Inhalt:

- Divergenzoperatoren div, grad, rot, δ und deren Anwendung in der Physik (Wiederholung)
- Partielle Differentialgleichungen
- Lösungsmethoden
- Delta-Distribution
- Fourier-Transformation

- Lineare Abbildungen:
 - Eigenwert, Eigenvektor, Orthogonale und unitäre Abb. und Tensorprodukt
- Tensorrechnung
- Funktionentheorie
- Differentialformen

Literatur:

1) Arendt, Hettlich, Karpfinger, Kockelkorn, Lichtenegger, Stachel: Mathematik (Spektrum)

2) Fischer, Kaul: Mathematik für Physiker 1, 2, 3 (Teubner Studienbücher)

3) Jänisch: Vektoranalysis (Springer)
Wiederholung:

Differentialoperators für Skalar- und Vektorfelder

\[f : \mathbb{R}^3 \rightarrow \mathbb{R} \]
\[\mathbf{A} : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \]
\[\mathbf{v} \mapsto f(\mathbf{v}) \]
\[\mathbf{r} \mapsto \mathbf{A}(\mathbf{r}) \]

(siehe Vorlesungen 24-25 Mathematische Methoden WS 17/18)

Gradient:

\[\text{grad } f(\mathbf{r}) := \sum_{i=1}^{3} \frac{\partial f(\mathbf{r})}{\partial x_i} \mathbf{e}_i = \left(\begin{array}{c} \frac{\partial f(\mathbf{r})}{\partial x_1} \\ \frac{\partial f(\mathbf{r})}{\partial x_2} \\ \frac{\partial f(\mathbf{r})}{\partial x_3} \end{array} \right) = \nabla f \]

\[\nabla = \left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{array} \right) \]

- "Richtung des stärksten Anstiegs von \(f \)
- \(\perp \) zu Niveauflächen \(f = \text{konst} \)
- \(\frac{d}{dt} f(\mathbf{r}(t)) = \langle \text{grad } f(\mathbf{r}(t)), \dot{\mathbf{r}}(t) \rangle \)

Divergenz = Quellstärke:

\[\text{div } \mathbf{A}(\mathbf{r}) := \lim_{V \rightarrow 0} \frac{1}{|V|} \int_{\partial V} \mathbf{A} \cdot d\mathbf{g} = \sum_{i=1}^{3} \frac{\partial A_i}{\partial x_i} \]
\[\alpha \cdot \mu \cdot \vec{\nabla} \cdot \vec{A} = \frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_2} + \frac{\partial A_3}{\partial x_3} = \vec{\nabla} \cdot \vec{A} \]

Rotation \(=\) **Wirbelstärke**

Vektor\(\nabla \times \vec{A}(\vec{n}) \) **bestimmt durch**

\[
< \hat{n}, \nabla \times \vec{A}(\vec{n}) > = \lim_{T \to 0} \frac{1}{|T|} \int_{\partial T} \vec{A} : d\vec{l}
\]

\[
(\hat{T} = \hat{n})
\]

\[\nabla \times \vec{A}(\vec{n}) = \sum_{i,j,k} \epsilon_{ijk} \frac{\partial A_k}{\partial x_i} \hat{e}_j \]

\[= \vec{\nabla} \times \vec{A}(\vec{n}) \]

Laplace-Operator

\[\Delta f := \vec{\nabla} \cdot \vec{\nabla} f = \sum_{i=1}^{3} \frac{\partial^2 f}{\partial x_i^2} = \vec{\nabla} \cdot \vec{\nabla} f \]

\[= \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2} \]

Hinweis: Obige Differenzialoperatoren können auch direkt im Zylinder- und Kugelkoordinaten bestimmt werden (vgl. Vorlesgen 28 u. 29. M.M. WS 17/18.)
Integrale Sätze der Vektoranalysis:

Gauß:\[\int \mathbf{A} \cdot d\mathbf{S} = \int_{V} \text{div} \mathbf{A} \ dV \quad (s. \ Vrslg. \ 26) \]

Stokes:\[\int_{\partial T} \mathbf{A} \cdot d\mathbf{l} = \int_{T} \text{rot} \mathbf{A} \ d\mathbf{S} \quad (s. \ Vrslg. \ 27) \]

Anwendungen in der Physik:

1) **Elektrostatisch:** \(\mathbf{E} \) = elekt. Feld, \(\mathbf{\mathcal{E}} \) = Ladungsrichtung

 a) \[\text{div} \mathbf{E} = \mathcal{E}/\varepsilon_0 \quad : \quad \text{"elektr. Ladungen sind die Quellen des elektr. Feldes"} \]

 (Gauß)

 b) \[\text{rot} \mathbf{E} = 0 \quad : \quad \text{"das elektrostatische Feld ist Wirbelfrei"} \]

2) **elektrostatisches Potential** \(\Phi \)

 \[\Rightarrow \mathbf{E} = -\text{grad} \Phi \]

 mit a)\[\Delta \Phi = -\mathcal{E}/\varepsilon_0 \]
2) Wärmeleitung:

- Wärmestromdichte \(\vec{q} = -\lambda \ \text{grad} \ T \) (Fourier)

- (Wärme) Energie dichte \(\frac{\partial u}{\partial t} + \vec{c} \times \vec{q} = 0 \)

\(\Rightarrow \)

- Wärmeleitungs-Gleichung

\(\frac{\partial T}{\partial t} = \frac{\lambda}{c} \Delta T + \frac{\rho}{c} \ u \)

3) Quantenmechanik:

- Schrödinger-Gleichung eines freien Punktelektrons der Masse \(m \):

\(i \ h \ \frac{\partial \psi (\vec{r}, t)}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi (\vec{r}, t) \)

\(\Rightarrow \)

- Bewegungsgleichung der komplexen Wellenfunktion

\(\psi : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{C} \)

\((\vec{r}, t) \mapsto \psi (\vec{r}, t) \)

\((\text{Wärmeleitungs-Gleichung in imaginärer Zeit } \ \bar{t} = it) \)
4) **Wellen ausbreitung**

(skalare) physikalische Größe \(f(\vec{x}, t) \) (z.B. Druck, Dichte) genüge

Wellengleichung

\[
\frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = \Delta f
\]

wobei \(c \) Parameter der Dimension Geschwindigkeit

\(\Rightarrow f(\vec{x}, t) \) bildet Wellen der Ausbreitungsgeschwindigkeit \(c \) ! (vgl. Übungen)

explizit:

\[
\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} \quad (f(x_1, x_2, x_3, t))
\]

eindimensional: \(f(x, t) \)

\[
\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}
\]

mittels **D’Alembert-Operator**

\[
\Box := \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} - \Delta
\]

\[
\Box f = 0
\]
Woher kommt die Wellengleichung?

2.8. **Für Schall = Dichte-Druck-Welle in einem Gas**:

\[\dfrac{\partial \rho}{\partial t} + \text{div} \vec{\rho} = 0 \]

\[\dfrac{d^2 \rho}{dt^2} = -\text{div} \dfrac{\partial \rho}{\partial t} = -\text{div} \vec{f} \quad (\star) \]

Newton: \[\dfrac{d}{dt} (\rho \vec{V}(\vec{r},t)) = \vec{f} \]

Impulsrichtung

Kraftrichtung

Kraft auf Volumenelement bestimmt durch negativen Gradienten des Drucks \(p \):

\[\vec{f} = -\nabla p \]

im Falle eines einatomigen idealen Gases (z.B. Argon):

\[p \cdot V = N \cdot k_B \cdot T \quad \text{(thermische Zustandsgleichung)} \]

\[d. h. \quad p = \dfrac{m \cdot S \cdot V \cdot k_B \cdot T}{\Delta V} \quad \text{mit} \quad m = \text{Atommasse} \]
also \(p = \frac{k_b T}{m} \) und somit \(\tilde{p} = -\frac{k_b T}{m} \) quad \(\Delta S \),

im (4) ergibt

\[
\frac{\partial^2 S}{\partial t^2} = \frac{k_b T}{m} \text{ auq quad } \Delta S = \frac{k_b T}{m} \Delta S
\]

d.h. \(S(\tilde{\tau}_{1+}) \) genügt Wellengleichung

\[
\frac{1}{c^2} \frac{\partial^2 S}{\partial \tilde{t}^2} = \Delta S
\]

mit Ausbreitungsgeschwindigkeit \(c \) = \(\sqrt{\frac{k_b T}{m}} \).

\[k_b = 1,38 \cdot 10^{-23} \ J/k \]
\[T = 293 \ \text{K} \]

\(m_A = 40 \cdot m_p = 40 \cdot 1,67 \cdot 10^{-27} \ \text{kg} \)

\[\Rightarrow c \approx 250 \text{m/s} \]

Experiment: \(c = 3 \times 10^8 \frac{\text{m}}{\text{s}} \)

au...