Lösungshinweise 7. Übung

27. Matrixdarstellung diverser linearer Abbildungen

a) In Komponenten: \((\vec{n} \times \vec{a})_i = \sum_{j,k=1}^3 n_j \varepsilon_{ijk} a_k \Rightarrow (A_{\vec{n}})_{ik} = \sum_{j=1}^3 n_j \varepsilon_{ijk}\), wobei \(\varepsilon_{ijk}\) das Levi-Civita Symbol ist. Ausgeschrieben als Matrix:

\[
A_{\vec{n}} = \begin{pmatrix}
0 & -n_3 & n_2 \\
n_3 & 0 & -n_1 \\
-n_2 & n_1 & 0
\end{pmatrix}
\]

b) \((\langle \vec{n}, \vec{a} \rangle \vec{n})_i = \sum_{j=1}^3 n_i n_j a_j \Rightarrow (P_{\vec{n}})_{ij} = n_i n_j\), ausgeschrieben:

\[
P_{\vec{n}} = \begin{pmatrix}
n_1 n_1 & n_1 n_2 & n_1 n_3 \\
n_2 n_1 & n_2 n_2 & n_2 n_3 \\
n_3 n_1 & n_3 n_2 & n_3 n_3
\end{pmatrix}
\]

c) \((\langle \vec{n}, \vec{a} \rangle \vec{a})_i = \sum_{i=1}^3 n_i a_i \Rightarrow (l_{\vec{n}})_i = n_i\), ausgeschrieben:

\[
l_{\vec{n}} = \begin{pmatrix}
n_1 & n_2 & n_3
\end{pmatrix}
\]

d) Folgt aus der Lösung zu b):

\[
O_{\vec{n}} = I - P_{\vec{n}} = \begin{pmatrix}
1 - n_1 n_1 & -n_1 n_2 & -n_1 n_3 \\
-n_2 n_1 & 1 - n_2 n_2 & -n_2 n_3 \\
-n_3 n_1 & -n_3 n_2 & 1 - n_3 n_3
\end{pmatrix}
\]

e) Für ein beliebiges Polynom vierter Ordnung \(f(x) = \sum_{n=0}^4 c_n x^n\):

\[
\frac{\partial^2 f}{\partial x^2} = \sum_{n=2}^4 (n^2 - n)c_n x^{n-2},
\]

ablesender Komponenten \((\frac{\partial^2 f}{\partial x^2})_{ij}\) ergibt:

\[
\frac{\partial^2}{\partial x^2} = \begin{pmatrix}
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 12
\end{pmatrix}
\]
26. Skalarprodukt L-periodischer Funktionen

- a) $\langle f, g \rangle = \frac{1}{L} \int_0^L dx f(x)^* g(x)$.
- b) Es gilt $e^{i k_n (x+L)} = e^{i k_n x + i k_n L} = e^{i k_n x} e^{i 2 \pi n} = e^{i k_n x}$.

 $n \neq m$: $\langle e^{i k_n x}, e^{i k_m x} \rangle = \frac{1}{L} \int_0^L dx e^{-i k_n x} e^{i k_m x} = \frac{1}{L} \frac{1}{i(k_m - k_n)} [e^{i (k_m - k_n) L} - 1] = 0$

 $n = m$: $\langle e^{i k_n x}, e^{i k_n x} \rangle = \frac{1}{L} \int_0^L dx 1 = 1$.
- c) $\hat{f}(k_n) = \frac{1}{L} \int_0^L dx e^{-i k_n x} f(x) = \langle e^{i k_n x}, f \rangle$.
- d) $\langle f, g \rangle = \left\langle \sum_{n \in \mathbb{Z}} \hat{f}(k_n) e^{i k_n x}, \sum_{m \in \mathbb{Z}} \hat{g}(k_m) e^{i k_m x} \right\rangle$

 $= \sum_{n,m \in \mathbb{Z}} \hat{f}(k_n)^* \hat{g}(k_m) \left\langle e^{i k_n x}, e^{i k_m x} \right\rangle$

 $= \sum_{n \in \mathbb{Z}} \hat{f}^*(k_n) \hat{g}(k_n)$.
- e) $\frac{1}{L} \int_0^L dx |f(x)|^2 = \langle f, f \rangle = \sum_{n \in \mathbb{Z}} \hat{f}^*(k_n) \hat{f}(k_n) = \sum_{n \in \mathbb{Z}} |\hat{f}(k_n)|^2$

28. Addition und Multiplikation von Matrizen

- a) Für $\lambda \in \mathbb{K}$ und $A, B : U \to V$ gilt

 $(\lambda \cdot A)u = \lambda \cdot_V (Au), \quad (A + B)u = Au +_V Bu$

 für alle $u \in U$.
- b) Seien $\{\vec{e}_1, \ldots, \vec{e}_n\} = B_U$ und $\{\vec{f}_1, \ldots, \vec{f}_m\} = B_V$ die Basen von A und B. Dann nach Definition der Matrixkomponenten: $(A + B)\vec{u} = \sum_{i=1}^n u_i \sum_{j=1}^m (A + B)_{ij} \vec{f}_j$.

1
Mit a) gilt dann
\[
\sum_{i=1}^{n} u_i \sum_{j=1}^{m} (A + B)_{ji} \bar{f}_j = \sum_{i=1}^{n} u_i \sum_{j=1}^{m} A_{ji} \bar{f}_j + \sum_{i=1}^{n} u_i \sum_{j=1}^{m} B_{ji} \bar{f}_j \\
= \sum_{i=1}^{n} u_i \sum_{j=1}^{m} (A_{ji} + B_{ji}) \bar{f}_j
\]
\[
\Rightarrow (A + B)_{ji} = A_{ji} + B_{ji}
\]

• c) Sei \(\{g_1, \ldots, g_l\} = BW \). Dann gilt \((CA)\bar{u} = \sum_{i=1}^{n} u_i \sum_{k=1}^{l} (CA)_{ki} \bar{g}_k \). Wieder nach a) gilt damit:
\[
\sum_{i=1}^{n} u_i \sum_{k=1}^{l} (CA)_{ki} \bar{g}_k = \sum_{i=1}^{n} \sum_{j=1}^{m} u_i A_{ji} \sum_{k=1}^{l} C_{kj} \bar{g}_k \\
= \sum_{i=1}^{n} u_i \sum_{k=1}^{l} \left(\sum_{j=1}^{m} C_{kj} A_{ji} \right) \bar{g}_k
\]
\[
\Rightarrow (CA)_{ki} = \sum_{j=1}^{m} C_{kj} A_{ji}
\]

\begin{exercise}
\[\text{Aufgabe 29} \]

i) \(A \bar{c} \mapsto \begin{pmatrix} \frac{2}{3} & g \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ \frac{3}{5} \end{pmatrix} = \begin{pmatrix} \frac{-2}{5} \\ \frac{7}{5} \end{pmatrix} \]

ii) \(B \bar{a} \mapsto \begin{pmatrix} 12 & 23 & 47 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ \frac{2}{5} \\ \frac{3}{5} \end{pmatrix} = 91 \]

iii) \(C \bar{b} = \begin{pmatrix} \frac{8}{5} & \frac{8}{7} \\ \frac{6}{5} & \frac{-4}{3} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{-7}{9} \\ \frac{26}{3} \\ \frac{6502}{3} \end{pmatrix} \)
\end{exercise}