Vorkurs Physik WS2019/20 - Blatt 11

Webpage: http://www.thp.uni-koeln.de/~rk/vorkurs2019.html/

Besprechung: 25. September 2019

11. Dreiecksungleichungen

Beweisen Sie mittels der Cauchy-Schwarz-Ungleichung folgende sogenannte *Dreiecksungleichungen* für euklidische Vektoren \vec{a} , \vec{b} :

$$\left| \; |\vec{a}| - |\vec{b}| \; \right| \; \leq \; \left| \; \vec{a} \pm \vec{b} \; \right| \; \leq \; \left| \vec{a}| + |\vec{b}| \; .$$

Warum heißen diese Ungleichungen Dreiecksungleichungen?

12. Parallel- und Orthogonalkomponente

- a) Wie lassen sich Parallel- und Orthogonalkomponente eines Vektors \vec{b} bzgl. eines anderen Vektors \vec{a} mittels Skalar- und Vektorprodukt darstellen? (\vec{a} und \vec{b} sind dreidimensionale euklidische Vektoren.)
- b) Zeigen Sie:

$$|\vec{a} \times \vec{b}|^2 + \langle \vec{a}, \vec{b} \rangle^2 = |\vec{a}|^2 |\vec{b}|^2.$$

13. Vektorprodukt

Gegeben seien die Vektoren

$$\vec{a} = \left(egin{array}{c} 1 \\ 1 \\ 0 \end{array}
ight)_B \ \ \mathrm{und} \ \ \ \vec{b} = \left(egin{array}{c} 0 \\ -1 \\ 2 \end{array}
ight)_B$$

bezüglich einer rechtshändigen Orthonormalbasis ${\cal B}.$

- a) Bestimmen Sie $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{a}$, $\langle \vec{a} + \vec{b}, \vec{a} \times \vec{b} \rangle$ sowie $(\vec{a} + \vec{b}) \times (\vec{a} \vec{b})$. Wie groß ist die Fläche eines von \vec{a} und \vec{b} aufgespannten Parallelogramms?
- b) Zwei Ebenen enthalten jeweils den Punkt O und sind normal zu \vec{a} bzw. \vec{b} . Wie lautet die Schnittgerade dieser Ebenen?

14. Spatprodukt

a) Weshalb ist für beliebige dreidimensionale euklidische Vektoren $\vec{a},\ \vec{b}$ und \vec{c}

$$|\langle \vec{a} \times \vec{b}, \vec{c} \rangle| = |\langle \vec{c} \times \vec{a}, \vec{b} \rangle| = |\langle \vec{b} \times \vec{c}, \vec{a} \rangle| = |\langle \vec{b} \times \vec{a}, \vec{c} \rangle| = |\langle \vec{c} \times \vec{b}, \vec{a} \rangle| = |\langle \vec{b} \times \vec{c}, \vec{a} \rangle| ?$$

b) Zeigen Sie, dass das Volumen eines von den Vektoren \vec{u} , \vec{v} und \vec{w} aufgespannten Tetraeders

$$V = \frac{1}{6} | < \vec{u} \times \vec{v} \,, \; \vec{w} > |$$

beträgt. Benutzen Sie, dass hier $V = \frac{1}{3}$ Grundfläche Höhe gilt.