν(xν). (S18)

If the detailed balance conditions (S16) are replaced by the more
restrictive conditions µβα = µβ , the rates mα are of exact gradient
form for arbitrary values of µN and the mutation potential is known
exactly [5],

M(x) =
kX

α=1

µα log(xα). (S19)

Recombination. In sexually reproducing populations, two geno-
types α and β can recombine and produce a new genotype γ. The
genotype frequency changes due to recombination are described by
additional terms in eq. (S13). It is possible to include recombination

into a genotype-based flux theorem, but the derivation is technically
involved and will be postponed to a later publication. The contribu-
tion of recombination vanishes in the projection (S1) of the neutral
dynamics from genotypes to the allele frequencies at individual ge-
nomic loci. Recombination counteracts linkage disequilibrium gen-
erated by epistasis. The projection onto allele frequencies is appro-
priate to describe evolution under selection and fitness flux as long as
simultaneous substitutions at different genomic loci that are coupled
by epistasis and linkage disequilibrium are rare. This condition does
not preclude linkage disequilibrium between genomic loci under se-
lection and adjacent neutral loci, which gives rise to hitchhiking but is
irrelevant for fitness flux. Linkage equilibrium between selected loci
emerges if the rate of beneficial substitutions, u+, and the recombi-
nation rate ρ satisfy the inequality u+/ρ � 1, which we assume in
the following analysis.

Evolution of Finite Populations: Mutation-Selection-Drift dy-
namics. The stochastic evolution of finite populations is described
by a time-dependent probability distribution of genotype or allele
frequencies, P (x, t). Genotype space and allele frequency space for
multiple genomic loci are very high-dimensional and are always un-
dersampled, but appropriate marginal distributions and averages of
P (x, t) (such as allele frequencies at single loci, linkage disequilib-
rium, or fitness flux) can be compared with observations.

The evolution of P (x, t) can be described by a Kimura-Ohta evo-
lution equation of the form [6]

∂tP (x, t) = ∂α

»
1

N
∂βg

αβ(x)− vα(x, t)

–
P (x, t), (S20)

where N is the effective population size, gαβ are the metric coeffi-
cients (S6), and vα(x, t) are the total rates of frequency change due
to selection and mutations as given by eqs. (S5) and (S14),

vα(x, t) = sα(x, t) +mα(x). (S21)

The diffusion equation (S20) expresses the temporal change of
P (x, t) as the divergence of a probability current. For later conve-
nience we rewrite this equation in a different operator ordering [7],

∂tP (x, t) = ∂α

»
1

N
gαβ(x)∂β − ṽα(x, t)

–
P (x, t), (S22)

where
ṽα = vα − 1

N
gαβ(x) ∂βΩg(x) (S23)

and
Ωg(x) = log det(gαβ). (S24)

Evolution as Sum over Population Histories. Consider first the
evolution of an ensemble of populations described by discrete geno-
type or allele frequencies xα(t) observed over a time interval of n
discrete generations, ti = t0 + iδ (i = 0, . . . , n) with generation
time δ. This process has a finite set of population histories

x = (x0, x1, . . . , xn). (S25)

Evolution by mutations, selection, and genetic drift dynamics gen-
erates a probability distribution P(x) over these population histo-
ries. The frequency distribution P (x, t) at the final time t = tn is a
marginal distribution of P(x),

P (x, t) =
X
x

P(x) δx(t)−x. (S26)

To equate this sum over population histories to the solution of the
Kimura-Ohta evolution equation (S20), we first take a continuum
limit for the allele frequencies xα. The history probability distri-
bution P(x) is now a so-called path integral [8], which is a density
with the measure

Dx ≡ dxn
n−1Y
i=0

dxi

s
g(xi)

(2π(t− t0)/n)k−1
(S27)
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and the normalization Z
DxP(x) = 1. (S28)

The frequency distribution P (x, t) is again the marginal distribution

P (x, t) =

Z
Dx P(x)δ(x(t)− x). (S29)

For large populations, where the mean square allele frequency change
per generation is small,

ε ≡ 〈∆xαi gαβ(xi)∆x
β
i 〉 � 1 (S30)

with ∆xi ≡ xi+1 − xi, the distribution P(x) takes the form

P(x) = P (x0, t0) e−NS(x) (S31)

with the weight function (action)

S(x) =
δ

4

n−1X
i=0

»
∆xαi
δ
− vα(xi, ti)

–
(S32)

×gαβ(xi, ti)

"
∆xβi
δ
− vβ(xi, ti)

#
.

It can be shown that this path integral has a well defined limit for
n→∞ and δ ∼ ε ∼ 1/n→ 0: for any sufficiently smooth function
f(x), the average over population histories

〈f(x)〉ε ≡
Z
Dx f(x)P(x) (S33)

converges to 〈f(x)〉 = limε→0〈f(x)〉ε, and

〈f(x)〉ε = 〈f(x)〉+O(ε1/2). (S34)

In particular, the allele frequency distribution (S29) converges to the
solution of (S20) in this limit. The initial-point (Itô) discretization of
the functions gαβ(x, t) and vα(x, t) exactly reproduces the operator
ordering in (S20) and explicitly displays the normalization (S28) of
the partition function [7]. An equivalent history probability distribu-
tion

P(x) = P (x0, t0) e−NS̃(x) (S35)

can be defined with a measure

Dx ≡ dxn
n−1Y
i=0

dxi

s
g(x̃i)

(2π(t− t0)/n)k−1
(S36)

and a weight function in midpoint (Stratonovich) discretization,

S̃(x) =
δ

4

n−1X
i=0

»
∆xαi
δ
− ṽα(x̃i, t̃i)

–
× (S37)

×gαβ(x̃i, t̃i)

"
∆xβi
δ
− ṽβ(x̃i, t̃i)

#
+ c̃(x̃i, t̃i)

where x̃i ≡ (xi + xi+1)/2, t̃i ≡ (ti + ti+1)/2, the allele frequency
change field ṽ(x, t) is given by (S23) up to a negligible correction
term of order ε arising from (S36), coefficients gαβ are given by the
matrix inverse of (gαβ) and c̃(x, t) is a scalar function which guaran-
tees the normalization (S28). For the quadratic term ∆xαi gαβ∆xβi /δ,
this discretization corresponds to the operator ordering in (S22). The
two densities (S31) and (S35) define the same continuum limit (S34).
We emphasize that in population genetics, unlike in other applica-
tions of the path integral, there are natural discrete scales of time and
allele frequencies, and the continuum formalism is merely a conve-
nient choice for computing probabilities in ensembles of population

histories, which displays the equivalence of discrete-generation mod-
els in large populations. A different application of the path integral
as an ensemble of histories of individuals within one population has
recently been used to describe the micro-evolution of structured pop-
ulations [9].

Equilibrium Frequency Distributions. An equilibrium state of the
evolution process (S20) is defined as a stationary frequency distribu-
tion Peq(x) with vanishing probability current,»

1

N
gαβ(x)∂β − ṽα(x, t)

–
Peq(x) = 0. (S38)

As shown by inspection of this equation, the neutral process given by
eqs. (S20) and (S21) with vα(x, t) = mα(x) has an equilibrium dis-
tribution P0(x) if and only if the rates mα(x) are of gradient form,
mα(x) = ∇αM(x). This condition defines the mutation potential
M(x) in eq. (S17). The equilibrium frequency distribution takes the
simple form [7]

P0(x) = eΩ0(x) = Z−1
0 eNM(x)+Ωg(x) (S39)

with Ωg(x) given by (S24). A well-known special case of this rela-
tion is Kimura’s U-shaped equilibrium distribution for a single locus
that has two alleles a, b [10] with frequencies x ≡ xb = 1−xa. The
equilibrium frequency distribution Pu0 (x, µba, µ

a
b ) under neutrality is

of the form (S39) with

Ω0(x) = − log[x(1− x)], (S40)

M(x) = µba log x+ µab log(1− x), (S41)

and the normalization factor

Zu0 = Γ(Nµba)Γ(Nµab )/Γ(Nµba +Nµab ). (S42)

The mutation potential determines the rate m1 = g11∂xM(x) =
µba(1 − x) − µabx with g11 = x(1 − x). It is straightforward to
generalize this form to a space of k genotypes if the detailed balance
conditions (S16) are fulfilled and at most two genotypes coexist at
any point in time, which is a good approximation for µNL� 1. The
asymptotic equilibrium distribution P0(x) is defined on the edges of
the simplex Σk−1 and has the form Pu0 (x, µβα, µ

α
β ) for each pair of

coexisting genotypes α, β linked by mutations. Specifically, we ob-
tain

P0(x) = Z−1
0

"
kX

α=1

pα0 δ(x
α − 1)

+
1

2

kX
α,β=1

pα0

pu(µβα, µαβ )
Pu0 (xβ − xα, µβα, µαβ )

×χ(xα − xβ)δ(xα + xβ − 1)
i

(S43)

with the normalization

Z0 = 1 +
1

2

kX
α,β=1

pα0

pu(µβα, µαβ )

ˆ
1− pu(µβα, µ

α
β )− pu(µαβ , µ

β
α)
˜
,

(S44)
where pα0 is the equilibrium distribution of fixed phenotypes given by
(S16), χ(x) = 1 if 1/N ≤ x < 1− 1/N and 0 otherwise, and

pu(µβα, µ
α
β ) =

1

µβαNZu0

„
1

N

«µβαN
(S45)

is the probability of the fixed state α given by the distribution
Pu0 (µβα, µ

α
β ). In allele frequency space, the asymptotic equilibrium
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P0,ν(xν) is of this form, and the distribution for an arbitrary number
of loci at linkage equilibrium is given by

P0(x) =

LY
ν=1

P0,ν(xν). (S46)

Given a neutral (approximate) equilibrium and selection coeffi-
cients of time-independent gradient form, sα(x) = ∂αF (x), the full
evolution process of eq. (S20) has an (approximate) equilibrium state
of the form

Peq(x) = eΩeq(x) = Z−1 eΩ0(x)+NF (x). (S47)

For example, Kimuras U-shaped equilibrium for a two-allele locus
under directional selection of strength s is given by eqs. (S39 - S41,
S47) with

F (x) = sx. (S48)

The relation corresponding to (S47) for the equilibrium distributions
of fixed genotypes,

pαeq = Z−1pα0 eNFα , (S49)

with Fα = F (xβ=δα,β) has been derived in ref. [11].

Entropy of Population States. The local entropy of the population
state x(t) with respect to the normalized time-dependent solution
P (x, t) of the diffusion equation (S20) can be defined as [14]

Ω(x, t) = − logP (x, t). (S50)

This name is justified since the average of Ω(x, t) is the entropy of
the distribution P (t),

〈Ω〉(t) = −
Z
dxP (x, t) logP (x, t) ≡ Ω(P (t)). (S51)

It will prove convenient to decompose the local entropy,

Ω(x, t) = Ω0(x)−H(x, t), (S52)

into the contribution Ω0(x, t) = − logP0(x) of the neutral equilib-
rium distribution P0 given by (S39) and the relative log likelihood

H(x, t) = log
P (x, t)

P0(x)
. (S53)

The average

〈H〉(t) =

Z
dx P (x, t) log

P (x, t)

P0(x)
≡ H(P (t)|P0) (S54)

is the relative entropy of the time-dependent distribution P (t) of the
full process with respect to the neutral equilibrium P0. If the full
process is also at equilibrium, P (x, t) = Peq(x), this relative log
likelihood equals the fitness up to an additive constant,

Heq(x) = NF (x)− logZ, (S55)

as shown by eq. (S47).

Fluxes of Population Histories. For a given population history x
with initial frequencies x0 and final frequencies x in the time interval
(t0, t), we define the total cumulative flux

Θ(x) ≡
n−1X
i=0

∆xαi ṽα(x̃i, t̃i), (S56)

which is shown here in midpoint discretization. In this and the fol-
lowing expressions, we assume the continuum limit n → ∞ to be

taken. Using eqs. (S21) and (S23), we can decompose this flux into
the contributions of genetic drift, mutations, and selection,

Θ(x) = Θg(x) + Θm(x) + Φ(x) (S57)

with

Θg(x) ≡ 1

N

n−1X
i=0

∆xαi ∂αΩg(x̃i)

=
1

N
[Ωg(x)− Ωg(x0)], (S58)

Θm(x) ≡
n−1X
i=0

∆xαi mα(x̃i)

= M(x)−M(x0), (S59)

Φ(x) ≡
n−1X
i=0

∆xαi sα(x̃i, t̃i)

=

n−1X
i=0

∆xαi [∂αF (x̃i, t̃i) + šα(x̃i, t̃i)]. (S60)

Comparison with eqs. (S39), (S47) shows that the cumulative fluxes
of any population history x at equilibrium are proportional to differ-
ences in the corresponding local entropies between its end point and
its initial point,

N [Θg(x) + Θm(x)] = Ω0(x)− Ω0(x0), (S61)
NΦ(x) = N [F (x)− F (x0)] = Heq(x)−Heq(x0), (S62)

NΘ(x) = Ωeq(x)− Ωeq(x0). (S63)

The last equation implies the relation

e−NΘ(x)+Ωeq(x)−Ωeq(x0) = 1, (S64)

which expresses detailed balance at equilibrium (this will become
clear from the proof of the fitness-flux theorem). We now generalize
the relation between flux and entropy to nonequilibrium processes.

Fitness-Flux Theorem. The theorem states that for any evolutionary
dynamics governed by time-dependent selection, mutations, and ge-
netic drift as given by eq. (S20), or equivalently by eqs. (S29) and
(S32), the following identity holds:D

e−NΘ+∆Ω
E

= 1. (S65)

Here, Θ(x) is the total cumulative flux (S56) in an arbitrary time
interval (t0, t), and ∆Ω(x) ≡ Ω(x, t) − Ω(x0, t0) is the change in
local entropy for a given population history x, which depends only on
its initial point (x0, t0) and its end point (x, t). The angular brackets
denote an average over population histories in the interval (t0, t),D

e−NΘ+∆Ω
E
≡

Z
Dx P(x) e−NΘ(x)+∆Ω(x) (S66)

=

Z
Dx P (x0, t0) e−NΘ(x)+∆Ω(x)−NS̃(x).

For convenience, this path integral is written in a midpoint discretiza-
tion rule with the measure (S36) and the weight function (S37). As-
suming that the neutral evolution process in the time interval (t0, t)
has an equilibrium frequency distribution P0(x), we can use the de-
composition (S52), (S57) with (S61) to write the identity (S65) in the
form D

e−NΦ+∆H
E

= 1. (S67)

An immediate consequence of this theorem is the inequality

N〈Φ〉 ≥ ∆H (S68)
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at constant population size N . We note that the assumption of a neu-
tral equilibrium is not crucial. If the neutral process is not at equilib-
rium, the flux identity (S65) still holds, but alternative assumptions
are needed for its decomposition into contributions of mutational flux
and fitness flux.

Proof of the Theorem. The theorem is proved using a set of identi-
ties called integral fluctuation theorems, which have been developed
in nonequilibrium thermodynamics over recent years [12, 13, 14, 15].
The following proof uses a generalization of Crooks’ formalism [13]
to continuous-time path integrals [15]. For every population history
(S25), we define the time-reversed history

xT ≡ (xT0 , x
T
1 . . . , x

T
n ) = (xn, xn−1, . . . , x0), (S69)

and the time-reversed fitness seascape

FT (x, ti) = F (x, t− ti + t0), (S70)

which determines selection coefficients

sT (x, ti) = s(x, t− ti + t0). (S71)

Hence, the reverse history evolves under selection coefficients

sT (x̃Ti , t̃i) = s(x̃n−i, t− t̃i + t0). (S72)

Eqs. (S71) and (S72) define the time-reversed selection, even for non-
gradient seascapes of the form (S11). With the frequency transitions
∆xTi = −∆xn−i, we obtain the weight function

S̃T (xT ) = S̃(x) + Θ(x) (S73)

and the conditional probabilities

GT (xT ) = eS̃
T (xT ) = e−NΘ(x) G(x) (S74)

of the time-reversed process. The transformations (S73) and (S74)
involve the total cumulative flux (S56) of the forward process in a
time-reversal symmetric discretization rule. We can also relate the
initial distributions of the forward and backward process,

P (xT0 , t0) = P (x, t) = P (x0, t0) e∆Ω(x) (S75)

and the integration measures,

Dx = DxT . (S76)

Eqs. (S74) and (S75) together relate the probability densities of pop-
ulation histories in both processes,

P(xT ) = P(x) e−NΘ(x)+∆Ω(x)

= P(x) e−NΦ(x)+∆H(x), (S77)

and with (S76), we recognize (S67) as the normalized partition func-
tion of the backward process,D

e−NΘ(x)+∆Ω(x)
E

=

Z
DxT P(xT ) = 1. (S78)

Specifically at evolutionary equilibrium, the flux relation (S65) holds
not only as an average in an ensemble of population histories, but for
each population history, see (S64). Eq. (S77) then shows that this is
nothing but the statement of detailed balance,

P (x, t) e−NS(xT ) = P(xT ) = P(x) = P (x0, t0) e−NS(x).
(S79)

Generalization to Time-Dependent Population Size. The evolu-
tion of a population of time-dependent effective size N(t) can be
described by a Kimura-Ohta diffusion equation of the form

∂tP (x, t) = ∂α

»
1

N(t)
∂βg

αβ(x)− vα(x, t)

–
P (x, t), (S80)

because relevant changes of the effective population sizeN(t) are al-
ways small on the time scale of a generation. Parametrizing the pop-
ulation size in terms of a reference size,N(t) = ζ(t)N , the temporal
variation in population size can be absorbed by a nonlinear rescaling
of evolutionary time given by dτ/dt = 1/ζ(t),

∂τP (x, τ) = ∂α

»
1

N
∂βg

αβ(x)− ζ(τ)vα(x, τ)

–
P (x, τ) (S81)

with the substitution vα(x, τ) ≡ vα(x, t(τ)). Hence, with appropri-
ate definitions of rescaled mutation flux and fitness flux,

N0Θm(x) =

n−1X
i=0

N(t) ∆xαi ∂αM(x̃i), (S82)

N0Φ(x) =

n−1X
i=0

N(t) ∆xαi sα(x̃i, t̃i), (S83)

the fitness-flux theorem (S65) remains valid and takes the formD
e−N0Φ+∆H−N0Θm+∆Ωm

E
= 1. (S84)

Compared to the form (S67), there are the two additional terms ∆Ωm
and −NΘm. In the low-mutation regime µN � 1, these terms
describe the small change in neutral polymorphism frequency dis-
tributions and the associated flux which are induced by a change in
effective population size. Both terms are of order µN0 and hence,
negligible against the contributions −N0Φ and ∆H.

Strong-Selection Limit and Fisher’s Theorem. In the asymptotic
regime of strong selection (sN � 1, s/µ� 1), the genotype evolu-
tion of a polymorphic population is dominated by its most probable
history x∗, which is given by the deterministic evolution equation

dxα∗
dt

= gαβ(x∗(t)) sβ(x∗(t)). (S85)

as a function of final time t. This form is obtained from the asymp-
totics of the stochastic evolution equation (S20),

∂tP (x, t) = ∂αg
αβ(x)sβ(x, t)P (x, t)[1 +O(1/Ns, µ/s)] (S86)

or equivalently by saddle-point analysis of the action (S32) as dis-
cussed below. The deterministic approximation is valid for frequen-
cies x� 1/Ns, while the low-frequency statistics of polymorphisms
remains governed by genetic drift. The cumulative fitness flux of the
deterministic history increases at a rate dΦ(x∗)/dt = φ∗(t) as a
function of final time t, which equals the fitness variance:

φ∗(t) =
dxα∗
dt

sα(x∗(t)) = sα(x∗(t)) sα(x∗(t))

=

kX
α=1

xα∗ (t)

24fα(x∗(t), t)−
kX
β=1

xβ∗ (t)fβ(x∗(t), t)

352

≡ Varf(x∗(t), t), (S87)

as shown by using (S3) and (S4). The counterpart of this identity
in allele-frequency space, where the contribution of recombination
to the deterministic evolution vanishes even for sexually reproduc-
ing populations, is Fisher’s theorem [16]. As for the fitness-flux
theorem, no additional assumptions on the form of selection are re-
quired: the theorem is valid in an arbitrary fitness seascape. We re-
call, however, that the identity (S87) is not in general a statement
about increase of fitness. Only in the particular case of a time-
independent fitness landscape, the deterministic flux equals the rate
of fitness increase, φ∗(t) = dF (x∗(t))/dt. If not only the selection
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coefficients, but all genotype growth rates are time-independent con-
stants, this also equals the rate of increase in mean population fitness,
φ∗(t) =

Pk
α=1 fα dx

α
∗ /dt.

The fitness-flux theorem, which is a statement about the fluctua-
tions of Φ in a time interval ∆t, remains valid at any finite value of
sN . In the strong-selection regime, the scaled cumulative flux of the
deterministic history takes large positive values for ∆t� 1/(s2N),

NΦ(x∗) ' N
Z
dt sα(x∗(t)) sα(x∗(t))� 1, (S88)

which results in an exponentially small contribution of order
exp[−NΦ(x∗)] to the average over histories in the fitness-flux theo-
rem (S67). The dominant contribution comes from the time-reversed
history xT∗ ,

1 =
D

e−NΦ+∆H
E
' e−NΦ(xT∗ )P(xT∗ ) ' eNΦ(x∗)e−NΦ(x∗).

(S89)
We recall that the deterministic evolution equation (S85) can be

derived from the strong-selection limit of the action (S32) or (S37)
written in continuum form

S(x) =
1

4

Z t

t0

dt [ẋα − sα(x, t)] gαβ(x)
h
ẋβ − sβ(x, t)

i
(S90)

with ẋα(t) ≡ dxα(t)/dt (the distinction between discretization rules
becomes irrelevant in the deterministic limit). The deterministic his-
tory x∗ defined by (S85) with initial condition x∗(t0) = x0 satisfies
Hamilton’s variational principle: it minimizes the action (S90) over
the set of all histories x with the same initial point x(t0) = x0.
In the special case where selection is given by a fitness landscape,
sα(x) = ∂αF (x), the deterministic history x∗ also satisfies a modi-
fied variational principle: it minimizes the reduced action

S′(x) = S(x) +
1

2

Z t

t0

dt ẋαsα(x)

=
1

4

Z t

t0

dt
h
ẋαgαβ(x)ẋβ + sα(x)sα(x)

i
=

1

4

Z t

t0

dt
h
ẋαgαβ(x)ẋβ + Varf(x)

i
(S91)

over the restricted set of all histories x with the same initial point
x(t0) = x0 and the same endpoint x(tf ) = x∗(tf ) ≡ xf , because
S′(x) − S(x) = F (xf ) − F (x0) is a history-independent constant
within this set. The latter type of variational calculus is known in the
population genetics literature as Svirezhev’s principle and its gen-
eralizations [18, 19, 20]. However, the reduced action (S91) is not
suitable as a basis for the stochastic calculus of evolutionary histo-
ries.

Numerical Simulations. We consider the substitution dynamics
in a system of L independent two-allele genomic loci under time-
dependent selection and population size. A fixed population state
x = (x1, . . . , xL) of this system is specified by the allele frequen-
cies xν ≡ xν,b = 1− xν,a = 0, 1 at individual loci (ν = 1, . . . , L).
These alleles have time-dependent fitness values fν,a(t) and fν,b(t),
which determine the selection coefficients

sν(t) = fν,b(t)− fν,a(t) (S92)

and the additive fitness seascape

F (x, t) =

LX
ν=1

sν(t)xν(t). (S93)

The evolution under mutations, selection, and genetic drift gen-
erates substitutions at these loci with Kimura-Ohta rates [21, 22]
ua→bν = µψ(σν(t)) and ub→aν = µψ(−σν(t)), where µ is the uni-
form mutation rate per locus, σν(t) = N(t)sν(t) are scaled selection
coefficients, and

ψ(σ) =
σ

1− e−σ
. (S94)

An ensemble of populations evolving under this process has a time-
dependent distribution of fixed genotypes P (x, t) =

QL
ν=1 pν(t),

where pν(t) is the probability of allele b at locus ν. An indi-
vidual population history x = (x0, x1, . . . , xn) recorded at times
(t0, . . . , tn) has a time-dependent relative entropy

H(ti) = (S95)
LX
ν=1

»
xν(ti) log

pν(ti)

p0
+ (1− xν(ti)) log

1− pν(ti)

p0

–
,

where p0 = 1/2 are the neutral equilibrium frequencies of alleles at
individual loci, and a scaled cumulative fitness flux

NΦ(ti) =

LX
ν=1

i−1X
j=0

[xν(tj+1)− xν(tj)]σν(tj), (S96)

which is simply the sum of the selection coefficients of all substitu-
tions occuring until the point ti.

Simulations are performed for L = 12 loci with scaled selection
coefficients σν = 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1.5, 1.5, 1.5, 1.5, 2, 2,
2, 2 and a uniform mutation rate µ = 0.006. We consider three dif-
ferent protocols of sequence evolution (see Fig. 2 of the main text).
Histories of populations are recorded at 400 time points in the in-
terval (0, 28.8) for protocols 1 and 2 and at 800 time points in the
interval (0, 57.6) for protocol 3 (time is measured in units of 1/µL).
We generate an ensemble of 105 population histories for each proto-
col. The protocols have the following characteristics of demography
and selection:

1. Evolutionary equilibrium with constant scaled selection coeffi-
cients

σν(t) = σν . (S97)

2. Nonequilibrium stationary state with scaled selection coefficients

σν(t) = ±σν fluctuating with rate γ = µ/3 (S98)

independently at each locus. Averages over this process are ob-
tained from an ensemble of 100 independent selection histories.

3. Transitions between equilibria under a time-dependent population
size N(t) = N0ζ(t), which results in time-dependent scaled se-
lection coefficients

σν(t) = ζ(t)σν . (S99)

We use a bottleneck protocol

ζ(t) =
1

2
+

1

2
[w(t, 3.6, 5) + w(−t,−28.8, 5)] (S100)

with w(t, t′,∆t) = 1/[1+exp((t− t′)/∆t)]. Scaled fitness flux
is defined by eq. (S83).
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