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Chance and necessity of evolution are a classic topic in biol-
ogy1–4. Because evolution is shaped by multiple stochastic 
forces of reproduction and environment, many have taken a 

sceptical view on its repeatability, let alone predictability. With only 
sparse and predominantly macro-evolutionary data, this question 
has, for a long time, remained difficult to decide by direct compari-
son of experiment and theory. The situation is now changing; mas-
sively parallel evolution experiments, high-throughput sequencing 
and phenotypic assays, and progress in modelling complex dynami-
cal processes provide an unprecedented amount of evolutionary 
information. The new data and methods paint a more upbeat pic-
ture of predictability in evolution, albeit on shorter time scales. They 
reveal that evolutionary processes show repeatable features: different 
pathogen populations evolve similar resistance to a given antibiotic, 
immune systems of different hosts evolve similar receptors against 
the same pathogen, and cancers are marked across patients by muta-
tions in specific oncogenes5–11. Building on these regularities, a num-
ber of recent studies have come up with actual predictions of future 
evolution in specific systems12–16.

What is predictable in evolution, what may become predict-
able in the near future, and what will remain unpredictable? These 
are the central questions of this Perspective. Here we use the term 
prediction in a specific sense: a testable hypothesis about an evo-
lutionary process that extends into the future. This distinguishes 
evolutionary predictions from the broader usage of the term pre-
diction (of a model, that can be tested by experiment) and excludes 
processes with solely metabolic or ecological dynamics. Building 
on recent progress in microbial and viral evolution, cancer evolu-
tion, and the somatic evolution of immune systems, we develop 
unifying concepts for predictive analysis and identify avenues for 
future research.

What makes evolution predictable?
A look at evolutionary processes on the molecular scale seems to 
support scepticism on predictability. Molecular evolution is driven 
by mutations that arise randomly in an individual’s genome and act 
on complicated, in part unknown cellular machinery. The fate of 
mutations in an evolving population appears similarly complicated. 
In Fig.  1a–d, we plot the frequency paths of genetic mutations in 
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systems representative for this article, which include a laboratory 
population of yeast cells, the human influenza virus A/H3N2, and 
populations of cancer and immune B cells in a human individual. 
These systems are examples of Darwinian evolution: genetic vari-
ation is continuously produced by mutations and is acted upon 
by selection. Part of the positively selected changes expands in 
the entire population and generates increasing divergence from 
its initial state. A closer look reveals the complexity of the evolu-
tionary dynamics. All of the populations have multiple coexisting 
clades (that is, groups of genetically related individuals); beneficial 
mutations in disjoint clades compete for fixation, while mutations 
in nested clades reinforce one another (Fig. 1e). This evolutionary 
mode, which is commonly called clonal interference, arises in large 
asexual populations subject to strong selection17. Here we use the 
term clades (instead of clones) to highlight that successful clades 
acquire new genetic diversity on their way to fixation (Fig.  1e). 
Clonal interference has been observed in laboratory evolution of 
microbial and viral populations18,19 and probably governs all of the 
systems shown in Fig. 120–25. Two of its characteristics are relevant for 
predictions. First, new mutants are produced at a high rate, which 
reduces stochastic waiting times for fitter genetic variants. Second, 
the observed rise and decline of clade frequencies is driven by selec-
tion, not by genetic drift or environmental noise. Fitness models, 
that is, models that estimate selection on clades from past evolu-
tionary data, can rationalize these dynamics and, at least in princi-
ple, predict future changes. Thus, the very factors that generate the 
complexity of the evolutionary process enhance its repeatability and 
hold the key to predictive analysis.

If selection is to generate predictability, it must prune a highly 
complex space of evolutionary possibilities to essentially a single 
likely alternative. Research in recent years has revealed that at differ-
ent levels of biological organization, the degree to which this takes 
place varies greatly. In parallel-evolving laboratory populations, the 
vast majority of single-nucleotide and amino acid changes occur 
in just a single population26–29; that is, different populations follow 
divergent paths in sequence space (Fig.  2a). Somatic evolution in 
multicellular organisms, which is one of nature’s massively parallel 
evolution experiments, shows a similar picture of genetic hetero-
geneity. Cancer genotypes, even for tumours of the same type, have 
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largely disjoint spectra of mutations between patients30. Already the 
starting points of cancer evolution are diverse; the somatic evolution 
even of healthy tissues produces genetic heterogeneity31. Another 
important somatic process is the generation of adaptive immune 
receptors in vertebrates. Combinatoric assembly of genomic tem-
plates, followed by random nucleotide insertions and deletions, 
produces repertoires that are staggeringly diverse within and largely 
disjointed between individuals32–34. Consequently, different indi-
viduals respond to an infection or vaccination by different immune 
receptor sequences35.

The divergence of genome evolution observed in all of these 
systems is hardly surprising. Even simple units of biological sys-
tems have a large number of possible mutational changes that have 
similar functional effects. For example, loss of genes in regulatory 
networks is frequently observed in evolution experiments36, and a 
given gene can be silenced by many different sequence mutations. 
More generally, changes in gene regulation and in cell metabolism 
have a large mutational target, given the redundancies in regulatory 
sequence grammar and metabolic pathways. These redundancies 
imply that ‘microscopic’ genome evolution is not repeatable. But 
they also hold a positive message for predictability: in order to fore-
cast functional changes in a population, we do not need to know the 
exact evolutionary path in sequence space.

At a more coarse-grained level, recent evolution experiments do 
suggest a route towards predictive analysis. Heritable phenotypes, 
in particular quantitative traits, often evolve in a more repeatable 
way than genomic sequences. This is a common feature of microbial 
populations4,27,37–40, where repeatable changes occur in regulatory or 
metabolic pathways. Such changes are promising building blocks for 
predictive analysis. They can be tracked by observations of genetic 

convergence: in parallel-evolving populations, mutations frequently 
affect the same genes, operons, or larger functional units27,41,42. In 
adaptive processes, high-level organismic traits, in particular fitness 
itself, can even produce a highly regular pattern of time depend-
ence20,26 (Fig. 2b). The evolution of cancer and of adaptive immune 
repertoires follows a similar pattern. Cancer is marked by a series 
of high-level changes, including resistance to cell death and sus-
tained proliferative signalling43. These phenotypic changes have a 
large sequence target and are highly repeatable, to an extent they 
can serve as a definition of cancer. More specific phenotypes, such 
as transcriptional states, appear to be informative of disease pro-
gression44. At the peak of an acute infection, a substantial fraction of 
the functional immune receptors responds to specific antigens22,45. 
This repeatable adaptive evolution is mediated by immune recep-
tor–antigen affinity phenotypes that may be identifiable from char-
acteristic sequence motifs34,46 (similar to the well-known sequence 
motifs of transcriptional regulation).

The differences in repeatability between genomic and pheno-
typic evolution reflects the dependence of selection on biological 
scale. Sequence space contains a staggering number of evolution-
ary paths. Although negative and positive selection reduces the 
number of likely paths, sequence evolution remains generically 
unrepeatable (Fig.  2a). Two main factors generate stochasticity: 
mutations with similar functional effects have similar fitness effects 
and similar likelihood; moreover, a fraction of the system’s genomic 
sites evolves under weak selection altogether. For example, sites 
that are part of quantitative traits with sequence redundancy evolve 
near neutrality, even if the trait itself is under substantial stabiliz-
ing selection. More generally, clonal interference acts as a selective 
filter: only strongly adaptive mutations are governed by their own 
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Figure 1 | Clonal interference is a common mode of evolution. Time-dependent frequencies of genetic variants are shown for four systems. a, Yeast cells 
under clonal evolution for 1,000 generations38. Several sets of mutations first increase in frequency but are eventually outcompeted by another lineage. 
b, The human influenza lineage A/H3N2 in the period 2007–1613. This plot shows strong competition between viral clades and the fixation of several 
epitope mutations. c, Blood cancer cells sampled at five time-points over a period of three years23. Clone frequencies (coloured lines) are inferred141 from 
frequencies of somatic single nucleotide variants (black lines; these frequencies differ because cancer cells are diploid and contain copy number changes). 
d, Immune B cells evolving the broadly neutralizing HIV antibody CH103 sampled at four time-points over a period of 140 weeks142. The B cell clade 
carrying a positively selected precursor of a broadly neutralizing antibody originates in week 93 (orange line) and rises in frequency together with two 
parental clades (red lines). All of these populations continuously harbour substantial genetic and fitness differences, which form the basis for evolutionary 
predictions. e, The observed mutation patterns signal a specific mode of Darwinian evolution: beneficial mutations in disjoint clades compete (for 
example, 1 and 2), beneficial mutations in nested clades reinforce one another (for example, 2 and 3). Top, Muller plot displaying ancestor and frequency 
(height difference enclosed by the shaded area) for each clade. Bottom, corresponding mutation frequency plot. 
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selection coefficient and can evolve repeatably; moderately selected 
beneficial and deleterious mutations acquire near-neutral fixation 
probabilities47,48 and lose repeatability. This effect has been called 
emergent neutrality47,48 and can be understood from Fig. 1e: mod-
erately selected mutations are pushed and pulled by the dynamics 
of clades in their immediate back- and foreground, which is driven 
by stronger selection. The theoretical expectation of emergent 
neutrality is in line with the hitchhiking of deleterious mutations 
observed in evolution experiments and wild populations29,49–52. At 
the pheno typic level, selection acts in a stronger and more coherent 
way. First, negative (stabilizing) selection and physiological con-
straints play an important role in reducing the number of pheno-
typic evolutionary paths53. Stabilizing selection, for example, on 
protein fold stability or catalytic activity, is a general feature of pro-
tein evolution, which has been inferred for several microbial and 
viral systems54–62. More broadly, the collective effect of deleterious 
changes matters for predictions despite their individual stochastic-
ity: a substantial fitness cost has been observed, for example, in 
cancer63,64 and influenza13,21,65. Second, positive (directional) selec-
tion further prunes the number of evolutionary paths in adaptive 
processes. Most processes discussed here fall into this class, notably 
the evolutionary response of microbial, viral, and cancer popula-
tions to drugs and of immune repertoires to antigens. In the adap-
tive evolution of anti biotic resistance66–69, repeatability has been 
observed for some large-effect sequence changes, but more broadly 
for molecular resistance phenotypes39,66–72. Together, an evolution-
ary process is, in principle, predictable to the extent that (nega-
tive and positive) selection canalizes phenotypic evolution towards 
a single dominant path (Fig. 2b). We will discuss below how this 
criterion plays out in practice. The joint role of conservation and 
adaptation in reducing evolutionary complexity extends to macro-
evolution; an example is gene regulatory networks that establish 
new links while maintaining ancestral functions72,73.

Phenotypic evolution is marked by correlations that can be har-
vested for the inference of fitness landscapes and for predictive analy-
sis. One source of such correlations is the nonlinearity of pheno typic 
fitness landscapes, which implies broad fitness interactions (epi-
stasis) between mutations: deleterious changes increase in cost 
with increasing distance from a ridge; beneficial changes decrease 
in return with decreasing distance from a peak74. Importantly, these 
interactions generate evolutionary constraints and increase the 
predictability of phenotypic processes and outcome. Yeast popula-
tions, for example, show a rate of adaptation that is predictable in 
terms of their initial fitness38. Even in macro-evolutionary processes, 
pheno typic epistasis can generate a predictable order of evolution-
ary steps, as has been observed in the evolution of complex func-
tions in prokaryotes by lateral gene transfer75 and of photosynthesis 
in plants76. The emerging picture of smooth phenotype-fitness maps 
with ‘macroscopic’ epistasis38 (Fig. 2b) is in sharp contrast to that of 
rugged fitness landscapes on sequence space. The latter are domi-
nated by ‘microscopic’ epistasis, which decreases the number of 
accessible evolutionary paths66,72, but the local peaks and valleys in a 
given system can hardly be captured by a predictive model with few 
parameters70,77–80. We conclude that microscopic and macroscopic 
epistasis can both enhance repeatability but have opposing effects 
on predictability. This illustrates an important general point: repeat-
ability is a necessary but not a sufficient condition for predictability.

In the densely packed genomes of microbial and viral systems, 
multiple traits are often encoded in common genetic loci. This prop-
erty (called pleiotropy) is another source of evolutionary correlations 
relevant for predictions. Pleiotropy constrains adaptive evolution 
to characteristic serpentine paths: primary beneficial mutations 
advance adaptive traits but degrade conserved traits encoded at the 
same site (because the adaptive allele is, on average, deleterious for 
other traits). The collateral damage of adaptation is subsequently 
repaired by compensatory mutations55–57,59,61,81–87 (Fig. 3a). A similar 

dynamics arises if conserved traits are affected by strong hitch-
hiking of their genetic loci. Compensatory evolution can be quite 
rapid88, and the order of serpentine steps can be reversed: a change 
in a conserved trait facilitates a subsequent adaptive step59,89. Fitness 
trade-offs between conserved and adaptive traits are a common fea-
ture of the systems discussed here, and in some cases, the resulting 
serpentine adaptive dynamics have been observed. For example, 
resistance or antigenic mutations often have deleterious effects on 
the folding stability or other conserved functions of a protein54,57–61,71 
and the primary T cell response of HIV virus confers a fitness cost 
in its Gag p17 protein16.

A crucial and largely unexplored determinant of predictability is 
the variation in initial conditions and environmental factors across 
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Figure 2 | Predictability in evolution (schematic). The figure compares 
evolutionary paths at different biological scales for an adaptive process 
in two parallel populations (1 and 2) with the same initial state (black 
dot). a, Evolution in sequence space is a stochastic process with many 
equiprobable paths. Mutations continuously generate new genetic 
variants, shown as nodes on a sequence tree. This process is only partially 
constrained by selection (red dots, mutations under negative selection; 
green dots, mutations under positive selection). Hence, parallel populations 
follow different paths on a sequence tree. Detailed genetic evolution is not 
repeatable and cannot be predicted. b, Fitness and other organismic traits 
of the same process can evolve in a highly regular way. The phenotypic 
paths shown contain the same mutations (red and green dots) as in a; 
different sequence changes map onto similar phenotypic effects. Negative 
selection and adaptive pressure together may canalize evolution towards 
a single phenotypic path (dashed green line). Parallel populations evolve 
close to this path. Such processes are repeatable and, in principle, 
predictable. Evolutionary control produces adaptive pressure and can 
enhance predictability by specific protocols of experiment or treatment.
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populations. Many lab evolution experiments are designed to limit 
this variation: populations start from a well-defined initial state (often 
a single clone), and the experiments are conducted under carefully 
calibrated conditions37,49. In contrast, the evolution of populations 
in the wild can have different—and often unknown—initial states, 
and it takes place under variable ecological conditions. These fac-
tors can clearly hamper predictability. However, some recent results 
indicate that more complex evolutionary processes retain repeatable 
characteristics. First, standing variation maintains or even enhances 
short-term repeatability, because adaptive mutations may already 
be present in the initial population state28,90. If selection is suffi-
ciently strong, even de-novo mutations generated from a complex 
initial state have repeatable features91. Second, heterogeneity across 
parallel-evolving populations can become subdominant if strong 
adaptive pressure generates convergent evolution. For example, an 
adaptation experiment of bacteria in the ecosystem of the mouse 
gut shows similar early-stage phenotypic changes across different 
hosts92. Another case in point is the adaptive immune response of 
humans to an influenza infection or vaccination. Although individ-
uals have different immune repertoire-wide responses93, some anti-
genic characteristics of their response to related viruses are similar6. 
Despite these convergent aspects, populations are often shaped by 
differential response to environmental variation. In many cases, this 
requires modelling evolution under time-dependent selection, in 
so-called fitness seascapes94. The resulting challenges for predictive 
analysis will be discussed below.

Predictive data and models
Recent work has underscored the importance of comprehensive 
data and quantitative modelling for predictions. With modern 
sequencing, evolutionary models can be based on copious sequence 
information. We can track the genetic history of entire populations 
(Fig.  1), detect low-frequency variants, and resolve the spatio-
temporal evolutionary dynamics in extended populations95–97. An 
increasingly important direction is to combine sequencing with 
high-throughput phenotypic and fitness assays98. For example, spe-
cific interactions between antigens and immune receptors can be 
inferred by deep mutational scans99,100, similar scans map regulatory 
DNA–protein interactions98,101–103.

To build a predictive analysis from these data, we need to relate 
genetic or phenotypic data to fitness differences in a population. 
Given the complexity of generic fitness landscapes, this seems a 
daunting task77. Densely sampled sequence data, however, contain 
copious information on selective effects that can be assembled to 
infer fitness land- and seascapes. Site-specific amino acid prefer-
ences can be inferred from deep sequencing data104 using equilib-
rium models of molecular evolution105,106; related methods map 
epistatic interactions between these sites16,107. Alternatively, we can 
infer selection on genetic clades and build predictive models from 
the local shape of sequence-based coalescent trees15.

At the level of quantitative traits, biophysical principles provide 
powerful guidance for building empirical fitness models54,58,108–113. A 
ubiquitous biophysical trait is the free energy difference ΔG between 
the folded and the unfolded state of a protein, which determines the 
fraction of successful folds in thermodynamic equilibrium under 
given physiological conditions. Many other traits depend on the 
binding of proteins to a molecular target, which is governed by the 
free energy difference ΔG between the bound and the unbound state. 
Important examples are host–pathogen interactions via binding of 
immune antibodies to antigenic epitopes; similarly, cancer cells 
develop peptides presented on the cell surface (called neoantigens) 
that can be bound by immune T cells114. In all such cases, the fitness 
landscape depending on ΔG is strongly constrained by the thermo-
dynamics of the system. These landscapes often take a characteristic 
‘mesa’ form58,62,109 with a plateau at high folding or binding probabil-
ity, a rapid change of fitness around a characteristic ΔG value, and a 
second plateau at low folding or binding probability. For regulatory 
or metabolic interactions, additional stabilizing selection against 
strong binding can modify the landscape to a single fitness peak at 
intermediate values of ΔG. Importantly, such landscapes have few fit 
parameters that can be learned from training data62,80.

A minimal fitness model for pathogen evolution can serve to 
illustrate key concepts of predictive analysis. The model describes 
the coupled evolution of an adaptive trait (such as antigenicity or 
resistivity) and a conserved trait (for example, fold stability), which 
are encoded in a single protein. The minimal fitness seascape, which 
contains stabilizing selection on the conserved trait and adaptive 
pressure on the adaptive trait94, is an explicitly time-dependent 
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Figure 3 | From fitness models to evolutionary predictions. a, Minimal fitness seascape of an evolving pathogen: fitness depends on an adaptive trait 
(resistance or immunity against host defence) and on a conserved trait (protein stability, antigenicity). For concreteness, we assume the seascape has 
a single moving peak (blue dashed line), which is shown in four consecutive snapshots. Evolution in such seascapes takes serpentine paths: adaptive 
mutations advance resistance or immunity but have deleterious effects on the conserved trait; compensatory mutations repair these effects. These paths 
are shown for two lineages in competing clades (solid arrows, past; dashed arrows, future). The time-dependent fitness of each lineage depends on its 
distance from the peak (green and red dashed lines show trait distance components at a given time t). b,c, Key steps of predictive analysis. b, Fitness 
models provide estimates of time-dependent phenotypic and fitness differences between competing clades (green, fitness component of the adaptive 
trait; red, fitness component of the conserved trait; black, total average fitness of a clade at time t; bars show fitness cost compared to the peak value 
marked by a dashed blue line). c, Predictions of clade frequency paths into the future of the population, starting at time t (dashed lines, the blue line shows 
the combined frequency of all clades other than 1 and 2). In the example, clade 1 increases initially because it has the highest average fitness at time t; 
clade 2 takes over at later times because it harbours a high-fitness subclade.
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version of Fisher’s geometrical model115,116 (Fig. 3a) or a similar 
model with components of mesa form (as described above). This 
type of model has been applied to the evolution of human influ-
enza13; its fitness trade-off between traits also captures aspects 
of HIV evolution under host immune pressure17, of drug resist-
ance evolution61, and of cancer evolution63. The time-dependence 
of selection on the adaptive trait describes variable environments 
and is a key feature of the model. For example, the cross-immunity 
interactions affecting a pathogen13 depend on the infection history 
of its hosts; similarly, movement along a spatial gradient of drug 
concentration generates time-dependent adaptive pressure117,118.

How can we gather data to inform such fitness models? We often 
have at least partial information on the genetic changes under lying 
the evolution of the relevant phenotypes. In viral pathogens, for 
example, the antigenic evolution predominantly occurs in specific 
epitope sites, whereas fold stability has a broader mutational tar-
get of amino acid changes throughout the protein. In some cases, 
the genetic information includes epistatic interactions between 
specific sequence sites16,107. Predictive analysis can then exploit an 
approximate genotype–phenotype map of the adaptive process. 
Alternatively, we can record phenotypic data by experiment. For 
example, antigenic assays119–121 or time-resolved deep sequencing of 
immune repertoires can track the selection pressures that drive the 
adaptative evolution of a pathogen population. We can then use a 
phenotypic fitness model, such as the minimal seascape, to com-
pute fitness differences between strains in a population (Fig. 3b). In 
this way, we can predict frequency trajectories of competing clades13 
(Fig. 3c) and estimate the probability of future escape mutations that 
evade host immunity16.

From these examples, we can distil a few general lessons for pre-
dictive modelling in evolution. A ‘mechanistic’ fitness model of the 
evolutionary dynamics, similar to our minimal model, is feasible if 
the population harbours substantial variation in fitness that can be 
explained by few key phenotypes. Such models generically contain 
positive and negative fitness components, which jointly constrain 
the evolutionary complexity of the system and generate predict-
ability. In adaptive processes, modelling starts with the key adaptive 
traits of the system, such as antibiotic resistance or immunity against 
an antigen. Importantly, however, an adaptive trait alone is often an 
insufficient basis for predictions, because its evolution is generically 
coupled to other traits. As discussed above, such correlations arise 
from epistasis or pleiotropy and generate a serpentine pattern of 
adaptive paths (Fig. 3a). They can reduce the independent compo-
nents of fitness variation and, thus, reduce the necessary complex-
ity of fitness models. In complex organisms, we need to map the 
most informative phenotypes and their correlations to determine 
the normal modes of predictive analysis. This will eventually require 
a systems-biology approach to evolutionary predictions122.

The above examples also show that understanding the ecology 
of fast-evolving populations, which includes exposure to drugs and 
host–pathogen interactions, is often the salient point of predictive 
analysis. Co-evolutionary fitness models, which have recently been 
developed for pathogen-immune systems123,124, are a promising step 
towards predictions in realistic ecological settings. The success of 
these models will depend on sufficiently dense time-resolved data 
of the evolving population and its variable environment. Predicting 
evolution in an ecological context also generates new questions. For 
example, we often want to predict not only frequencies but abso-
lute population numbers, such as the viral load of an infection, the 
size of a cancer cell population, or the size of an epidemic125. These 
numbers depend on absolute fitness values, which in turn respond 
strongly to ecological determinants of reproduction. Moreover, in 
heterogeneous populations of fast-evolving systems, fitness differ-
ences within a population can be of the same order of magnitude as 
absolute growth rates, so population size dynamics must be mod-
elled together with the evolution of clade frequencies. This problem 

is difficult in general, but at least the response of pathogen popu-
lation size to immune or vaccination pressure can be computed 
using fitness models of immune interactions13,120,121. Maximizing 
this response has been exploited as a criterion for influenza vaccine 
strain selection13.

An exciting complement to in silico modelling is to use laboratory 
evolution for predicting an evolutionary process in the wild. This 
makes sense if we can find a laboratory model that evolves faster 
than the primary system or can be run in multiple replicates126. For 
example, massively parallel tumour cell cultures can reveal likely 
future resistance mutations127. Once these methods can be applied 
efficiently to individual tumours, they may circumvent the problem 
of genetic uniqueness and provide patient-specific predictions of 
tumour response to therapy. Clearly, the increasing knowledge on 
parallelization and replicability of laboratory evolution will prove 
very useful for the design of such assays.

Measuring prediction quality
Predictive analysis will be applied to a broadening range of systems, 
and it will be built on increasingly diverse data and methods. To 
keep a critical eye on quality, we need an unbiased way to gauge 
predictive success. Intuitively, we have an idea of what makes a good 
prediction: it has an element of surprise and an element of truth. 
To illustrate these criteria, suppose we conduct an evolution experi-
ment with mice and assert the outcome of this experiment will be 
mice with four legs. This statement is likely to be true but unsurpris-
ing; most would rate it as obvious in the first place. On the other 
hand, we may predict the experiment to produce five-legged mice. 
That statement is quite surprising but, as performing the actual 
experiment would show, is unlikely to hold up to testing. The exam-
ple demonstrates that any prediction is a probabilistic statement. 
Specifically, it is a bet about the future that should strike a balance 
between surprise and truth.

We can use information theory to quantify these criteria: good 
predictions combine low probability in our prior expectation (that 
is, they are surprising) and high predicted probability (that is, they 
come close to the truth) of the actual process as observed later. 
The ‘information gain’, defined as the log ratio of predicted and 
prior probability, measures how much the prediction reduces our 
uncertainty about the future process13,128. For an adaptive process, 
the information gain is closely related to the amount of adaptation 
(that is, the cumulative fitness flux129) explained by the prediction 
model. Figure  4a illustrates how prior and posterior probability 
of a prediction depend on the evolutionary paths of the system 
and on the time interval of predictions. The prior probability of 
any future evolutionary path rapidly decreases with time, because 
longer processes have a much higher number of a priori plausible 
paths than shorter ones. Specifying the prior probability requires 
a statistical null model (for example, a neutral model assigns equal 
probability to all paths of the same length). For a good prediction, 
the actual path remains likely for some time, but its probability 
must eventually decay because of noise in the data and imperfec-
tions of the model. Therefore, the information gain shows an ini-
tial increase and saturates at a characteristic time. This sets the 
‘time horizon’ of the prediction method, beyond which the results 
cannot be trusted.

As an example, Fig. 4b shows the information gain of evolution-
ary predictions for the human influenza virus A/H3N2. We predict 
the evolutionary path of clade frequencies by an antigenicity– 
stability fitness model as described above and evaluate the informa-
tion gain of these predictions compared to a null model of neutral 
evolution13 (M. Łuksza and M. Lässig, manuscript in preparation). 
As shown by the time-dependence of the information gain, the 
model predictions capture the actual evolutionary process with a 
time horizon in the order of one year. How much this horizon can 
be extended by improved modelling remains an open question.
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The link of evolutionary predictions to information theory 
underscores an important general point: the predictability of an 
evolutionary process is not a yes-or-no issue, but is itself a quantita-
tive trait. We can probe this trait by the information gain of actual 
predictions, which can be evaluated by comparison with posterior 
data. In this way, we can compare the predictability of different 
evolutionary processes by a given method, as well as the prediction 
quality of different methods for a given process.

From prediction to control
Any therapy or intervention against a fast-evolving pathogen is an 
attempt to control its future population. Such interventions have 
different goals and strategies, which range from controlling an 
infection or cancer within an individual patient to reducing the 
global spread of pathogen resistance130,131. Similarly, the adaptive 
immune system can be seen as a host’s intrinsic strategy to con-
trol pathogens133. There is a fundamental link between predicting 
an evolutionary process and controlling its future outcome. This 
is because a predictive computational or experimental model does 
not just reproduce the actual process; it generates an entire prob-
ability distribution of possible outcomes. Controlling the process 
amounts to changing that distribution by means of an external evo-
lutionary pressure. The intended change is often drastic: an a priori 
likely outcome, such as the occurrence of resistance mutations or 
the increase of pathogen load, is to become unlikely. If our inter-
vention or therapy can produce the required evolutionary pressure, 
predictive models can be leveraged to nudge the process towards 
the intended outcome. Specifically, we can include the control as an 

additional component into a fitness model and evaluate the evolu-
tionary response of the population to a given control protocol. For 
example, a xenograft mouse model of melanoma shows increased 
survival when the drug is withdrawn at predefined time points132, 
and fitness modelling of these dynamics predicts how the drug pro-
tocol can be optimized based on real-time measurements to further 
increase survival134. HIV combination therapy, a protocol of multi-
ple suppressive drugs, is a classic case of evolutionary control aimed 
minimizing the rate of viral escape mutations135. Similarly, a suc-
cessful vaccine against HIV needs to trigger an immune response 
that co-evolves with the virus123.

Evolutionary control can reinforce itself if the external adap-
tive pressure enhances predictability by constraining evolution-
ary paths (Fig. 2b). For instance, melanoma cells carrying a given 
mutation in the BRAF oncogene show strong initial response to 
the drug vemurafenib136, but most cancers of this kind will eventu-
ally relapse. The escape to drug resistance appears to be via few 
mutational pathways, which can be used for predictive analysis 
of second-line therapy choices. In the coming years, we will have 
increasingly detailed and time-resolved data of evolutionary pres-
sure and response, for example on immune response to infec-
tions by antigen-specific and broadly neutralizing antibodies137. 
Combined with co-evolutionary fitness models120,121 and fitness 
models of metabolic pathways under stress138, such data will open 
new avenues of designing and optimizing evolutionary control.

Prediction and control based on mechanistic evolutionary mod-
els are always imperfect, because our knowledge of population data 
and dynamical parameters remains incomplete for even the sim-
plest biological systems. It is useful to compare mechanistic mod-
els with model-free methods, such as deep reinforcement learning. 
Recent studies have presented remarkable model-free solutions of 
complex problems; for example, computers can learn to play video 
games without a  priori knowledge of the game139. Can we control 
an evolving population in a similar way, without prior knowledge 
of the evolutionary rules? This is far from obvious, given substan-
tial differences in data structure and learning dynamics. Computer 
game records are comprehensive, free, and fast to acquire; in con-
trast, evolutionary data are always incomplete, comparatively costly, 
and ‘computing’ by evolutionary processes is slow. These differences 
may favour simplified mechanistic models as an avenue to successful 
prediction and control of evolution.

The link between prediction and control is crucial for ethically 
responsible decision-making. For example, judging genome editing 
manipulations must include the question of how predictable their 
outcome is. Our discussion of evolutionary correlations between 
phenotypes shows how complex this task is: we have to assess the 
primary effect of the manipulation, but also secondary changes in 
other traits that are generated by pleiotropy and epistasis (Fig. 3a). 
We also need to gauge the effects and persistence of genetic changes 
under changing environmental and co-evolutionary conditions. For 
example, drug-resistance mutations can sometimes remain fixed in 
a population through subsequent epistatic mutations, even when 
the drug is no longer present and the resistance mechanism bears a 
fitness cost140. In all of these systems, predictive modelling will take 
an important role in designing responsible control strategies.

Conclusion
For a growing number of systems, we are witnessing the transition 
to a new kind of predictive evolutionary biology. In this Perspective, 
we focused on a specific mode of evolution: fast, predominantly 
asexual processes driven by a large supply of mutations and strong 
selection. That is a promising starting point for predictive analysis, 
but the spectrum of modes and time scales in evolution is clearly 
much broader. Work in the years ahead will show how predictabil-
ity plays out in more complex systems, including populations with 
various rates of recombination. Some of these concepts may also be 
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Figure 4 | Information gain and time horizon of predictions. a, Prior and 
posterior probabilities of evolutionary paths (schematic). The path of the 
actual process (red) is shown together with the most likely predicted path 
(orange) and a random alternative path of equal prior probability (grey). 
The prior probability of any path rapidly decreases with time (in a neutral 
null model, p(t) = 2–t, because this example has two possible directions 
at each grid point). The prediction initially keeps up with the actual 
process—that is, the predicted probability q(t) of the actual path remains 
high—but becomes random beyond the time horizon t*. b, Information gain 
of evolutionary predictions for human influenza A/H3N2. For the observed 
evolutionary path of clade frequencies (Fig. 1b), we evaluate the prior 
probability under a neutral null model, p(t), and the predicted probability 
under the antigenicity–stability fitness model13 (M. Łuksza and M. Lässig, 
manuscript in preparation), q(t) (see section ‘Predictive data and models’). 
The average information gain I(t) = log[q(t)/p(t)] of the model prediction 
(orange line) is positive, which shows that the fitness model is a better 
predictor than the null model. We also plot the corresponding information 
gain of posterior tracking, which uses fitness values inferred from 
frequency changes in the actual process (red dashed line). Averages are 
over yearly predictions in the period 2004–16; the prediction starts at the 
end of February in each year. The prediction scheme is seen to capture the 
actual process up to a time horizon t* of order one year. Figure created by 
M. Łuksza.
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extendable to repeated patterns in the macro-evolution of multi-
cellular organisms. We expect that the endeavour of predictive anal-
ysis will affect our overall view of the life sciences. It will provide a 
rational basis for decision-making in a number of areas of medicine 
and public health. At a more fundamental level, it will promote a 
unifying view on different organisms based on common dynami-
cal principles. Optimizing predictions is a way to learn what the 
evolutionarily relevant functions of the system are: biology informs 
predictions and predictions inform biology.

Received 3 May 2016; accepted 10 January 2017;  
published 21 February 2017
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