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Introduction

This script has evolved from lectures in Advanced Quantum Mechanics at the University
of Cologne given in the first year of a master’s course in physics. It should replace neither
one of the excellent books in the field nor the visit of the lecture itself. I would strongly
recommend to read a book on advanced quantum mechanics (e.g., books from Sakurai,
Schwabl, or Messiah) parallel to this lecture. Scattering theory on the level needed for this
lecture is sometimes also covered in more elementary textbooks on quantum mechanics.
The script assumes that you are familiar with standard quantum mechanics as taught
worldwide in bachelor courses in physics. This includes topics like the foundations of
quantum mechanics, measurement principles, the Dirac notation (bra and ket), atomic
physics and perturbation theory.
I would like to thank Richard Altenkirch who typed in a first version of these notes based
on my blackboard presentation. The single most important source for the script is probably
the book and lecture notes of my colleague Alexander Altland which I used especially in
the chapter on second quantization. Thanks also for the input of many students in the
summer semester of 2020, which helped to eliminate at least some of the typos.

Note that this is a preliminary version of the script. There has been no
proof-reading and there will be many mistakes.
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1 Second Quantization

In this chapter you will learn the language of second quantization. This is “the” language of
quantum field theory in which we can formulate and describe (almost) all know phenomena
in the world around us: the properties of matter, of light and of all known elementary
particles. An important exception is quantum gravity: it is presently not clear how the
ultimate quantum theory of, e.g., a black holes looks like. While in ordinary quantum
mechanics one considers the properties of just a few quantum particles, we will develop the
methods to describe many, sometimes an infinite number of particles. Most importantly,
we will also be able to formulate a theory of how particles are created and destroyed. This
will allow us to describe, e.g., how photons are created and absorbed.

1.1 Concepts of Quantum Mechanics

This section is a brief reminder on the basic structures underlying quantum mechanics. It
assumes that you have heard (and understood) all this before.
Probably the single most important concept of quantum mechanics (and quantum field
theory) is that the laws of nature are formulated in terms of probability amplitudes Ψ

written as complex numbers. These are not directly observable but instead |Ψ|2 gives the
probability.

Ψ ∈ C, |ψ|2 = probability

With this mathematical tool, one can describe the dual nature of quantum particles like the
electron: like waves electrons show interference but when measured they can be viewed as
a point-like particle. Superposition, i.e. the addition of probability amplitudes naturally
leads to interference.

| ψ1 + ψ2︸ ︷︷ ︸
linear theory

|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| · cos (ϕ1 − ϕ2) with: ψi = |ψ| eiϕi

The natural mathematical structure describing probability amplitudes, their addition and
calculating the probabilities by taking the modulus square is the Hilbert space.1 There-
fore we describe a quantum mechanical state by a vector in a Hilbert space.

state = vector in Hilbert-space, |ψ〉 ∈ H

1Do you recall the definition of a Hilbert space and its scalar product? If not look it up!
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Two simple examples are

i) QBit: |ψ〉 = α |0〉+ β |1〉 =

(
α

β

)
∈ C

ii) wavefunction: ψ : R3 → C,

scalar product: 〈ψ| Φ〉 =

∫
ψ∗(~r) Φ(~r) d3r

After having decided how to describe states, the next step is to find out how properties of
a states are measured. For this we have to identify which mathematical structure describes
observables.

observable = linear, hermitian operators with A = (A∗)T = A†

Some examples are

i) ~S =
}
2
~σ, σx =

(
0 1

1 0

)
, σy =

(
0 −1

1 0

)
, σz =

(
1 0

0 −1

)

for: H = C2

ii) ~p = −i }~∇

But how can we obtain the result of a measurement? The answer is that in a (idealized)
measurement

In an idealized measurements the eigenvalues αn ∈ R of the observ-
ables, A |ψn,i〉 = αn |ψn,i〉 i = 1, . . . ,m can be measured. Thereby,
the eigenvalue αn is measured with the probability

pn =
∑

i=1,...,m

| 〈ψni| ψ〉 |2 , for 〈ψ| ψ〉 = 1 〈ψn,i| ψn,j〉 = δij

By repeating these measurements one obtains the expectation value

〈A〉 =
∑

αnpn =
∑
〈ψ| ψni〉 〈ψni|A |ψni〉 〈ψni| ψ〉

=
∑
〈ψ| ψmj〉 〈ψmj |A |ψni〉 〈ψni| ψ〉 = 〈ψ|A |ψ〉

For example, consider

Sx =
}
2

(
0 1

1 0

)
eigenvalue: ±}

2
eigenvector:

1√
2

(
1

±1

)

for |ψ〉 =

(
1

0

)
one measures −}

2
with probability

∣∣∣ 1√
2

(1,−1)
(

1
0

)∣∣∣2 = 50%
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Above, we have described a highly idealized quantum mechanical measurement. Here one
should emphasize that in practice most measurements done in experimental labs (e.g.,
measuring the resistance of a piece of metal) cannot be described in such terms. One can,
nevertheless, use the above described concepts as a starting point to develop a theory of
measurement. In many cases it turns out that macroscopic measurements can be described
by certain expectation values (more precisely by correlation functions). This is a topic
which is not captured in this lecture (in Cologne this topic is covered in the quantum field
theory course).
An interesting question is how the state of a system is described after an idealized quantum
measurement. Effectively, this can be described by the collapse of the wave function

after measurment of eigenvalue αn:
∣∣∣ψ̃〉 = c

∑
i

|ψn,i〉 〈ψn,i| ψ〉,

c: normalisation

Note that the collapse of the wave function is a non-linear process, very different from all
other laws of quantum mechanics where all evolution is always linear. One can actually
avoid to use the collapse of the wave function when one is willing to include the observer
(i.e. the experimental apparatus) in the quantum mechanical description. This approach
is usually called “many-world interpretation” of quantum mechanics (a quite misleading
term).
Above, we have found out how states and measurements are described. The missing
element is the time-evolution of states which is governed by the

Schrödinger-equation: i}∂t |ψ(t)〉 = H |ψ(t)〉

H is the Hamiltonian which is hermitian, H = H†

A well known example is the single particle Hamiltonian

H = p2

2 m + V (~r)

1.2 Identical particles

Our next goal will be to develop the quantum mechanics of many particles starting from
the quantum mechanical description of a single particle. The key element of the follow-
ing discussion will be to think about a deep question: Can one in principle distinguish
one electron from another electron? And, if not, how is this reflected in their quantum
mechanical description?
We start with a single particle whose state are elements of the Hilbert space H1. For the
following, it will be useful to define a basis of H1. We therefore introduce

1-particle Hilbert-space H1 with basis |αi〉 or ψi(r)

An arbitrary wave function of the single particle is written a s a linear superposition of
basis vectors, |Ψ〉 =

∑
i ci |αi〉 or Ψ(r) =

∑
ciψi(r).
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These concepts are easily generalized to n quantum particles if they are distinguishable
(e.g, one electron, one proton and one neutron). Then the wavefunction ψ(r1, r2, . . . , rn)

describes the quantum mechanical amplitude that particle k is at position rk. Expressed
in terms of the one-particle eigenfunctions this can be written as

ψ(r1, r2, . . . , rn) =
∑

cj1,j2,...,jnΨj1(r1)Ψj2(r2) . . .Ψjn(rn)

|ψ〉 =
∑

cj1,j2,...,jn |αj1〉 |αj2〉 . . . |αjn〉︸ ︷︷ ︸
particle k in state|αjk〉

The Hilbert space Hd
n of n distinguishable particles is therefore given by the product of n

one-particle Hilbert spaces H1

n-distinguishable particles: Hd
n = H1 ⊗H1 ⊗ . . .⊗H1

In recent years it has been more and more realized that thinking about quantum mechanics
and quantum field theory from the perspective of quantum information theory has proven
to be extremely useful. By asking, for example, the question what information can be
encoded in quantum states and how precisely a quantum state differs from a classical
state, one can learn a lot about quantum physics and about the question of how to solve
quantum mechanical problems. We will now encounter an early example of how useful this
type of approach is by considering the description of indistinguishable particles.
As one electrons - as a matter of principle - cannot be distinguished from another electron,
we have to include this property into our quantum mechanical description. Consider two
indistinguishable particles. For those we have to postulate that ψ(r1, r2) and ψ(r2, r1)

have to describe the same state. To formulate this property formally, we introduce the
permutation operator, Pij which exchanges particle i and particle j.

PijΨ(r1, ..., ri, ...rj , ...) = Ψ(r1, ..., rj , ...ri, ...)

For identical particles we postulate

Pijψ = ψ · eiϕ︸︷︷︸
not

observable

as multiplying a wave function by a global phase provides the same quantum state.
When we assume furthermore that PijPij = 1 , we obtain

P 2
ijψ = ei2ϕ︸︷︷︸

=1

ψ → eiϕ = ±1

.
Nature has realized both of these option! One obtains
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two types of particles:
“bosons” eiϕ = 1 ⇒ ψ(r1, r2) = ψ(r2, r1) symmetric
“fermions” eiϕ = −1⇒ ψ(r1, r2) = −ψ(r2, r1) antisymmetric

For the descriptions of two bosons (fermions) only symmetric (antisymmetric) wave func-
tions are allowed. Electrons, protons, neutrons are all fermions, while photons, pions or
the newly discovered Higgs particle are bosons.
note:

- in 2-dim also eiϕ 6= ±1 is possible (so-called anyons) or more exotic representations
of permutation group

- causality & Lorentz invariance in 3-dimensions results in the spin-statistics theorem:
bosons have integer (0, 1, 2, . . .), fermions half integer spin (1/2, 3/2, 5/2, . . .). We will
not prove this statement. Note that it is not relevant for non-Lorentz-invariant
matter, e.g. excitations in a solid.

For a definition of the Hilbert space we consider SN , the set of all permutations P of n
particles with:

P = Pi1,j1Pi2,j2 . . . Pim,jm and (−1)P = (−1)m =

{
−1 odd number of permutations

1 even number "
Starting from the Hilbert space Hd

n of n distinguishable particles, we can introduce the
Hilbert space of n bosons or n fermions by allowing only the symmetric or antisymmetric
states.

symmetric n-particles Hilbert-space for n bosons:
HS
n =

{
|ψ〉 ∈ Hd

n | P |ψ〉 = |ψ〉 ∀P ∈ Sn
}

antisymmetric Hilbert-space for n fermions:
HA
n =

{
|ψ〉 ∈ Hd

n | P |ψ〉 = (−1)P |ψ〉 ∀P ∈ Sn
}

A direct consequence is the Pauli-principle: 2 Fermions cannot occupy same state as
such a state is not part of the Hilbert space:
|ψ〉 ∈ HA P12 |α〉 |α〉 = |α〉 |α〉 6= − |α〉 |α〉 /∈ HA

One way to write down a completely antisymmetric wave function of N electrons occupying
N single particle states, α1, . . . , αN , is the so-called Slater determinant.

det

∣∣∣∣∣∣∣∣∣∣
ψα1(r1) ψα1(r2) . . . ψα1(rN )

ψα2(r1) ψα2(r2) . . . ψα2(rN )
...

. . . . . .
...

ψαN (r1) . . . . . . ψαN (rN )

∣∣∣∣∣∣∣∣∣∣
∈ HA

N

Here one uses that the determinant by definition produces something completely antisym-
metric. Starting from a given single-particle basis Ψαi(r) one can use the slater determi-
nants to build a basis of the N particle fermionic Hilbert space HA

N .

9



For N = 2 one obtains
ψα1(r1)ψα2(r2)− ψα2(r1)ψα1(r2).

For a gold atom with N = 79 electrons, one would have to write

79! ≈ 10117

terms, clearly not a good idea! We will therefore not use Slater determinants in the
following but will be looking for something more physical and more easy to handle.

1.3 Creation and Annihilation operators

1.3.1 Fock space

We have learned that describing N identical particle by a wave function ψ(r1, . . . , rN ) is
clearly not a good idea. What to do instead?

- We want to use HA/S directly (never using ψ(r1, . . . , rN ))

- The main idea is that we will just count how frequently a given quantum state is
occupied. Counting is the only meaningful thing to do for indistinguishable particle.

This simple idea is most easily understood by doing simple examples.
Consider the single-particle Hilbert space H1 with the basis {|α1〉 , |α2〉 , |α3〉} and corre-
sponding wave functions ψαi(r) = 〈r| αi〉. To describe the state with 2 bosons in the first
state, none in the second state, and 2 in the third state, we can use the following simple
notation:

|2, 0, 2〉

. This is much shorter than writing the totally symmetric wave function

1√
6

[Ψα1(r1)Ψα1(r2)Ψα3(r3)Ψα3(r4) + Ψα1(r1)Ψα1(r3)Ψα3(r2)Ψα3(r4)

+ Ψα1(r1)Ψα1(r4)Ψα3(r2)Ψα3(r3) + Ψα1(r2)Ψα1(r3)Ψα3(r1)Ψα3(r4)

+ Ψα1(r2)Ψα1(r4)Ψα3(r1)Ψα3(r3) + Ψα1(r3)Ψα1(r4)Ψα3(r1)Ψα3(r2)]

Similarly, for one fermion in the first, and one in the third state we write

|1, 0, 1〉 =̂ 1√
2

(|α1〉 |α3〉 − |α3〉 |α1〉)

=̂
1√
2

(ψα1(r1)ψα3(r2)− ψα1(r2)ψα3(r1))

To formalize this, we first combine the Hilbert spaces of 0, 1, 2, ... particles to one large
Hilbert space, the so-called Fock space

10



F = F0 ⊕F1 ⊕F2 ⊕ . . .

with Fn =

{
HS
n

HA
n

for Bosons
for Fermions

with: F0 = 1-dim Hilbert-space with basis |0〉 = |0, 0, . . . , 0〉
=̂ no particle present = vacuum state

To define a basis in this Hilbert space, we start from a given single-particle basis. By
counting how often each state is occupied, we obtain

Basis in Fock-space: |n1, n2, n3, . . .〉 ∈ F
defined for given single-particle basis {|α1〉 , |α2〉 , . . . } of the single-
particle Hilbert space H1

with ni ∈ N0 for bosons or ni ∈ {0, 1} for fermions

Then an arbitrary wave function in F takes the form

|ψ〉 =
∑
ni

cn1,n2,... |n1, n1, . . .〉

This result is a major achievement. We have not only found a very economic way to
write N -particle wave functions but also found a way to describe superposition of states
with different particle number which was not possible in the old first-quantized quantum
mechanics. This will be important to describe things like photons, superconductivity or
antiparticles as we will see.

1.3.2 Creation & Annihilation

We have found out that simple counting is the best way to describe indistinguishable
particles. What is left is that we have to learn how to add and subtract using operators.
There is one problem in your first quantum mechanics course, where you had precisely
learned how to do this. Remember the solution of the harmonic oscillator

H =
p2

2m
+

1

2
mω2x2

To solve this problem algebraically, one can use a simple trick. One defines “raising” and
“lowering” operators

a† =

√
mω

2

(
x− i

mω
p

)
, a =

√
mω

2

(
x+

i

mω
p

)
,

N̂ = a†a, eigenvalue of N̂ = 0, 1, 2, . . . (counting)
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Then H = }ω
(
N̂ + 1

2

)
where the operator N̂ = a†a has eigenvalues 0, 1, 2, . . . and is

therefore ideally suited for counting. Based on the eigenstates of N̂ , one obtains in this
case an algebra of counting

N̂ |n〉 = n |n〉

a† |n〉 =
√
n+ 1 |n+ 1〉 adding 1

a |n〉 =
√
n |n− 1〉 substraction 1

In the case of the harmonic oscillator this was just a convenient trick to solve the problem.
Now we want to use this math (not the physics) to count indistinguishable particles.
We therefore define operators, which describe adding and subtracting one particle, i.e., we
define creation and annihiliation operators. We thereby have to know, how these operators
act on the basis |n1, n2, . . .〉 of the Fock space (defined by counting particles in a given
single particle basis).

Definition: creation & annihilation operators

bosons: a†i |n1, . . . , ni, . . .〉 ≡
√
ni + 1 |n1, . . . , ni + 1, . . .〉

fermions: a†i |n1, . . . , 1, . . .〉 = 0

a†i |n1, . . . , 0, . . .〉 = (−1)

∑
j<i

nj
|n1, . . . , 1, . . .〉

annihilation operator: ai =
(
a†1

)† (
〈ϕ| ai |ψ〉 = 〈ψ| a†i |ϕ〉

∗
)

bosons: ai |n1, . . . , ni, . . .〉 ≡
√
ni |n1, . . . , ni − 1, . . .〉

fermions: ai |n1, . . . , 0, . . .〉 = 0

ai |n1, . . . , 1, . . .〉 = (−1)

∑
j<i

nj
|n1, . . . , 0, . . .〉

For bosons, we just copied the definition from the harmonic oscillator. For fermions, the
fact that a† |1〉 = 0 is enforced by the constraint that only n = {0, 1} are allowed elements

of the Fock space. Less obvious is the factor (−1)

∑
j<i

nj
. As we will see below, it encodes the

Pauli principle and is needed to obtain simple rules to do calculations with the fermionic
creation and annihilation operators.
As we have learned to raise the number of particles by one, we can now build the basis of
the Hilbert space just starting from the vacuum, the state without any particles.

for bosons & fermions:

vacuum: |0〉 = |0, 0, 0, . . .〉 with; ai |0〉 = 0 ∀ai

|n1, n2, . . .〉 =
∏
i

1√
n!

(
a†i

)ni
|0〉 (1.1)
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For fermions the order or operator matters - here we use the convention that one starts
from the right with i = 0.
Later, all calculations will be based on the creation and annihilation operators. It is
therefore important to work out the rules for these calculation, i.e., the algebra of a†i ,ai

which directly follows form the definitions given above.

bosons: i 6= j a†ia
†
j = a†ja

†
i =̂ sym. wave function

a†iaj = aja
†
i

i = j
(
aia
†
i − a

†
iai

)
|n1, . . . , ni, . . .〉 =

=

(√ni + 1
)2 − (

√
ni)

2︸ ︷︷ ︸
=1

 |n1, . . . , ni, . . .〉

These rules can be written in a compact way using the commutator:
commutator: [A,B] = AB −BA

We obtain

bosonic commutation relations:

[ai, a
†
j ] = δij (1.2)

[a†i , a
†
j ] = [ai, aj ] = 0

For fermions we find instead

fermions: i 6= j a†ia
†
j = −a†ja

†
i due to (−1)

∑
j<i

ni
=̂ antisym wave function

a†ia
†
j |0〉 = −a†ja

†
i |0〉

i = j a†iai |. . . , ni, . . .〉 = ni |. . . , ni, . . .〉

aia
†
i |. . . , ni, . . .〉 = (1− ni) |. . . , ni, . . .〉

Defining
anticommutator: {A,B} = AB +BA

we can write in a compact way

fermionic commutation relations:

{ai, a†j} = δij (1.3)

{a†i , a
†
j} = {ai, aj} = 0

13



Some important consequences are:
n̂i = a†iai count particles (for both bosons & fermions)

as n̂i |. . . , ni, . . .〉 = ni |. . . , ni, . . .〉. As a consequence, one obtains n̂ia
†
i |. . . , ni, . . .〉 =

a†i (ni + 1) |. . . , ni, . . .〉 as a†i raises the particle number by 1. These results can be written
in the form (counting algebra)

[n̂i, a
†
i ] = a†i

[n̂i, ai] = −ai

}
bosons & fermions (1.4)

This formula expresses in a compact way all properties needed for counting. Please check
that starting from this equation, one can derive that a†i raises n̂i by an integer.
Let us check Eq. (1.4) for fermions: [a†iai , a

†
i ] = a†iaia

†
i − a

†
ia
†
iai. To simplify such an

expression, one usually performs a procedure called normal ordering. Here one moves
creation operators to the left and destruction operators to the right using the commutation
relations. a†iaia

†
i − a

†
ia
†
iai =︸︷︷︸

{aia†i}=1

aia
†
i+a

†
iai=1

a†i − a
†
ia
†
i︸︷︷︸

=0

ai − a†ia
†
i︸︷︷︸

=0

ai = a†i .

Here we used that {a†i , a
†
j} = 0 =⇒

i=j
a†ia
†
i + a†ia

†
i = 0 =⇒

(
a†i

)2
= 0, reflecting again

the Pauli principle.
Concluding remarks: The logic of the previous chapter was that we started from the
definition of Fock space, then defined creation & annihilation operators and obtained fi-
nally their commutation relations and the rules for counting expressed in Eq. (1.4). An
alternative (and, perhaps, deeper) approach is the reverse order: One can start by asking
the question, how one can realize “counting” (and therefore Eq. (1.4)) on the operator
level. Two realizations are the bosonic and fermionic commutation relations, (1.2) and
(1.3). Postulating the existence of a vacuum state, one can then build up the Hilbert space
as in Eq. (1.1).

1.4 Operators in Fock-space

In this chapter we will learn the essence of second quantization: we express all types of
operators (including the Hamiltonian) in creation and annihiliation operators. We will
furthermore see what quantum fields are.

1.4.1 Basis change

We have defined the basis of the Fock space and therefore also the creation operator a†λ
relative to a given single particle basis |λ〉, |λ〉 = a†λ |0〉 and λ denotes a set of quantum
numbers (you can think of λ = 1, 2, . . . just enumerating the basis vectors). For the
following, it will be important to learn how to change this basis. We denote the vectors of
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the new basis by ˜|λ〉 and express them in terms of the old basis vectors |λ〉 using

˜|λ〉 =
∑
λ

|λ〉 〈λ|︸ ︷︷ ︸
=1

λ̃〉 =
∑
λ

Uλ̃λ |λ〉

where Uλ̃λ = 〈λ| λ̃〉 is a unitary matrix.
For the changed basis, we want to define a new creation operator ã†

λ̃
such that ˜|λ〉 = ã†

λ̃
|0〉 =∑

λ

Uλ̃λa
†
λ |0〉. Therefore the old and new operators have to be related in the following way

ã†
λ̃

=
∑
λ

Uλ̃λa
†
λ =

∑
λ

〈λ| λ̃〉a†λ

ãλ̃ =
(
ã†
λ̃

)†
=
∑
λ

˜〈λ| λ〉 aλ

We should check that the new operators fulfill the same commutation relations as the old
one. For fermions, e.g., we find{

ã†
λ̃1
, ãλ̃2

}
=
∑
λλ′

〈λ
∣∣∣λ̃1

〉〈
λ̃2

∣∣∣λ′〉{a†λ, aλ′}︸ ︷︷ ︸
=δλλ′

=
∑
λ

〈
λ̃2

∣∣∣ λ〉 〈λ ∣∣∣λ̃1

〉
= 〈λ̃2|λ̃1〉 = δλ̃′λ̃

1.4.2 Field operator in real- & momentum-space

After having learnt how to change a basis, we will discuss two special basis sets which
play an important role when formulating quantum field theory: the real-space and the
momentum-space basis.
The single-particle state ~|x〉 describes a particle with wave function Ψ(~r) = δ3(~r − ~x)

localized at point ~x. The overlap to another wave function is given by

~〈x| ϕ〉 =

∫
δ (~r − ~x)ϕ (~r) d3r = φ(~x)

and therefore one also obtains

~〈x| ~x′〉 =

∫
δ (~r − ~x) δ

(
~r − ~x′

)
d3r = δ

(
~x− ~x′

)
.

We use this to define the field operator Ψ†(~x), which creates a particle located at point
~x. We can, e.g., use the formulas from the previous chapter to obtain

Ψ†(~x) =
∑
λ

〈λ ~|x〉a†λ, a†λ =

∫
~〈x| λ〉Ψ†(~x)d3~x (1.5)

Repeating the last calculation of the previous section, we obtain directly the commutation
relations
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fermions:
{

Ψ(~x), Ψ†(~x′)
}

= 〈~x|~x′〉 = δ3(~x− ~x′)

bosons:
[
Ψ(~x), Ψ†(~x′)

]
= 〈~x|~x′〉 = δ3(~x− ~x′)

Note that Ψ(~x) is an operator but not a wave function and also ~x is just a label not an
operator. Ψ(~x) is example of a quantum field, i.e., a real-space operator destroying (or
creationg) a particle. Later we will see that also other fields, like the electric or magnetic
field. ~E(~r), ~B(~r), should be viewed as quantum fields.
Let us practice this a new notation. How can we obtain a single particle with wave function
ϕ(~r) using the field operator Ψ†(~x)? The following formula gives the answer:

|ϕ〉 =

∫
d3xϕ(~x) Ψ†(~x) |0〉

This should be read from right to left: We start with the vacuum state, then we create a
linear superpostion of particles located at point ~x weighted with the wave function ϕ(~x).
The result is the desired state.
To check this, let us calculate ϕ(~x0) = 〈~x0|ϕ〉 using that |x0〉 = Ψ†(x0) |0〉. We therefore
obtain

〈x0| ϕ〉 = 〈0|Ψ(x0)

∫
d3xϕ(x) Ψ†(x) |0〉

To proceed, we use a standard trick: normal ordering, i.e., we move all annihilation
operators to the right. For this we need the anticommutation relation Ψ(x0)Ψ†(x) +

Ψ†(x)Ψ(x0) = δ3(~x− ~x0) and then Ψ(x0) |0〉 = 0 to eliminate the second term.

〈x0| ϕ〉 = 〈0|
∫

d3x δ3(~x− ~x0)ϕ(~x) |0〉 − 0︸︷︷︸
Ψ(x0)|0〉=0

= ϕ(x0) 〈0| 0〉 = ϕ(x0)

Momentum space: Besides field operators in position space, also operators which gener-
ate a particle in a momentum eigenstate are very useful. Momentum eigenstates are just
plane waves, ei~k~x. To normalize those, we consider a 3-dimensional box of length L with
periodic boundary conditions. In this case only discreet momenta, ~k = (kx, ky, kz), are
allowed with

ki =
2π

L
ni = ∆Kni i = x, y, z, ni ∈ Z

We normalize the single-particle eigenstates with〈
~kn

∣∣∣ ~km〉 = δ ~Kn, ~Km

and therefore have
〈~x|~kn〉 =

1√
V
ei
~kn~x
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where V = L3 is the volume of the box.
Using the previously obtained relation (1.5), we can define the creation operator in mo-
mentum space using the position-space field operators

c†~k
=

∫
ei
~k~x

√
V

Ψ†(~x)d3x Ψ†(x) =
∑
~k

e−i
~k~x

√
V
c†~k

(1.6)

Here, c†~k creates a particle with momentum ~~k.
As we have normalized the eigenstates to 1, we obtain the usual commutation relations

fermions:
{
cK , c

†
K′

}
= δKK′ (1.7)

bosons:
[
cK , c

†
K′

]
= δKK′

In the following, we will often use the limit of an infinite box L, V →∞. In this case it is
useful to derive a few simple relations of sums and integrals. In one dimension, the sum
over all discreet momenta kn = n∆k can be written as

∑
kn
· · · = 1

∆k

∑
kn

∆k . . . which for

L→∞ gives the integral L
∫
dk
2π . . . as ∆k = 2π/L. Correspondingly, we have in d = 3

∑
~k

· · · = V

∫
d3 ~k

(2π)3 . . .

The total number of particles, for example, can be written for V →∞ as

N =
∑
~K

c†~K
c ~K = V

∫
d3K

(2π)3 c
†
~K
c ~K =

∫
Ψ†(~x)Ψ(~x)d3x

and we can write Eq. (1.6) as

Ψ†(~x) =
√
V

∫
d3~k

(2π)3
e−i

~k~xc†~k

In a number of books different conventions for the normalization of momentum states are
used. To translate various conventions it is useful to rewrite the commutation relations
(1.7) in the continuum. Using 1

V

∫
ei(
~k−~k′)~xd3x = δ~k~k′ , we can write for V →∞

{
c~k, c

†
~k′

}
= δ~k,~k′ =

1

V

∫
ei(
~k−~k′)~x d3x︸ ︷︷ ︸

(2π)3δ3(~k−~k′)

=
(2π)3

V
δ3(~k − ~k′)
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1.4.3 Single-particle operators

Our next main goal will be to translate an arbitrary operator from the languange for first
quantization to second quantization. We will do this by writing the operator in terms
of creation and annihilation operators. Consider, for example, the Hamiltion operator
describing N electrons in an external potential Va(r) which interact with the potential
V (ri − rj) = e2

|ri−rj | .

H =
N∑
i=1

p2
i

2m
+ Va(ri)︸ ︷︷ ︸

single-particle operator

+
1

2

∑
ri 6=rj

V (~ri − ~rj)︸ ︷︷ ︸
interaction

The first two terms are a so-called single-particle operator, defined below (the last term,
the interaction will be treated in the next section).
A single-particle operator, by definition, acts on each particle i separately and one can
simply sum over i to obtain the operator AN acting in the N -particle hilbert space.

A(N) =

N∑
i=1

Ai

Formally, the operator A in Fock space is obtained as a sum of all these operators acting
in the N particle subspace.

A = A(0) ⊕A(1) ⊕A(2) ⊕ . . .

The trick to translate this operator to the language of second quantization is simple: we
write both the operator A and the creation and annihilation operators in the eigenbasis
{|λi〉} of A(1) =

∑
λ

λi |λi〉 〈λi| such that |λi〉 = a†λi |0〉. In this basis it is very simple to

calculate the effect of A: just multiply the eigenvalue by the number of particles which are
in the corresponding eigenstate.

A |nλ1 , nλ2 , . . .〉 =
∑

λinλi |nλ1 , nλ2 , . . .〉 =
∑
λi

λia
†
λi
aλi |nλ1 , nλ2 , . . .〉

From this we can read off directly

A =
∑
i

〈λi|A(1) |λj〉︸ ︷︷ ︸
=λiδij

a†λiaλi

The only remaining step is to find the corresponding formula for another single-particle
basis |αi〉. For this we use the formulas derived previously

a†λi =
∑
K

〈αK | λi〉 a†αK aλi =
∑
K†
〈λi| αK′〉 aαK′
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Using
∑
〈αK | λi〉 〈λi|A(1) |λj〉 〈λj | αK′〉 = 〈αK |A(1) |αK′〉 we obtain

A =
∑
KK′

〈αK |A(1) |αK′〉 a†αKaαK′ (1.8)

Above, the operator in Fock space has been obtained directly from the single-particle
matrix elements 〈αK |A(1) |αK′〉.
It is important to learn to read such an equation to get an intuitive understanding. What
is a operator A(1) acting on a single particle doing? According to the formula A(1) =∑
KK′
|αK〉 〈αK |A(1) |αK′〉 〈αK′ | the operator transforms an initial state |αK′〉 into |αK〉 with

the amplitude 〈αK |A(1) |αK′〉. This is precisely how one should also read the second-
quantized version, Eq. (1.8): the operator removes one particles in |αK′〉 by aαK′ and add
it back in the state |αK〉 by a†αK . This happens with the amplitude 〈αK |A(1) |αK′〉.
A few examples are given below.

1. momentum: P =
N∑
i=1
−i~ ∂

∂~ri
,

momentum basis:
〈
~K
∣∣∣− i~~∇ ∣∣∣ ~K〉 = δK,K′~ ~K

⇒ ~P =
∑
~K

~ ~Kc†~Kc ~K

real-space basis (here: one dimensional):

〈x0|P
∣∣x′0〉 = 〈x0| − i~

d

dx

∣∣x′0〉 =

∫
δ(~r − ~x0)(−i~ ∂

∂r
δ(~r − ~x′0)d3r = −i~δ′(x− x′0)

⇒ P =

∫
dx0dx′0(−i~)δ′(x− x′0)Ψ†(x0)Ψ(x′0) =

∫
dxΨ†(x)

(
−i~ ∂

∂x

)
Ψ(x)

2. kinetic energy: T (N) =
N∑
i=1
− ~2

2m
~∇2
i

use same arguements as above

T =

∫
d3xΨ†(x)

(
− ~

2

2m

)
~∇2Ψ(x) ==

∫
d3x

~2

2m
(~∇Ψ†(x))~∇Ψ(x)

=
∑
K

~2 ~K2

2m
c†KcK

3. Potential-energy: U (N) =
N∑
i=1

U(ri)

U =

∫
d3xU(~x)Ψ†(x)Ψ(x)
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Figure 1.1: Blue: Periodic potential arising from a periodic arrangement of, e.g., hydrogen
ions. When the atoms are far apart, electrons tunnel from one groundstate of
each atom to the next with a small tunneling rate −t.

4. Hopping on a lattice: Consider a regular lattice of, e.g., hydrogen atoms arranged
on a line in such a way that there is little overlap between their groundstate wave
function, see Fig. 1.1. We denote by c†i the operator creating an electron in the
groundstate wave function of atom i (we ignore spin, discussed below in Sec. 1.4.5).
The electrons can tunnel from groundstate of one atoms to the neighboring atome
with the rate −t (a calculation gives t > 0). This simple picture can litteraly be
translated to a Hamiltonian using that c†i+1ci describes the process where one electron
moves from site i where it is annihilated to site i+ 1, where it is created. Including
also the reverse process, the Hamiltonian is therefore given by

H = −t
∑
i

c†ici+1 + c†i+1ci

Note that H is hermitian. You can diagonalize H by a Fourier transformation of the
operators, i.e., by introducing a new field f †k = 1√

N

∑
j c
†
je
ikj where N is the number

of lattice sites (homework problem).

In conclusion, we have found a simple way to write operators using the language of second
quantization. In contrast to the first-quantized version, there is no need to introduce
N coordinates ~ri, i = 1, .., N to describe N particles. Just quantum fields with simple
commutation relations are sufficient.

1.4.4 Two particle operators

As a next step, we want to translate more complicated operators describing two-particle
interaction processes into the language of second quantization. These are operators of the
type

V =
1

2

∑
i 6=j

V (ri, rj)
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where the Coulomb interaction V (r1, r2) = e2

|~r1−~r2| is probably the most important
example.
We will not give a detailed derivation in this section: one can follow the procedures de-
scribed in more detail in the previous paragraph to obtain all results.
For a two-particle operator, we need its matrix elements in the same basis in which the
creation and annihilation operators are defined.

〈λ1| 〈λ2|V (2)
∣∣λ′2〉 ∣∣λ′1〉 =

∫
Ψ∗λ1

(r1)Ψ∗λ2
(r2)V (r1, r2)Ψλ′2

(r2)Ψλ′1
(r1) d3r1 d3r2

The operator in second quantization reads
for bosons and fermions:

V =
1

2

∑
λ1 λ2 λ′1 λ

′
2

〈λ1| 〈λ2|V (2)
∣∣λ′2〉 ∣∣λ′1〉 a†λ1

a†λ2
aλ′2aλ′1 (1.9)

The interpretation is the same which we used in the previous section: V describes that
two particles in states λ′1, λ′2 are transferred to the states λ1, λ2 (by annihilating the first
two and creating the second two).
Note that the order of operators in important in Eq. (1.9) is important as for fermions we
have aλ′2aλ′1 = −aλ′1aλ′2 .
An important example is an interaction which depends only of the position of two particles
V int = 1

2

∑
i 6=j

V int(ri − rj).

V int =
1

2

∫
d3x d3x′ V int(x− x′)Ψ†(x)Ψ†(x′)Ψ(x′)Ψ(x) (1.10)

=
1

2

∫
d3x d3x′ Ψ†(x′)Ψ(x′)︸ ︷︷ ︸

density at x′

V int(x′ − x) Ψ†(x)Ψ(x)︸ ︷︷ ︸
density at x

The resulting formula takes the form expected from classical physics when one realizes that
Ψ†(x)Ψ(x) is the density of particles at point x.
One also often uses the interaction written in momentum space. Starting from the
matrix element〈

~K1
~K2

∣∣∣V int(1− 2)
∣∣∣ ~K1

~K2

〉
=

1

V 2

∫
d3r1 d3r2 e

i( ~K′1− ~K1)r1 ei(
~K′2− ~K2)r2V int(r1 − r2)

=
1

V 2

∫
d3r d3R ei(K

′
1+K′2−(K1+K2))R ei

1
2

(K′1−K1−(K′2+K2))r V int(r)

=
1

V
δ ~K1+ ~K2, ~K′1+ ~K′2

V int(K1 −K ′1)

with V int(K) =
∫
V (x)e−ikx, we obtain
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V int =
1

2V

∑
k1,k2,k′1,k

′
2

V int(k1 − k′1)c†k1
c†k2
ck′2ck′1δ~k1+~k2, ~k′1+~k′2

=

=
1

2V

∑
k1, k2, q

V int(q)c†k1+qc
†
k2−qck2ck1

A useful way to visualize this expression is shown here:

q

k1

k1 + q

k2

k2 − q

which shows visually, that there are two incoming particle with momenta k1 and k2 (de-
scribed by annihilation operators) and outgoing ones with momenta k1 + q and k2 − q

(creation operators). At each vertex, where three lines join, the momentum is conserved.
We will not use such diagrams in the lecture a lot, but they are an important building block
for any calculation using perturbation theory, a topic covered in Quantum Field Theory
lectures (but not in this course).

1.4.5 Hamiltonian with spin

It is straightforward to include more quantum numbers in the language of second quanti-
zation: one justs adds one more index to the field operators. The most important example
is the spin of an electron. We denote the extra label σ sometimes by σ = ±1

2 but more
often by σ =↑ / ↓. The new field operators are, for example, written as Ψ†↑(x) or c†↓,k.
Their anti-commutation relation simply read

{Ψσ(r), Ψ†σ′(r
′)} = δ3(r − r′) δσσ′

To describe a spin in first-quantized language, the spinor notation is used, for example,

~ϕ(~r) =

(
ϕ↑(r)

ϕ↓(r)

)
. It describes a single electron which has the probability amplitude

ϕσ(r) to be at position r with spin σ. The same wave function of a single electron is
written in second quantization as

|ϕ〉 =

∫
ϕ↑(r) Ψ†↑(r) + ϕ↓(r) Ψ†↓(r) |0〉 d3r
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In first-quantized languange, the Hamiltonian describing N particles in the presence of a
magnetic field has the form

H =
∑
i

(
~pi − e

c
~A(ri)

)2

2m
+ U(ri) +

1

2

∑
i 6=j

V (ri − rj)−
∑
i

gµB ~B(ri)~Si

In second-quantized form this translates to

H =
∑
σ=↑/↓

∫
d3x Ψ†σ(x)

(
−i~~∇− e

c
~A(x)

)2

2m
Ψσ(x) + U(x) Ψ†σ(x) Ψσ(x)

+
1

2

∑
σ, σ′

∫
d3x d3x′ V (x− x′) Ψ†σ(x)Ψ†σ′(x

′) Ψσ′(x
′)Ψσ(x)

− g µB
∫

d3x ~B(~x)
∑
α, β

Ψ†α(x)
~σα, β

2
Ψβ(x) (1.11)

where we have just replaced the densities by
∑

σ Ψ†σ(x)Ψσ(x) while the spin density at site
x is written as ∑

α, β

Ψ†α(x)
~σα, β

2
Ψβ(x)

Please check that this is just the second-quantized version of the first-quantized operator∑
i
~Siδ

3(x− ri).
For vanishing vector potential ~A, magnetic field ~B and single-particle potential U one
obtains in momentum space:

H =
∑
σ=↑/↓

∑
K

ε(K) c†K,σcK,σ +
1

2

∑
σσ′,KK′,q

V (~q ) c†K+q,σc
†
K′−q,σ′cK′,σ′cK,σ

with the kinectic energy ε(K) = (~K)2

2m .
The correspondig Feynman diagram

K, σ K ′, σ′

K + q, σ K ′ − q, σ′

has the property that at the vertex the incoming spin is equal to the outgoing spin as the
Coulomb interaction does not change the spin.
The language of second quantization is used whenever one describes more than one or two
quantum particles. An important example are electrons in a solid. As you probably
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know from your solid state lecture, their properties are described by electronic bands.
The bandstructure εn,k describes how the energy of a given band n depends on (quasi-)
momentum k defined in the first Brillouin zone. We will not explain these concepts in this
lecture (assuming you have heard this before) but this paragraph describes how easily this
can be translated to the language of second quantization. The band label n just enters as
an extra index. Ignoring interactions, the Hamiltonian of a solid with several bands can
simply be written as

H =
∑
n,k,σ

εn,k c
†
n,k,σcn,k,σ

where c†n,k,σ creates an electron in band n with momentum k and spin σ.
The ground state of such a system is characterized by the fact that all states up to a
maximal energy – the Fermi energy or, equivalently, the chemical potential µ – are occupied.
This ground state is called Fermi sea and we denote it by |FS〉 and it is given by

|FS〉 =
∏

n,k,σ with εn,k,σ<µ

c†n,k,σ |0〉

This ground state has the property that

〈
FS |c†n,k,σ cn,k,σ |FS

〉
=

{
1 for εK − µ < 0

0 εK − µ > 0

As a simple, but instructive example let us consider a
semiconductor with two bands where the upper band
is completely empty and the lower one occupied with
ε1,k < µ and ε2,k > µ. The ground state is given by
|GS〉 =

∏
K,σ

c†1 K,σ |0〉.

For the following it is useful to discuss the combination H − µN , where N is the total
number of particles, as this combination enters, e.g., the Boltzmann weight e−(H−µN)/(kBT )

of each state. For the two bands, we obtain

H − µN =
∑
k,σ

(ε1,k − µ) c†1,k,σc1,k,σ + (ε2,k − µ) c†2,k,σc2,k,σ

For many applications it is useful to think about this system in a different way. We want
to view the ground state |GS〉 defined above as a new vacuum, i.e., as a state without
particles. This is achieved by rewriting the occupied band in terms of hole operators.
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We define

h†K, ↑ = c1,−K, ↓ h†K, ↓ = −c1,−K, ↑

hK, ↑ = c†1,−K, ↓ hK, ↓ = −c†1,−K, ↑ (1.12)

From this definition, we find that the new operators fulfill the standard commutation
relations of fermions {

h†K,σ, hK′, σ′
}

= δK,K′ δσ,σ′

What have we gained? All states in band 1 are occupied and therefore c†1,k,σ |GS〉 = 0.
In the hole variables this implies that hK,σ |GS〉 = 0. As furthermore c2,K,σ |GS〉 = 0

(the second band is empty), we can now identify |GS〉 with the vacuum state of the new
variables

|GS〉 = |0〉

Using that c†1 K,σ c1 K,σ = h−K,−σh
†
−K,−σ = 1 − h†−K,−σh−K,−σ and ε1,k = ε1,−k, the

Hamiltonian is written in the new variables

H − µN =
∑
K,σ

(µ− ε1,K) h†K,σhK,σ +
∑
K,σ

(ε2,K − µ) c†2,K,σ c2,K,σ + const.

Note that now both µ − ε1,k and ε2,k − µ are positive: it costs a finite energy to add an
extra particle. As you know from your solid state lecture, using holes is an efficient way to
describe the properties of semiconductors. Their band structure is inverted and they have
opposite charge compared to electrons (as c†1 K,σ c1 K,σ = 1− h†−K,−σh−K,−σ).

1.4.6 Dynamics of fields

As the reader is probably aware from his or her Quantum Mechanics course, there are
two different ways how one can view the time evolution of a quantum-mechanical system.
Following Schrödinger, one considers the time evolution of the wave function described by
the Schrödinger equation

i~∂t |Ψ(t)〉 = H |Ψ(t)〉

which can also be rewritten using the unitary time-evolution operator Ut with

|Ψ(t)〉 = Ut |Ψ(0)〉 , i~∂t Ut = H Ut

An equivalent, alternative point of view is, however, to attribute the time evolution not
to the wave function but instead to the operator by using that 〈A〉 = 〈Ψ(t)|A |Ψ(t)〉 =

〈Ψ(0)|U †t AUt |Ψ(0)〉.
One can therefore introduce time-dependent “Heisenberg” operators

AH(t) = U †t AUt
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following the Heisenberg equation of motion
i~∂tAH(t) =

[
AH(t), H

]
where this equation is only valid if A was time-independent in the Schrödinger version
discussed above. The reader is encouraged to check this equation using the definition of
AH and the property of Ut given above.
We want to use these definitions to calculate the time-evolution of the Heisenberg operator
ΨH(r, t) describing the destruction of a particle at point r (not to be confused with the
wave function). For simplicity, we will omit the index H in ΨH(r, t) and write instead just
Ψ(r, t). We will calculate the time evolution using for the Hamiltonian

H =

∫
− ~

2

2m
Ψ†(r, t)∇2Ψ(r, t) + U(r)Ψ†(r, t)Ψ(r, t)

+
1

2

∫
U(r − r′)Ψ†(r, t)Ψ†(r′, t)Ψ(r′, t)Ψ(r, t)

We will consider the first term in [Ψ, H] in a theory of fermions using that the (anti-) com-
mutation relation of the Heisenberg operators is the same as that of the Schrödinger oper-
ators (check this!). As usually, we simplify the equations by normal ordering (moving cre-
ation operators to the left using the anticommutation relation Ψ(r)Ψ†(x) = −Ψ†(x)Ψ(r)+

δ(x− r) (omitting the time-index)[
Ψ(r),

∫
Ψ†(~x)

(
−~

2∇2

2m

)
Ψ(~x)

]
=∫

dxΨ(r)Ψ†(x)

(
−~

2∇2

2m

)
Ψ(x)−Ψ†(x)

(
−~

2∇2

2m

)
Ψ(x)Ψ(r) =∫

dx (−1)Ψ†(x)Ψ(r)

(
−~

2∇2

2m

)
Ψ(x) + δ(r − x)

(
−~

2∇2

2m

)
Ψ(x)

−Ψ†(x)

(
−~

2∇2

2m

)
Ψ(x)Ψ(r) =︸︷︷︸

with Ψ(x)Ψ(r)
=−Ψ(r)Ψ(x)

− ~
2

2m

∂2

∂r2
Ψ(r)

Repeating similar calculations for the other terms, one obtains both for fermions and
bosons the Heisenberg equation of motions

i~∂tΨ(r, t) = [Ψ(r, t), H]

= − ~
2

2m

∂2

∂r2
Ψ(r, t) + U(r)Ψ(r) +

∫
d3~xΨ†(x)Ψ(x)V (x− r)Ψ(r)

Without interaction these equations look like the Schrödinger equation. The interpreta-
tion is, however, completly different: these are Heisenberg equations of motion for field
operators.
Due to the non-linearities and the finite size of the Hilbert space, it is in general impossible
to solve these equations analytically or numerically. In the course Quantum Field Theory I
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methods for solving such problems using perturbation theory are discussed. This problem
is, however, not covered in this lecture notes.

1.5 Bose-Einstein Condensation (BEC) and superfluidity

As an application of the power of field theoretical techniques we will study the Bose-
Einstein condensation (BEC) of bosons in the presence of interactions. This will provide a
very different point of view on this problem compared to the non-interacting case which was
probably studied by most readers in a statistical physics course. In this chapter one of the
most important concepts of physics is introduced: the concept of spontaneous symmetry
breaking which not only determines the properties of all solids but is for example, an
important building block of the standard model of particle physics (it is an important
element of the Higgs mechanism).
Superfluidity and superconductivity, allowing for transport of mass or charge without any
friction, are arguably some of the most fascinating subjects in physics - as can already
be seen from the large number of Nobel prizes in this field (Kamerlingh Onnes 1913,
Landau 1962, Bardeen, Cooper, Schrieffer 1972, Josephson 1973, Bednorz, Müller 1987,
Lee, Osheroff, Richardson 1996, Cornell, Ketterle, Wiemann 2001, Abrikosov, Ginzburg,
Legett 2003).

1.5.1 Spontaneous symmetry breaking

But let us start by recalling basic facs of the BEC of non-interacting bosons. Here the
key observation is, that below the transition temperature, T < Tc, the ground state wave
function (i.e., the k = 0 state) is macroscopically occupied

〈
n ~K=0

〉
V

=

〈
c†~K=0

c ~K=0

〉
V

= ns > 0 for V → ∞ (1.13)

where ns is the superfluid density and we used the following definition of the expectation
value

〈A〉 =
1

Z
tr e−

H−µN
kbT A ≡ 1

Z

∑
i

〈Ψi| e
−H−µN

kbT A |Ψi〉

where the trace “tr” is defined by summing over a basis of the Fock space with basis vectors
|Ψi〉 and Z = tr e−

H−µN
kbT is the partition sum (I assume that the reader is familiar with

these concepts, if not, I would recommend reading a statistical physics textbook).
We will use Eq. (1.13) to calculate

〈
Ψ†(x)Ψ(y)

〉
=

1

V

∑
K,K′

〈
c†~K

c ~K′

〉
ei
~K~x e−i

~K′~y

for large distances x − y. This is greatly simplified by observing that
〈
c†~K

c ~K′

〉
= 0
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for K 6= K ′. This is a consequence of momentum conservation: each eigenstate |Ψn〉
of the Hamiltionian H can be chosen as an eigenstate of the total momentum operator
P . As c†~K c ~K′ changes the momentum by ~K − ~K ′, the overlap of c†~K c ~K′ |Ψn〉 with |Ψn〉
has to vanish (they have different momentum). Therefore also the expectation value (a
sum over such overlaps) must be zero for K 6= K ′. For K = K ′ the occupations of the
non-interacting systems are given by the well-known result (not derived here)

〈
c†KcK

〉
=(

eβ(ε(K)−µ) − 1
)−1. We will not use this formula but instead use that for x− y →∞ only

the k = 0 states contribute to obtain

lim
|x−y|→∞

〈
Ψ†(x)Ψ(y)

〉
=

1

V

∑
K

〈
c†KcK

〉
ei
~K(~x−~y) =

1

V

〈
c†K=0cK=0

〉
= ns > 0

(1.14)

for a BEC. This is an important observation: a BEC is characterized by correlations which
do not decay in the limit of an infinitely large distance. This is surprising as usally all
correlations decay at finite temperature due to thermal fluctuations.
To reconcile the infinite-range correlations of Eq. (1.14) with the fact that all physics is
local, we introduce a radically new interpretation (justified in more detail below). We
argue that the origin of the infinite-range correlation is, that our field operators obtain a
finite expectation value

lim
|x−y|→∞

〈
Ψ†(x) Ψ(y)

〉
= lim
|x−y|→∞

〈
Ψ†(x)

〉〈
Ψ(y)

〉
= ns

We can say, that the system behaves “as if”

〈
Ψ†(x)

〉
=
√
nse

iϕ0 , 〈Ψ(x)〉 =
√
nse
−iϕ0 (1.15)

where ϕ0 is an undetermined phase.
To appreciate how strange Eq. (1.15) is, we will show that Eq. (1.15) apparently contradicts
the conservation of particle number. We will even give two different “proofs” of 〈Ψ〉 = 0.
As the total number of particles N̂ is conserved,

[
N̂ , H

]
= 0, we can choose all eigenstates

of H as eigenstates of N̂ . We conculde

N̂ |n〉 = n |n〉 , 〈n|
(

Ψ† |n〉
)

︸ ︷︷ ︸
n+1particles

= 0 ⇒
〈

Ψ†
〉

= 0

Even more instructive is the following equivalent argument: we know that all observables
are invariant under the change of the phase of all single-particle wave function which
corresponds to the symmetry transformation

|φ〉 → eiϕN̂ |φ〉 .
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Such a symmetry (multiplication by a phase) is called a U(1) symmetry. If we assume
that the groundstate obeys this symmetry, then we find that

〈φ|Ψ† |φ〉 = 〈φ| e−iϕN̂Ψ† eiϕN̂ |φ〉 = 〈φ| e−iϕ Ψ† |φ〉 = e−iϕ 〈φ|Ψ† |φ〉 (1.16)

using that Ψ† increases the total number of particles by 1 making N̂ to the left of Ψ†

larger by one compared to N̂ to the right of Ψ†. As ϕ is arbitrary, we can use the equation〈
Ψ†
〉

= e−iϕ
〈
Ψ†
〉
to “prove” again that

〈
Ψ†
〉

= 0.
While these proofs are formally fully correct in a finite system, they can, however, be
“circumvented” in an infinitely large system. To reconcile the finite expectation value in
Eq. (1.15) with the result Eq. (1.16) there is only one option: we have to assume that the
BEC state does not have the symmetry that it is invariant under multiplication by eiϕN̂ !
This phenomenon is called “spontaneous symmetry breaking”. You have probably seen this
before, for example, in your statistical physics course when discussing the phase transition
in the Ising model. “Spontaneous symmetry breaking” describes that the state of the system
does not have to have the symmetries of the underlying Hamiltonian. A good example is
a magnet: while the Hamiltonian is symmetric under a reversal of the magnetization,
M → −M , the ferromagnetic groundstate selects “spontaneously” one direction of M .
For a BEC a similar effect takes place: the system “spontaneously” selects one phase ϕ0.
Thereby the U(1) symmetry is “spontaneously broken” and is therefore not a symmetry of
the thermal state below the transition temperature.
The previous discussion was far from rigorous. It started from the ad-hoc assumption
(1.15) that the annihilation and creation operators obtain a finite expectation value. We
will now shows that we can indeed perform a certain limiting procedure where one obtains
rigorously a finite expectation value. We start by modfying the Hamiltonian is such a way
that the U(1) symmetry is explicitely broken by the parameter α

H =
∑

(εK − µ) c†KcK + α c†K=0 + α∗ cK=0 (1.17)

As it is often done, we write here H for H − µN̂ as this is convenient to describe grand
canonical ensembles with N̂ =

∑
K c
†
KcK . You can check that for this Hamiltionian the

particle number is not conserved, [H, N̂ ] = α c†K=0−α∗ cK=0. We will now study the limit
α→ 0 together with the infinite-volume limit V →∞.
The α-term in (1.17) can be easily be absorbed by defining new operators c̃ with

cK = c̃K +
α

µ
δ ~K, 0 , c†K = c̃†K +

α∗

µ
δK, 0 ,

[
c̃K , c̃

†
K′

]
=
[
cK , c

†
K′

]
= δK,K′ (1.18)

In these new variables H takes the form

H =
∑

(εK − µ) c̃†K c̃K +
|α|2

µ2
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The value of the chemical potential µ is determined from the density of particles

n =
〈N〉
V

=
1

V

∑
K

〈
c†K cK

〉
=

1

V

∑
K

〈
c̃†K c̃K

〉
+
α

µ

〈
c̃†0

〉
+
α∗

µ

〈
c̃0

〉
︸ ︷︷ ︸
=0 ; as

[∑
K c̃†K c̃K , H

]
+
|α|2

µ2
(1.19)

The number of particles in the mode with momentum k is given by the Bose distribution〈
c̃†K c̃K

〉
=
(
e(ε(K)−µ)/kBT − 1

)−1. As µ is very close to zero in the BEC phase, the
occupation of the k = 0 mode is given by〈

c̃†K=0c̃K=0

〉
=
(
e−µ/kBT − 1

)−1
≈ kBT

−µ
∝ V

We therefore conclude that the occupation of the ground state per volume nS is given by

nS =

〈
c†k=0ck=0

〉
V

=
1

V

(
kBT

−µ︸ ︷︷ ︸
K=0 mode

+
|α|2

µ2

)
(1.20)

As µ vanishes in the thermodynamic limit, we can ignore it for all finite momenta and we
obtain from Eq. (1.19) that the total density is given by

n = ns +

∫
d3k

(2π)3

1

eεk/kBT − 1

From this equation, one can determine ns for given n and T .
For Eq. (1.20) consider the limit

∣∣∣kBT−µ ∣∣∣� |α|2
µ2 such that ns = |α|2

µ2V
and therefore

µ = −

√
|α|2

V ns

(as µ < 0). Plugging this result in the equality
∣∣∣kBT−µ ∣∣∣ � |α|2

µ2 from which we started and

solving for α we obtain the condition |α| � kBT√
V ns

which is alway fulfilled when we consider

the limit V → ∞ at any finite α. In this limit we will calculate
〈
Ψ†
〉

= 1√
V

∑
K

〈
c†K

〉
using Eq. (1.18) and

〈
c̃†k

〉
= 0. We obtain

lim
α→0

lim
V →∞

〈
Ψ†
〉

= lim
α→0

lim
V →∞

α∗√
V µ

= lim
α→0

√
ns
α∗

|α|
=
√
nse
−iϕ0

where φ0 is the phase of α. We have therefore shown that Ψ† has precisely the type of
expectation value which we previously had only conjectured, see Eq. (1.15), under the
condition that one first takes the thermodynamic limit, V →∞, and only afterwards the
limit α→ 0. In contrast, in the opposite limit one finds
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lim
V →∞

lim
α→0

〈
Ψ†
〉

= lim
V →∞

lim
α→0

α∗√
V µ

= 0

In conclusion, we have found a natural way to describe the infinite-range BEC correlations
by giving the field operator a finite expectation value. The infinite-range correlations are
thereby described just by a local expectation value. As in the case of other spontaneously
broken symmetries, this can formally be justified by introducing a symmetry breaking term
in the Hamiltonian, and then considering first the infinite volume limit and then the limit
of a vanishing symmetry breaking term. Above we discussed the familiar case without
interaction: the real advantage of this approach is, however, that it allows for a simple
description of the interacting case.

1.5.2 Bogoliubov quasi particles

Interactions drastically modify Bose Einstein condensates and ultimately lead to the phe-
nomenon of superfluidity: a superfluid can flow without any friction. If you therefore cool
down a rotating liquid until it becomes superfluid, its rotation will go on practically forever
without any friction.
We consider a Hamiltonian which describes well a diluted gas of bosonic atoms (as in the
Nobel-prize winning experiments of Cronelll, Ketterle and Wiemann, Nobelprize 2001). As
the distance of the atoms is much larger than their radius, the interaction potential of two
atoms, V (r− r′) ≈ Uδ3(~r−~r′), is practically local.2 The Hamiltonian therefore has in real
space the form

H =

∫
~2

2m
~∇Ψ†(x)∇Ψ(x)− µΨ†(x)Ψ(x) +

U

2
Ψ†(x)Ψ†(x)Ψ(x)Ψ(x) dx

In the following it is convenient to use the Hamiltionian in a momentum-space represen-
tation

H =
∑
K

(εK − µ)c†KcK +
U

2V

∑
K1,K2

c†K1+qc
†
K2−qcK2cK1

with εK = ~2K2/2m as usually. To describe the finite expectation value 〈Ψ†〉 =
√
ns as

in Eq. (1.15)3, we again shift the fields by
√
ns (assuming ns ≥ 0) which is for us at the

moment an unknown constant, to be determined from the condition that the expectation
value vanishes for the shifted fields,

〈
Ψ̃
〉

= 0 with

Ψ† =
√
ns + Ψ̃†, c†K =

√
nsV δK, 0 + c̃†K

2We ignore here some issues related to the description of the two-particle scattering by a delta function.
In reality U one has to parametrize U by the scattering length, a concept which we will introduce later
in the chapter 4 on scattering theory.

3The arbitrariy phase φ0 has been set to 0
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As the next step, we Taylor-expand H in c̃K which turns out to be a good approximation
for low temperatures (and not too large U), when there are few excitations. We find up to
quadratic order

H = V

(
−µns +

U

2
n2
s

)
+
√
V
(
−µ
√
ns + Un

3/2
s

) (
c̃†K=0 + c̃K=0

)
+ (1.21)

+
∑
K

(εK − µ) c̃†K c̃K +
nsU

2

∑
K

(
c̃K c̃−K + c̃†K c̃

†
−K + 4c̃†K c̃K

)
+O

(
c̃3
)

(1.22)

We have still to determine ns. This can be done in two equivalent ways. One is to minimize
the energy, i.e. the first term in H, −µns+ U

2 n
2
s taking into account that we defined ns ≥ 0.

The second one is to eliminate the prefactor −µ√ns +Un
3/2
s of the term linear in c̃ and c̃†

which ensures that
〈

Ψ̃
〉

= 0. Why are these two conditions equivalent? At the minimum
the first derivative vanishes and therefore the first term in the Taylor expansion.

minimize − µns +
U

2
n2
s for ns ≥ 0 ⇒

{
ns = 0 for µ < 0

ns = µ
U for µ > 0

We therefore obtain for
〈
ψ†
〉

=
√
ns the result shown in the figure.

⇒ BEC for µ > 0
spontaneous symmetry breaking

As all linear terms cancel, the Hamiltonian take the approximate form

H ≈ const. +
∑
K>0

[(
εK + Uns

) (
c̃†K c̃K + c̃†−K c̃−K

)
+ Uns

(
c̃†K c̃

†
−K + c̃K c̃−K

)]

Our next goal is to bring this quadratic Hamiltonian into a simple form
∑

k Ekb
†
kbk with

suitably chosen bosonic operators b†K and bK . Here we employ the so-called Bogoliubov
transformation starting from

c̃†K = uKb
†
K + vKb−K ; c̃K = uKbK + vKb

†
−K

with: u−K = uK , v−K = vK , ∈ R

We will choose the unknow prefactors uK and vK to reach two goals: (i) b†K and bK have
to fulfill bosonic commutation relations and (ii) the Hamiltonian should take the simple
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form
∑

k Ekb
†
kbk.

Starting from the first condition[
bK , b

†
K′

]
= δK,K′ , [bK , bK′ ] =

[
b†K , b

†
K′

]
= 0

we calculate the known commutation relations

δK,K′ =
[
c̃K′ , c̃

†
K

]
=
[
uK′bK′ + vK′b

†
−K′ , uKb

†
K + vKb−K

]
= uK′uK

[
bK′ , b

†
K

]
+ vK′uK

[
b†−K′ , b

†
K

]
+ vK′vK

[
b†−K′ , b−K

]
+ uK′vK [bK′ , b−K ]

= u2
KδK,K′ − v2

KδK,K′ ≡ δK,K′

⇒ u2
K − v2

K = 1

Using that cosh2 x− sinh2 x = 1 we can therefore use the following parametrization

uK = cosh(ϕK) , vK = sinh(ϕK)

or, equivalently,

uK =
1√

1− α2
K

, vK =
αK√

1− α2
K

with: αK = tanh(ϕK)

The inverse transformation is given by

b†k = uK c̃
†
K − vK c̃−K

(i.e., by reversing the ‘angle’, ϕk → −ϕk). We will now express H in terms of the new
operators. First we calculate the two combination of operators which enter in H

c̃†K c̃K + c̃†−K c̃−K =
(
u2
K + v2

K

) (
b†KbK + b†−Kb−K

)
+ 2uKvK

(
b†Kb

†
−K + bKb−K

)
c̃†K c̃

†
−K + c̃K c̃−K = 2uKvK

(
b†KbK + b†−Kb−K

)
+
(
u2
K + v2

K

) (
b†Kb

†
−K + bKb−K

)
Using this result, we obtain for H

→ H = const. +
∑
K>0

[
(εK + Uns)

(
u2
K + v2

K

)
+ Uns2uKvK

] (
b†KbK + b†−Kb−K

)
+
∑
K>0

[
(εK + Uns) 2uKvK + Uns

(
u2
K + v2

K

)] (
b†Kb

†
−K + bKb−K

)
The terms in the first line have the desired form but we want to get rid of the terms in the
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second line by the right choice of αk. This leads to the condition

1

1− α2
K

[
(εK + Uns) 2αK + Uns

(
1 + α2

K

)]
= 0

⇒ αK = −
(
εK
Uns

+ 1

)
+

√(
εK
Uns

+ 1

)2

− 1

Using this result we find

H = const. +
∑
K

EKb
†
KbK

with: EK =
√
εK (εK + 2Uns) ∼=

 ~ |k| c for εK � 2Uns

εK = (~k)2

2m for εK � 2UnS

with: c =

√
Uns
m

c m
k

Ek

Energy of the excitations in a BEC as a function of momentum.

For ~ |k| � cm the dispersion (i.e. the energy-momentum relation) is linear

EK ≈ c ~ |K| for K → 0 (1.23)

while for large momenta the old quadratic dispersion still describes the excitations. This
is an important result. A more careful analysis shows that the new excitations are weakly
interacting. While our formula is quantitatively correct only for small U , qualitatively the
results holds even for strongly interacting bosons: only the value of the speed c is modified.
We have found that the excitations of the BEC are described by a new type of particles,
the Bogoliubov quasi particles created by b†k and characterized by a linear dispersion. They
describe the collective behavior of the original bosons (with quadratic dispersion) but have
otherwise little to do with them. That interacting systems can lead to new types of quasi
particles with new properties and, sometimes, new quantum numbers is a deep result at
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the center of modern physics. Also the so-called elementary particles (electrons, quarks,
photons,...) are probably “only” quasi particles of some other, not yet identified theory
(one candidate is string theory).
The Bogoliubov quasi particles are an example of a so-called “Goldstone mode”. The most
important property of a Goldstone mode is that its energy vanishes in the limit of zero
momentum limK→0EK = 0, a consequence of the so-called “Goldstone theorem” which
states that such a mode exists in all systems with local interactions where a continuous
symmetry (a symmetry described by a continuous real variable – the phase in our example)
is spontaneously broken. While we will not give a formal derivation of the Goldstone
theorem, the main argument is simple and takes in our case the following form: The phase
φ0 of 〈Ψ〉 describing the groundstate (see, e.g., Eq. (1.15)) is arbitrary. Changing this phase
uniformly does therefore not cost any energy. The k = 0 Goldstone mode is precisely this
mode.
Let us check this claim. An infinitesimal change δϕ of the phase of the wave function is
described by

Ψ→ Ψei δϕ ≈ Ψ (1 + i δϕ) = Ψ + δΨ with δΨ = iΨ δϕ (1.24)

In the limit K → 0 we have αK→0 = −1 +O (|K|) and therefore the change of the k = 0

mode is limK→0 c̃
†
K ∝

(
b†0 − b0

)
. It is therefore purely imaginary fully consistent with

(1.24) as we have chosen 〈Ψ〉 to be real.
Another important example for a spontaneously broken symmetry is a solid: due to the
periodic arrangement of atoms translation invariance is broken. The corresponding Gold-
stone modes are the phonons which also have an energy linear in momentum. Similarly, in
a ferromagnet the spin-rotation symmetry is spontaneously broken (ignoring spin-orbit in-
teractions and dipolar interactions here). In this case, the corresponding Goldstone mode,
the spin waves, have a quadratic dispersion, Ek ∝ k2.

1.5.3 Superfluidity

The linear energy-momentum relation, Eq. (3.1) has a profound consequence: it leads to
superfluidity. Superfluids can flow without any friction.
To make this surprising fact, first observed in superfluid 4He, plausible we consider a
thought experiment, where we investigated whether a particle moving through the super-
fluid will have any friction: A test particle with mass M moves with velocity v = |~p|

M

through a superfluid. We will investigate whether a process exist which can slow down the
test particle by exciting a quasi-particle in the condensate with momentum q and energy
Eq = c |~q|. After the collision the test particle has momentum ~p− ~q and therefore energy
conservation implies p2

2m = (~p−~q)2

2M + c |~q| and therefore we obtain

c |~q| = p2

2M
− (~p− ~q)2

2M
=

2~p ~q − q2

2M
<

~p~q

M
=
|p| |q| cos(ϕ)

M
≤ v |q| (1.25)
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As this equation has no solution for v < c it implies that a test particle with v < c can not
be slowed down by absorbing emitting a quasiparticle when moving through the superfluid.
One can show (using that Ek is a convex function) that the same argument remains true
for many-particle scattering. We conclude that the test particle experiences no friction as
long as its velocity is smaller than a critical velocity vc.4

Instead of considering the flow of a test particle, we can, equivalently, go to a frame of
reference where the test particle is at rest while the superfluid moves. We therefore conclude
that the superfluid itself will flow without friction as long as it is slower than vc. If one
therefore cools down a rotating liquid below the transition to a superfluid, it will continue
to rotate without friction practically forever.
Note that superfluidity resulted from the repulsive interaction of the bosons as c is pro-
portional to

√
U .

In conclusion, the example of superfluidity has shown how powerful the language of second
quantization is to describe complex phenomena involving an arbitrarily large number of
particles. We were able to identify a new set of quasi particles and obtained that super-
fluidity becomes possible due to a special conspiracy of a large number of particles which
can move flow collectively without any friction.

4From our argument, we obtain vc = c. This does, however, take not into account that also super-
conducting whirls, so-called vortices, can be emitted which can lead to a somewhat smaller critical
velocity.
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2 Quantization of Light

The history of quantum mechanics started with the description of light. When Planck tried
to understand the radiation from a black body as a function of temperature, he introduced
in 1900 for the first time Planck’s constant. In 1905 Einstein explained the photoelectric
effect by postulating that light consists of discretized objects – the photons. Also the
quantum properties of atoms were discovered by investigating how they absorb and emit
light. Quantum electro dynamics, QED, the quantum theory of light and its coupling
to matter became later arguably the most successful and most precisely tested theory in
physics. It describes almost all phenomena around us with the exception of gravity and
effects like like radioactivity involving nuclear forces.
As the quantum theory of light has also to describe how photons are generated and de-
stroyed, it is naturally formulated in the language of second quantization.

2.1 Quantization in Coulomb gauge

Our starting point is the classical theory of electrodynamics, the Maxwell equations. In
Gauss units they take the form

∇ ~E = 4πρ ∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~j

∇ ~B = 0 ∇× E +
1

c

∂ ~B

∂t
= 0 (2.1)

where ρ is the charge density and ~j the current density.
The two equations in the second line are solved by introducing the scalar potential Φ

and the vector potential ~A, which plays an important role in the quantum mechanical
description of electromagnetic phenomena. They are defined by

~B = ∇× ~A ~E = −~∇Φ− 1

c

∂ ~A

∂t

These two equations do not fix ~A and Φ uniquely. The are only defined up to a gauge
transformation

Φ → Φ− 1

c

∂

∂t
ϕ ; ~A → ~A+ ~∇ϕ
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which leaves ~E and ~B invariant (check this!). Here ϕ(~r, t) is an arbitrary function. In
classical electrodynamics the introduction of the vector potential appears as a mathemat-
ical trick and gauge invariance seems to be just an extra complication. In the context of
quantum mechanics and quantum field theory, however, gauge invariance turns out to be
a central phenomenon as we will discuss later in some detail.
For the moment, however, the gauge invariance complicates somehow the formulation of
a quantum theory of light and, indeed, quantization in the presence of gauge invariance
can be complicated due to “unphysical” gauge degrees of freedom. We will avoid these
complications by using only one specific gauge by adding one more equation to determine
~A

Coulomb gauge: ~∇ ~A = 0

This has two main disadvantages: the Coulomb gauge is not Lorentz invariant and we lost
gauge invariance, i.e. the freedom to switch from one gauge to the next. But there are
also two advantages: we do not have to worry about changes of the vector potential which
describe only changes of the gauge but have no physical consequences and, second, the
Coulomb interaction becomes simple.
To see this, we study the first Maxwell equation

~∇ ~E = −~∇2Φ− 1

c

∂

∂t
~∇ ~A︸ ︷︷ ︸

=0 choice of gauge

= 4πρ

This is solved directly by

Φ (~r, t) =

∫
ρ (~x, t)

|~r − ~x|
d~x

The potential Φ is in this gauge therefore exactly fixed by the charge and no further
quantization is required for this field. All effects of photons and the quantum nature of
the electric field will be described by ~A instead.
To simplify the problem, we will now consider free space in the absence of charges and
currents, ρ = 0, ~j = 0. Therefore also Φ vanishes and we obtain

~∇× ~B = ~∇×
(
~∇× ~A

)
= ~∇

(
~∇ ~A
)

︸ ︷︷ ︸
=0 choice of gauge

−~∇2 ~A,
∂ ~E

∂t
= −1

c

∂2 ~A

∂t2

Therefore the second of Maxwell’s equation takes the simple form

� ~A =

(
1

c2

∂2

∂t2
− ~∇2

)
~A = 0

As the solutions of this wave equation are just plane waves, it is useful to expand ~A in
plane waves, while taking into account the gauge condition ∇ ~A = 0

In these variables the vector potential has the form
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~A (~x, t) =
1√
V

∑
~K

ei
~K~x ~A ~K(t)

~∇ ~A = 0 ⇒ ~K · ~AK = 0

The last equation is implemented by defining two
unit vectors perpendicular to ~K, ê ~K, 1 ⊥ ê ~K, 2 ⊥
~K , |êK,λ| = 1 and, furthermore, ê− ~K, λ = ê ~K, λ.
Later we will see that êk,1/2 describes two polariza-
tion directions of light. As ~A ~K is perpendicular to ~K,
we can write it in the form ~A ~K = êK, 1 q ~K,1 + êK 2 q ~K,2
where q ~K,1 and q ~K,2 are some complex coefficients.

~A (~x, t) =
1√
V

∑
~K, λ=1,2

ei
~K~x ê ~K, λ q ~K, λ(t)

From the condition ~A (~x, t) = ~A∗ (~x, t) follows q− ~K, λ = q∗~K, λ
. From the equation of motion

� ~A = 0, we obtain the frequency ωK describing the oscillations of the two modes

q̈K,λ + (kc)2 qK,λ = 0 ⇒ ωK = c|K|

It is instructive to rewrite also the energy in terms of the variables q ~K,1 and q ~K,2. In our

units the energy is given by E = 1
8π

∫ (
~E2 + ~B2

)
d3x. Using

~E = −1

c

∂ ~A

∂t
, êK, 1 êK, 2 = 0,

(
~K × êK,λ

) (
~K × êK,λ′

)
= δλλ′K

2

~B = ~∇× ~A =
1√
V

∑
~K, λ=1,2

i
(
~K × êK,λ

)
ei
~K~x qK,λ

one can rewrite the electromagnetic energy in the vacuum

E =
1

2

∑
K,λ

q̇K,λq̇−K,λ
4πc2

+
(|K|c)2

4πc2
qK,λ q−K,λ (2.2)

with qK,λ q−K,λ = |qK,λ|2 = (Re qK,λ)2 + (Im qK,λ)2.
What we have achieved is a classical description of the electromagnetic waves in vacuum
using for each momentum two relevant degrees of freedom q ~K,1 and q ~K,2 describing oscil-
lations int the two polarization directions of electromagnetic waves given by êk,1 and êk,1,
respectively.
Now we will quantize this classical theory. Here it is useful to realize that Eq. (2.2) looks
almost like the energy of a harmonic oscillator. Luckily, we already know how to write
a harmonic oscillator in terms of operators which have exactly the properties of creation
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and annihilation operators. The classical energy of an harmonic oscillator can be written
as E = 1

2mẋ
2 + 1

2mω
2x2, the corresponding Hamiltonian written in terms of new variales

a† and a with

x =

√
~

2mω

(
a+ a†

)
, p = i

√
~mω

2

(
a† − a

)
[
a, a†

]
= 1 ⇔ [x, p] =

i~
2

[
a+ a†, a† − a

]
=
i~
2

(1 + 1) = i~ (2.3)

has the form H = ~ω
(
a†a+ 1

2

)
.

We will use precisely this construction in the following. By comparing (2.2) to E =
1
2mẋ

2 + 1
2mω

2x2, the energy of the harmonic oscillator, we can identify for each fixed ~K

m =̂
1

4πc2
, ω =̂ |K|c = ωK

In close analogy to the harmonic oscillator we therefore define

q ~K, λ =

√
~4πc2

2c|K|

(
a†~K, λ

+ a− ~K, λ

)
(2.4)

such that q−K,λ = q†K,λ. We postulate canonical commutation relations for the new oper-
ators and get

~A (~x) =

√
2π~c2

V

∑
~K, λ

ê ~K, λ√
c|K|

(
e−i

~K~xa†~K, λ
+ e+i ~K~x a ~K, λ

)
(2.5)

with:
[
a ~K, λ, a

†
~K′, λ′

]
= δλλ′ δK,K′ ,

[
a†, a†

]
= [a, a] = 0

Thus we have quantized light. The new operator a†~K, λ creates a photon with momentum

~ ~K and polarisation ê ~K, λ.
As all formulas are the same as for the harmonic oscillator we obtain for the Hamiltonian

in vacuum: Hphoton =
∑
~K,λ

~ωK
(
a†~K, λ

a ~K, λ +
1

2

)
with: ωK = |K|c (2.6)

As a side remark, we note that the factor 1/2 in the energy (2.6) would imply that the
vacuum itself has an enormous energy density. While adding a constant to the energy
has no effects within quantum electrodynamics, we know from general relativity, that it
leads to a curvature of space. As this is not observed, the factor 1/2 is either unphysical
or cancelled with extremely high precision by another term. At least partially such a
cancellation is reached in extensions of the standard model of particle physics which are
based on “supersymmetry” – a postulated symmetry of bosons and fermions. Here each
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This already explains the basic observation of the
photoelectric effect (Einstein 1905). As the count-
ing operator a†~K, λ a ~K, λ is always an integer, the
energy of light of a given wavelength λ = 2π/K
is quantized in “chunks” of energy ~|K|c. There-
fore a minimal value of ~K is required to kick out
an electron of a solid. The total energy current
of light of a given wavelength determines only the
photon density, not the energy of a given pho-
ton. It therefore determines the number of emit-
ted electrons but not their energy. All this cannot
be understood in terms of a classical description
of light.

boson is accompanied by a new – not yet discovered – particle which is a fermion. The
partner of the photon, for example, is called „photino“. These fermions come with a
contribution to the energy of −1

2~ωK per mode, therefore helping to solve this problem.
One main goal of the LHC at Cern is to search for signatures of supersymmetry – up to
now with no success.
It is now easy to construct also the Hilbert space of photons. We just postulate the
existence of a vacuum |0〉 state with aK,λ |0〉 = 0. The we build the Fock-space by applying
a†K,λ.
In vacuum, the Heisenberg equations of motion take the form

i~
∂

∂t
a†K,λ =

[
a†K,λ, ~ωKa

†
K,λaK,λ

]
= ~ωK a†K,λ in vacuum

solved by

a†K,λ(t) = eiωKt a†K,λ(0)

In the Heisenberg picture the time dependent electric and magnetic fields in vacuum can
now easily be obtained from the formula for the vector potential (2.5)

~B(r, t) = ~∇× ~A =

√
2π~c2

V

∑
K,λ

i ~K × êK,λ√
c|K|

(
ei
~K~r aK,λ(t)− e−i ~K~r a†K,λ(t)

)
only in the absence of matter: (2.7)

~E(~r, t) = ~E⊥(~r, t)

= −1

c

∂ ~A

∂t
=

√
2π~
V

∑
K,λ

i
√
c|K| êK,λ

(
ei
~K~r aK,λ(t)− e−i ~K~r a†K,λ(t)

)

The formula for ~E is only valid in the absence of matter for two reasons. First, in the pres-
ence of charges there is an extra contribution ~E = −∇Φ and, second, the time dependence
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of the the operators is modified by interactions and one has to compute ~E⊥ = ~E + ∇Φ

from
[
~̇A = − i

~

[
~A, H

]]
.

At equal times, we obtain for the commutators of electric and magnetic field

[
Ei(r), Ej(r

′)
]

=
[
Bi(r), Bj(r

′)
]

= 0[
Ei(~r), Bj(~r

′)
]

= i 4π~c εijk
∂

∂rK
δ3
(
~r − ~r′

)
This implies an uncertainity relation for E and B fields: they can in principle not be
measured simultaneously.

2.2 Coherent states and classical electromagnetic fields

After we have found the quantum description of fields, we will now consider again the
classical limit. More precisely, we ask for which quantum states one obtains the classical
fields as expectation values of the quantum operators, ~Ec =

〈
~E
〉
. As the electromagnetic

fields ~E and ~B always change the photon number by ± one photons, their expectation
value 〈Ψ| ~E |Ψ〉 = 〈Ψ| ~B |Ψ〉 = 0 vanishes for each wave function |Ψ〉 with fixed number of
photons and therefore for each basis state of our Fock space.
In vacuum a classical electromagnetic wave has the form

~Ec(x, t) = ~E0 sin
(
~K0~x− ω0t

)
~Bc(x, t) = ~B0 sin

(
~K0~x− ω0t

)
with ω0 = c|K0|, ~B0 = i ~K0 × ~E0 and E0, B0 ⊥ K0.
Comparing this with the formula (2.7) for the operator, we see that this can only be
achieved for

〈aK,λ〉 = δK,K0 δλ,λ0 αe
iϕ
√
V , α, ϕ ∈ R〈

a†K,λ

〉
= δK,K0 δλ,λ0 αe

−iϕ√V

With this one finds〈
~E(r, t)

〉
=
√

2π~ c |k0| ê ~K0, λ0
2α sin

(
~k0~r − ω0t− ϕ

)
〈
~B(r, t)

〉
=
√

2π~ c |k0| ~K0 × ê ~K0, λ0
2α sin

(
~k0~r − ω0t− ϕ

)
We obtained previously states with a finite expectation value of a creation operator: Bose
Einstein condensates. A classical plane indeed shares some similarities with a BEC: the
analogy works best when a laser is used as a light source. There are, however, two main
differences: the electromagnetic plane wave is not a state in thermal equilibrium and it is
not a superfluid.
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Eigenstates of the annihilation operator, so called coherent states have the desired prop-
erty .

coherent state = eigenstate of a ~K0,λ0

As we discuss also in the problem sets of this lecture, the equation aK0, λ0 |Ψ〉 = Z |Ψ〉 with
Z =

√
V αeiϕ ∈ C is solved by

|Ψ〉 = c exp
(
za†K0, λ0

)
|0〉

Here we just check this result

a eza
† |0〉 = a

∑ zn

n!

(
a†
)n
|0〉 =

∑ zn

n!
n
(
a†
)n−1

|0〉

= z
∑ zn−1

(n− 1)!

(
a†
)n−1

|0〉 = z eza
† |0〉

where we used that

a
(
a†
)n

=
(
a†
)n−1

+ a†a
(
a†
)n−1

=
(
a†
)n−1

+
(
a†
)n−1

+
(
a†
)2
a
(
a†
)n−2

=

· · · = n
(
a†
)n−1

+
(
a†
)n
a

The importance of coherent states arises as they describe best classical states of matter.
As such they can also be used to describe a particle in a simple harmonic oscillator. They
are also the starting point for describing a BEC or a laser.

2.3 Interactions of photons & matter

2.3.1 Hamiltonian

To describe the coupling of the electromagnetic waves to matter, we use that for the chosen
Coulomb gauge the only new aspect is that the vector potential is now written in terms
of photon creation and annihilation operators. The electric potential, in contrast, and
therefore the interaction energies of ions and electrons are not modified for this gauge
choice.1 We can therefore just use the previously obtained Hamiltonian (1.11) and replace
vector potential and magnetic field by the quantized operators. The total Hamiltonian is
then given by

H = Hphoton +Hmatter[ ~A] with: Hphoton =
∑

~ωKa†K,λaK,λ (2.8)

This Hamiltonian describes accurately all relevant properties of light bulbs, solar cells, the
human eye2, the laser at the supermarket and many more things.

1For other gauge choices the Coulomb interaction is described by the virtual exchange of photons.
2The motion of nuclei needed for description of most biological processes, which is missing in (1.11), can
easily be added.
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In the following, we will focus on a simple but important example: the coupling of light to a
single atom. As most of the readers are probably still more familiar with 1st instead of 2nd
quantization, we describe for this example the electrons is the language of first quantization.
This implies that for an atom with N electrons we introduce N coordiates r1, r2, . . . , rN

and N spin operators ~S1, ~S2, . . . , ~SN . The light, however, has to be described in second
quantization. The total Hilbert space is given by H = Fphotons︸ ︷︷ ︸

Fock-space

⊗ Hatom︸ ︷︷ ︸
N−electrons

.

Using this mixed 1st/2nd quantization language, the Hamiltonian is given by

H =
∑
~K, λ

~c|K|a†K,λaK,λ +
N∑
i=1

(
~pi − e

c
~A (~ri)

)2

2m
+ V (~ri)− 2µB ~B (~ri) ~Si

It is worthwhile to consider the mathematical structure of, ~A(~ri) and ~B(~ri). They are
operators acting on the photon Fock space Fphotons as they are expressed in terms of
creation and annihilation operators, Eqs. (2.5) and (2.7). The coordinate ri is, however,
an operator acting on the atomic Hilbert space Hatom. Therefore this operator connects
the two parts of H.

2.3.2 Absorption & Emission in perturbation theory

In practically all cases (exceptions are strong lasers or atoms in extremely good cavities
made from almost perfect mirrors) the coupling of atoms to light can be described by
perturbation theory. The reason for this is (as we will also see in our chapter on relativistic
quantum theory) that the parameter describing the strongth of the coupling of light and
matter, the fine-structure constant α = e2/(~c) turns out to be very small

α =
e2

~ c
≈ 0.00729735256 ≈ 1

137
� 1 (2.9)

We therefore split the Hamiltonian in a large part H0 and a small correction H ′

H = H0 + H ′︸︷︷︸
small

H0 = Hphoton +Hmatter

(
~A = 0

)
, H ′ = H ′1 +H ′2 +H ′3

H ′1 = −
N∑
i=1

e

cm
~pi ~A, H ′2 = − e ~

2mc

∑
i

~σi ~B (~ri) , H ′3 =
∑
i

e2

2mc2

(
~A (~ri)

)2

where we used for H ′1 that in the Coulomb gauge, ∇ ~A = 0, one has ~pi ~A(ri) = ~A(ri)~pi as
~pi = −i~~∇ri .
In the following we will focus our discussion on one-photon processes where a single
photon is either emitted or absorbed. To formulate perturbation theory, we first need the
eigenstates of H0 which we denote as
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|α〉 = | µ︸︷︷︸
quantum number

of atom

, nK,λ︸ ︷︷ ︸
occupation of
photon mode

〉

H0 |α〉 = Eα |α〉 with Eα = EAµ︸︷︷︸
energy of

atomic state

+~ c|K|nK,λ

For our discussion of one-photon processes only a single photon mode is important, there-
fore a single integer describes the last argument of |α〉 in the following.
In leading order perturbation theory, we will use an important result, derived and discussed
in all quantum mechanics text books in the chapter on time-dependent perturbation theory.
“Fermi’s golden rule” states that the transition rate from a quantum state |α〉 to the state
|α′〉 due to the perturbation H ′ is given by

Γα′, α =
2π

~
∣∣〈α′∣∣H ′ |α〉∣∣2 δ (Eα − E′α) (2.10)

where for single-photon processes we consider only |α〉 = |µ, nK,λ〉 in combination with
|α′〉 = |µ′, nK,λ ± 1〉.
As we need the matrix element 〈α′|H ′ |α〉, we evaluate it for H ′ = H ′1 + H ′2 + H ′3. The
first contribution arises from

〈
α′
∣∣H ′1 |α〉 = −

∑
K,λ=1,2

e

cm

√
2π~c2

V

1√
c |K|

〈
µ′, nK,λ±1

∣∣∣∣ êK,λ~pi (e−i ~K~ri a†K,λ + . . .

. . .+ ei
~K~ri aK,λ

) ∣∣∣∣µ, nK,λ〉

= − e

cm

√
2π~c
V |K|

·

F
(1)
e
√
nK,λ + 1 emission

F
(1)
a
√
nK,λ absorption

F
(1)
e/a =

〈
µ′
∣∣∣ N∑
i=1

êK,λ~pie
±i ~K~ri

∣∣∣µ〉 atomic matrix element

In analogy, the second contribution is given by

〈
α′
∣∣H ′2 |α〉 =

i e

cm

√
2π~c
V |K|

·

F
(2)
e
√
nK,λ + 1 emission

F
(2)
a
√
nK,λ absorption

F
(2)
e/a =

〈
µ′
∣∣∣ 1

2

N∑
i=1

êK,λ

(
~ ~K × ~σi

)
e±i

~K~ri
∣∣∣µ〉 (2.11)

As we consider only processes where one photon is absorbed or emitted, there is not
contribution from H ′3 ∝ A2 ∝ a†a† + a†a+ aa.
Combining both contributions we obtain
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Γα′α =
2π

~

(
e

cm

√
2π~c
V |K|

)2

δ
(
EAµ −

(
EAµ′ ± ~|K|c

))

×
∣∣∣F (1)

e/a − iF
(2)
e/a

∣∣∣2

nK,λ + 1 emission

nK,λ absorption
(2.12)

When there was not photon in the initial state, nK,λ = 0, obviously an absorption process,
where the energy of the electron rises, is not possible. An excited state can, however,
decay by emitting one photon, thus lowering its energy. This is far from obvious: in clas-
sical physics, a transition from one stationary state to another would not be possible in
the absence of some external stimulation by light. Spontaneous emission, i.e. emis-
sion starting from nK,λ = 0, becomes possible only due to quantum fluctuations. The
groundstate of an atom is its only stable state: for an atom in vacuum all excited states
ultimatively decay.
The absorption rate of a single atom is in perturbation theory proportional to the number
of photons consistent with the observation, e.g., in the context of the photoelectric effect.
Remarkably, also the emission rate increases when more photons are present in a given
mode. This phenomenon, called stimulated emission, is the working principle behind a
laser. Excited atoms tend to emit more and more photons into a given mode of a cavity if
this mode is already occupied. This results in intensive single-mode laser light.

2.3.3 Decay rate of excited atoms

Absorption and emission of light atoms and molecules can be measured in various ways.
Most importantly, one can measure the absorption or emission spectrum. The emission
spectrum is measured by first exciting atoms (e.g., by heating up a gas or shining light on
it) and then measuring the energy of emitted photons. One usually observes sharp peaks
in the spectrum. The position of the peak is determined by the energy difference EAµ −EAµ′ .
If at time t = 0 a large number N0 of atoms is excited, the number of excited atoms in
state µ will decay exponentially, Nµ(t) ≈ N0e

−Γµt where the total decay rate is obtained
by summing over all possible final states

Γµ =
∑

Γα′α

with initial state |α〉 = |µ, 0〉. One of the goals of this chapter will be to calculate the
decay rate. Such decay rates also determine the line width observed in the spectrum.
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One can also use a photo detector to record the
number of photons which have been emitted in a
certain direction. An (idealized) photon detector
counts all photons of a given energy and polariza-
tion emitted into a given solid angle, see figure.

To calculate the signal in the detector, we need to add up all processes which emit photons
with polarization λ into a given solid angle ∆Ω. To do this, we use polar coordinates for
the wave vector ~k of the emitted photon. We define

dΓµ′,λµ
dΩk

= V

∫
k2dk

(2π)3 Γα′α

This is the decay rate per solid angle of the atomic level µ to the level µ′ by emitting a
for photon with polarization λ into a given direction k̂. The initial state is an atom in
state µ without any extra photons, |α〉 = |µ, 0〉. In the final state |α′〉 =

∣∣∣µ′, λ~k〉 the atom

is in state µ′ and a photon wavevector ~k = kk̂ and polarization λ. The total decay rate
can be obtained by simply summing over all angles, all possible final states µ′ and the two
polarization directions

Γµ =

∫
dΩk

∑
µ′,λ

dΓµ′λ,µ
dΩk

where we used that
∑

~k
... = V

(2π)3

∫
d3~k... = V

∫
k2dk
(2π)3

∫
dΩk︸︷︷︸
angles

From Eq. (2.12) we therefore obtain

dΓµ′,λµ
dΩk

= V

∫
k2dk

(2π)3 Γα′α =

∫
k2dk

(2π)3

e2

m2c2

2π

~
2π~c
|k|

δ
(
~c |k| −

(
EAµ − EAµ′

)) ∣∣∣F (1)
e − iF (2)

e

∣∣∣2
With the help of the δ function, the k integral is easily evaluated

dΓµ′,λµ
dΩk

=
|k| e2

2π~c2m2

∣∣∣F (1)
e − iF (2)

e

∣∣∣2 =
α

2π

mc2

~
~k
mc

∣∣∣F (1)
e − iF (2)

e

∣∣∣2
(mc)2 (2.13)

with k =
1

~c
(
EAµ − EAµ′

)
> 0 (2.14)

Note that we have expressed the result in terms of the relativistic rest energy mc2 of the
electron and the fine structure constant α = e2

~c , see Eq. (2.9). In general, it is useful to
use consistently relativistic units

energy mc2, momentum mc, length ~
mc , time ~

mc2

which are then multiplied by powers of α ≈ 1/137.
For example, one obtains for Bohr’s radius aB = ~

mc
1
α and for the binding energy of the

electron in a hydrogen atom 1 Rydberg = mc2 α2

2 . Therefore the typical velocity of an
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electron in a hydrogen atom is v ∼ αc� c, a fact which will be come important when we
develop later a relativistic quantum theory.
These qualitative considerations are also very useful when computing the matrix elements
F

(1)
e and F (2)

e . The first was defined as

F (1)
e =

〈
µ′

∣∣∣∣∣∑
i

ê~kλ ~pie
i~k~ri

∣∣∣∣∣µ
〉

To estimate the size of the factor ~kri, we can use that the emitted light has an energy of
the order of α2mc2 and therefore the typical size of k is of the order of α2mc. The typical
size of ri is given by Bohr’s radius ~

mc
1
α and therefore ~k~ri is of the order of α only. In other

words, the wavelength of light is much larger than the atomic radius because α is so small.
We can therefore just use a Taylor expansion in ~k when computing F 1

e or F 2
e . To leading

order in powers of α we approximate

F (1)
e ≈ êkλ

〈
µ′

∣∣∣∣∣
N∑
i=1

~pi

∣∣∣∣∣µ
〉

(1 +O (α))

Using that [~ri, H0] =
[
ri,

p2
i
m

]
= i~ ~pim one can rewrite

〈
µ′ |~pr|µ

〉
=
m

~i
〈
µ′ |~riH0 −H0~ri|µ

〉
=
m

~i
(
EAλ − EAλ′

) 〈
µ′ |~ri|µ

〉
Therefore the matrix element F (1)

e is determined to leading order in α by the dipole
operator ~r =

∑N
i=1 ~ri

F (1)
e = imc|k| · ê~kλ

〈
µ′ |~r|µ

〉
dΓµ′λµ
dΩk

=
α

2π

(|k| c)3

c2

∣∣ê~kλ 〈µ′ |~r|µ〉∣∣2 (2.15)

The corresponding radiation is named electrical dipole radiation. It has the typical
angular distribution known from a dipole antenna in classical physics oriented in the direc-
tion of 〈µ′ |~r|µ〉. Note that the matrix element 〈µ′ |~r|µ〉 is finite only when certain selection
rules are fulfilled, ∆l = ±1, ∆m = 0,±1, ∆σ = 0.
To calculate the total decay rate for dipole radiation, we use

∑
λ
~eikλ

~
ejkλ = δij − k̂ik̂j ,∫

dΩk = 4π and
∫
dΩk k̂ik̂j = δij

4π
3 . Therefore we obtain

∫
dΩk

∑
λ

ˆeikλ
ˆ
ejkλ = δij

(
4π − 4π

3

)
=

δij
8π
3 and

Γdipoletot =
∑
µ′

4α

3

ω3
µ′µ

c2

∣∣〈µ′ |~r|µ〉∣∣2 with ωµ′µ =
EAµ − EAµ′

~
> 0 (2.16)

To obtain an order-of-magnitude estimate of the decay rate, we use that ωµ′µ ∝ α2 and a
typical value for ~r is r ∼ aB ∝ 1

α . Therefore
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Figure 2.1: Intrinsic linewidth of the D3/2 → P1/2 dipole transition in a Ca+ ion taken
from C. Hempel et al., Nature Photonics 7, 630 (2013). The linewidth of about
38 MHz is about a factor of 1.1 × 10−7 ≈ 0.3α3 smaller than the frequency
of the emitted light, consistent with the estimate (2.17). To avoid broadening
effects from collisions and the motion of atoms, such precision measurements
can be performed on single atoms captured in the harmonic potential of a Paul
trap.

Γtot ∼
mc2

~
α5 �

EAµ − EAµ′
~

∼ mc2

~
α2 (2.17)

The decay rate is smaller by the factor α3 than the energy of the emitted light, see Fig. (2.1).
The finite decay rate also influences the energy distribution of the emitted photons. As
Im
[∫

ei(E
A
γ −EAγ ) t~ e−Γtotte−iωtdt

]
=

Γ
π

(ω−∆E
~ )

2
+Γ2

, the energy distribution measured by an-

alyzing the emitted light by a spectrometer has the form of a Lorentz distribution, see
Fig. (2.1). Due to the tiny total decay rate, one obtains extremely sharp Lorentzian peaks
when the emission spectra of atoms are measured. Note, however, that we have calculated
the photon emission only for a single atom at rest. In real experiments, the line width
is further broadened by several mechanisms. When atoms move in the diluted gas, they
have different velocities, some moving towards, some away from the observer. Due to the
Doppler effect (a shift of the frequency due to this velocity), the spectrum obtains an ex-
tra broadening. Also collisions of atoms can lead to a decay of the excited state without
emitting photons (a non-radiative decay) which also contributes to a broadening of the
spectral lines.
The small decay rate also proves that our approach to use perturbation theory only is valid.
This is also the reason that higher powers of ~k~ri which lead, e.g., to electric quadrupole
or magnetic dipole radiation can typically be ignored as they are suppressed by factors
of α2 if a dipole transition is possible. They have, however, to be considered if all dipole
transitions are forbidden by selection rules.
Also the contribution from F

(2)
e , defined in Eq. (2.11), is small. Here one has to calculate

the matrix elements of the spin operator, Γ ∼ αk3 |〈µ′ |~σ|µ〉|2. Here it is important to take
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spin-orbit coupling into account (discussed later), which leads to an energy splitting of
states with different spin of the order of EAµ −EAµ′ ∼ α4mc2. As k therefore is of order α4,
the total decay rate is of the order of Γ ∼ α13 and therefore a factor α9 reduced compared
to the frequency of the emitted light.
The fact that some excited states decay extremely slowly is the basis for the extreme
precision of atomic clocks. Relative accuracies of up to 10−15 can be reached with atomic
clocks. Therefore the second is nowadays defined by the duration of 9,192,631,770 periods
of the radiation corresponding to the transition between the two hyperfine levels of the
ground state of the Caesium 133 atom.

2.4 Cavity QED and Rabi oscillator

In modern physics, the manipulation of quantum states plays a more and more important
role. In this area quantum optics is probably the most advanced field. Powerful exper-
imental techniques have been developed to manipulate with light the quantum states of
atoms. One can cool atoms down to the microkelvin regime, capture single atoms or can
control the quantum state of the electrons and the nuclear spin. Similarly, one can use
interactions with matter to manipulate the quantum states of photons. This has lead to
a number of important applications – and many more can be expected for the future. An
important example is the atomic clock which is even used to define the second as mentioned
above. Without such high precision clocks, the GPS system would, for example, not work.
Quantum states of light are used for quantum encryption which allows to send messages
which by the laws of physics cannot be eavesdropped without being detected. Other in-
teresting areas include research on quantum simulators and future quantum computers.
As cavities, i.e., the standing waves of light between two mirrors play an important role
in most experiments where one manipulates the quantum states of light by coupling it to
matter, the field is called “cavity quantum electrodynamics” or, shorter, cavity QED.
The 2012 Nobel Prize in Physics was awarded to Serge Haroche and David J. Wineland for
ground-breaking experimental methods that enable measuring and manipulation of individ-
ual quantum systems. This chapter is mainly motivated by a famous paper3 by Haroche
and coworkers on Quantum Rabi Oscillation: A Direct Test of Field Quantization in a
Cavity from 1996 which describes the probably most simple setup where quantized light is
coupled to the internal states of an atom.
An atom in an excited Rydberg state flies through a cavity where a standing electromag-
netic wave can form between two almost perfect superconducting mirrors (a photon can be
reflected Q = 108 times before it gets lost), see Fig. 2.2. In the experiment the transition
between two highly excited states (so-called Rydberg states) of a Rb atom with quantum
number n = 50 and n = 51 has been used. The energy difference ∆E = h · 51.1GHz can

3M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys.
Rev. Lett. 76, 1800 (1996)
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Figure 2.2: Schematic setup of the experiment (from M. Brune et al., Phys. Rev. Lett.
76, 1800 (1996)). An atom flies through a cavity formed by two mirrors (C)
along the arrow. The internal state of the atom is measured in D by ionizing
the excited atomic state and the time ∆t between the preparation of the atom
in B and the detection in D is recorded to calculate the velocity of the atom.
From this, the time t spent in the cavity can be determined.

Figure 2.3: Due to the smallness of the matrix element, only resonant processes have to be
taken into account, which are the emission of a cavity photon for the transition
from the n = 51 to the n = 50 state of the Rb atom and the absorption during
the reverse transition.

be tuned by an electric field (Stark effect) to match the energy of the photon captured
between the two mirrors. This energy corresponds to a wavelength of λ = 5.9 cm, therefore
the mirrors have approximately the distance λ

2 .
The Hamiltonian describing the coupling of the internal state of the atom to the photon
mode in the cavity is given by

H = ~ω0 a
†a︸ ︷︷ ︸

1 photon mode
in cavity

+
∑

Enc
†
ncn︸ ︷︷ ︸

energy levels
of the atom

+
∑

gn,m

(
a+ a†

)
c†ncm︸ ︷︷ ︸

dipol transsition
of level m→ n

+ h.c.︸︷︷︸
the hermitian
conjugate (h.c.)
describes the
reverse process.

As we have seen, the dipole matrix element which determines the size of gn,m is extremely
small. Therefore only resonant processes are relevant, i.e. transitions where |Em−En±~ω0|
is also small, |Em − En ± ~ω0| . |gn,m|. Therefore from all atomic levels, only two will
contribute, see Fig. 2.3. These two relevant internal states, one can describe by a spin
degree of freedom, where ↑ (↓) describes the state with higher (lower) energy. As for the
transition from ↑ to ↓ energy will be released, a photon has to be emitted. In contrast,
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the process where a photon is absorbed during the transition from ↑ to ↓ can safely be
neglected as it is far off-resonance, |E↑ − E↓ + ~ω0| � |gn,m|.
After these (very precise) approximations, one obtains the famous Jaynes-Cummings model

H =
~ω
2
σz︸ ︷︷ ︸

2 atomic
state

+ ~ω0 a
†a︸ ︷︷ ︸

photon energy

+~ g
(
a†σ−︸ ︷︷ ︸

resonant
emission

+ aσ+
)︸ ︷︷ ︸

resonant
absorption

(2.18)

where ~ω = En − En′ is the energy difference of the two atomic levels, g = gn,n′ the
corresponding matrix element and ~ω0 the energy of the photon in the cavity. The two

levels in the atom and their transitions are described just by Pauli matrices, σz =

(
1 0

0 −1

)

for the energy levels, σ− =

(
0 0

1 0

)
for the transition from the higher- to the lower energy

state and σ+ =

(
0 1

0 0

)
for the reverse process.

The Hamiltonian (2.18) can be simplified even more by realizing that from the infinite
number of states |↑, n〉 and |↓, n〉 only pairs of two couple (here n is the number of photons
in the cavity). For example, the state |↑, n− 1〉, an excited atom with n− 1 photons can
only couple to |↓, n〉, the deexcited atom with n photons but not to any other state. Using
that

a†σ− |↑, n− 1〉 =
√
n |↓, n〉 and aσ+ |↓, n〉 =

√
n |↑, n− 1〉

we can therefore write in this subspace

H = ~

(
∆
2

√
n g

√
n g −∆

2

)
+ E01 (2.19)

with ~∆ =
~ω
2

+ ~ω0(n− 1)−
(
−~ω

2
+ ~ω0 n

)
= ~ω − ~ω0.

An especially interesting point is obtained directly at resonance, i.e., for

ω = ωc ⇔ ∆ = 0

which is considered in the following. In this case the eigenvalues of H are given by Es/a =

E0 ±
√
ng with eigenvectors |s/a, n〉 = 1√

2

(
1

±1

)
= 1√

2
(|↑, n− 1〉 ± |↓, n〉).

As a first example, let us consider an excited atom flying into the cavity. At t = 0 the
initial state is given by |↑, n− 1〉. As (1, 0) = ((1, 1)/

√
2 + (1,−1)/

√
2)/
√

2, the time
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dependent wave function is

|Ψ(t)〉 =
(
e−iEs/~t |s, n〉 + e−iEa/~t |a, n〉

) 1√
2

=
(
cos
(√
ngt
)
|↑, n− 1〉 − i sin

(√
ngt
)
|↓, n〉

)
e−iE0t/~

In the experiment the time is determined by the time the atom flies through the cavity.

- Consider an initial state where the atom is in a superposition of the two states while
there is no photon in the cavity, |Ψ(0)〉 = (α |↑〉+ β |↓〉) |0〉. Then after a time
t = π/g the wave function is given by

∣∣∣Ψ(πg)〉 = |↓〉
(
β |0〉 − i α |1〉

)
. The atom is

in its low-energy state while the photon is now in a superposition state. One has
therefore transfered the quantum state from the atom to the photon, a useful element
for any quantum logic.

- Entangled state, i.e. states which cannot be written as the product of two wave
function, are the basis of practically all applications of quantum information theory,
including quantum computing and quantum encryption. Starting from the initial
state |Ψ(0)〉 = |↑, 0〉, which is a simple “product state” without any entanglement
of one obtains an entangled state of light and matter by waiting the time π/(2g)

as
∣∣∣Ψ( π

2g

)〉
= 1√

2
(|↑, 0〉 − i |↓, 1〉) which turns out to be a so-called “Bell pair”, a

maximally entangled state.

One can also use the cavity to measure directly the statistics of the photons in the cavity.
To achieve this, we start from an excited atom and a cavity filled with a certain photon
state |Ψ(0)〉 = |↑〉

∑
n

αn |n〉︸ ︷︷ ︸
light filling

. Our goal is to determine |αn|2, the probability that n

photons are in the cavity. After the time t the wave function is given by

|Ψ(t)〉 =
∑

αn
[
|↑, n〉 cos

(√
n+ 1 gt

)
+ |↓, n+ 1〉

(
−i sin

(√
n+ 1 gt

))]
e−i E0t/~

By measuring whether the atom is after the time t in its ↓ state and by repeating the
experiment over and over again, one can determine P↓(t), the probability that the atom is
in this state after the time t with

P↓(t) =
∑
|αn|2 sin2

(√
n+ 1 gt

)
(2.20)

A simple Fourier transformation of P↓(t) allows to determine the |αn|2. The corresponding
experiment is shown in Fig. 2.4.
In the experiment, the coherent light of a “maser” (Microwave Amplification by Stimu-
lated Emission of Radiation), the low-frequency brother of a laser (Light Amplification by
Stimulated Emission of Radiation) was used described by the coherent states discussed in

53



Figure 2.4: Measurements from M. Brune et al., Phys. Rev. Lett. 76, 1800 (1996) for
coherent light with 4 different intensities (A-D) filling the cavity. Left: P↓(t).
Middle: the Fourier transform is peaked at frequencies ω =

√
n+ 1 g. From

this one can determine the probabilites |αn|2 that n photons are in the cavity
shown in the right panels.

Sec. 2.2, |z〉 = e−|z|
2
ez a

† |0〉 where αn = zn√
n!

as
(
a†
)n |0〉 =

√
n! |0〉. Therefore we obtain

P−(t) = e−|z|
2
∑
n

(
z2
)n

n!
sin2

(√
n+ 1 g t

)
(2.21)

which is plotted in Fig. (2.5) for z = 20. Clear oscillations are observed at short times,
which decay however, after a few oscillations. Then the signal is constant for a long time
but suddenly the oscillations grow again.
To understand this surprising behavior, we first need to understand the distribution of
photonic states. From a |z〉 = z |z〉 we find that the average photon number n̄ is n̄ =

〈z| a†a |z〉 = |z|2. Similiarly, we can calculate the typical size ∆n of the fluctuations of the
photon number

(∆n)2 = 〈z|
(
a†a− n̄

)2
|z〉 = 〈z| a†a a†a− 2n̄ a†a+ n̄ |z〉

= 〈z| a†a†aa+ a†a− 2n̄ a†a+ n̄ |z〉 = |z|4 + |z|2 − 2 |z|4 + |z|4 = |z|2 = n̄

Therefore ∆n =
√
n̄. For large n̄, the photon distribution is therefore peaked at n̄. From
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Figure 2.5: Plot of P↓(t) obtained from Eq. (2.21) for z =
√

20, i.e., for a cavity occupied
with coherent light and an average photon number of n̄ = |z|2 = 20. After a
collapse of the oscillating signal after about 2

√
n̄ oscillations, a revival of the

signal occurs after about n̄ oscillation periods.

Eq. (2.20) we therefore expect pronounced oscillations (so-called “Rabi-oscillations”) of
P↓(t) with the frequency ω = 2

√
n̄g (the factor of 2 comes from the sin2 x = (1−cos 2x)/2).

But as the photon number has a spread around n̄, the oscillations will decay as there are
multiple frequencies, ω̄ ±∆ω = 2

√
n̄±
√
n̄ = ω̄ ·

(
1± 1

2
√
n̄

)
. The oscillating signal does

therefore decay after about
√
n̄ oscillations as observed in Fig. 2.5. But why is there a

recovery of the signal? This arises as only discreet frequencies contribute to Eq. (2.21).
For example cos(ω1t) + cos(ω2t) will interfere constructively whenever (ω2 − ω1)t = 2πn,
i.e., first after the time 2π/(|ω1 − ω2). In our example, the difference of two neighboring
frequencies in Eq. (2.21) is given at the peak of the photon distribution function by ∆ω =

2g(
√
n̄+ 1−

√
n̄) ≈ g√

n̄
. Therefore the revival is expected after the time 2π/∆ω = 2π

√
n̄/g

or after about 2n̄ periods. This explains the observation in Fig. (2.21). A little bit of the
revival physics is also seen in Fig. (2.5) but as n̄ < 2 in this experiment, this effect is not
very pronounced.
This chapter on cavity QED was supposed to give a first impression on how one can
manipulate the quantum states of light and of atoms and actively control both light and
matter on the quantum level.
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3 Relativistic Quantum Mechanics

Einstein’s theory of special relativity changed our notion of space and time in a profound
way. The formulation of a relativistic quantum theory was a difficult challenge. A main
reason for that is that the single-particle approach fails in a profound way for relativistic
theories. According to Einstein’s famous formula, E = mc2, particles can be converted
into energy as it occurs when, for example, an electron and a positron annihilate with
each other. Therefore a meaningful formulation of relativistic quantum mechanics is only
possible using the language and concepts of second quantization where one can describe
processes where particles are created and annihilated.

3.1 Special theory of relativity

This section is a brief reminder on some aspects of the theory of special relativity. It
assumes that the reader has seen this before, e.g., in a course on classical electrodynamics.
Special relativity builds on two main principles

- Principle of relativity: all inertial frames are equivalent

- Principle of the invariant speed of light:
c is constant and identical in all inertial frames

Therefore a transformation exists from one frame of reference to another one moving with
constant velocity v such that c is constant. These are the so-called Lorentz boosts.

x→ x′ =
x+ v · t√
1−

(
v
c

)2 ct→ ct′ =
ct+ v

cx√
1−

(
v
c

)2 (3.1)

To show that the speed of light is constant, we have to calculate x′2 − (ct′)2 which indeed
gives x2 − (ct)2.
By introducing the notation xµ =

(
x0, x1, x2, x3

)
= (ct, ~x) we emphasize that space and

time are treated equivalently. Together they form the 4-dimensional space-time. Defining
β = v

c and γ = 1√
1−β2

, we can rewrite Eq. (3.1)

x1′ = γ
(
x1 + βx0

)
; x0′ = γ

(
x0 + βx1

)
(3.2)

The essential property that the speed of light is constant, leads to a metric in space-time
which is identical in each inertial frame. The distance s of two points xµ1 and xµ2 in the
4-dimensional space-time with ∆xµ = xµ1 − x

µ
2 is defined as
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s2 = (c∆t)2 − (∆~x)2 = gµ ν ∆xµ ∆xν = ∆xµ ∆xµ

where we introduce the metric tensor

gµ ν = gµ ν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


and defined xµ = gµ νx

ν = (ct, −~x) using Einstein’s summation convention that one always
sums over double indices. Here Greek letters are typically denote space-time indices, i.e.
the summation is from 0 (the time component) up to 3.
Events in space-time with distance s2 = 0 can be connected by light-rays. For s2 > 0, c∆t
is larger than the distance in space and therefore the earlier event can influence the later
event. This is not possible for s2 < 0, where the distance in space is larger than c∆t: As no
signal can travel faster than the speed of light, the two events cannot influence each other.
In this case, the question whether one event is earlier or later than the other depends on
the frame of reference as can directly be seen by computing ∆t′ using Eq. (3.1).
Lorentz transformations between inertial frames are those transformations which leave s2

and therefore the speed of light,c, invariant. They have the form

xµ
′

= Λµν x
ν + aµ︸︷︷︸

shift in space-time

From the condition that s2 remains unchanged, s2 = gµ ν ∆xµ ∆xν = gµ̃ ν̃ ∆xµ̃
′
∆xν̃

′ , we
obtain that

gµ ν = gµ̃ ν̃ Λµ̃µ Λν̃ ν ⇔ g = ΛT gΛ ⇔ Λ−1 = gΛT g (3.3)

We will later discuss that matrices which fulfilling this condition form a group, the so-called
Lorentz group, O(1, 3). We have already discussed one matrix which has the property, the
Lorentz boost in the x-direction:

Λµν =


γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

 (3.4)

We will use a few definitions and useful properties:

- We call all 4-tuples aµ which transform like xµ according to aµ → Λµν aν , contravar-
ian 4-vectors and we use an upper Greek index in this case.
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- Similarly, covariant 4-vectors, denoted by lower indices, aµ = gµνa
ν transforms in

the same way as xµ with aµ → Λ ν
µ aν . Here one defines with: Λνµ = gµα Λαβ g

ν β . Let
us check this result: x′µ = gµαx

′α = gµα Λαβ x
β = gµα Λαβ g

β γ︸ ︷︷ ︸
Λ γ
µ

xγ

- The combination aµ bµ = a0 b0 − ~a~b = aµ gµ ν b
ν is Lorentz invariant due to our

definition of Λ.

- We will also need derivatives and define

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
, ~∇
)

covariant

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
, −~∇

)
contravariant

Let us check whether ∂µ transforms indeed like xµ and is therefore a contravariant
vector by performing a Lorentz transformation. We get ∂

∂x′µ
= ∂xν

∂x′µ
∂
∂xν

with ∂xν
∂x′µ

=(
(gΛ g)−1︸ ︷︷ ︸

ΛT

)T
=︸︷︷︸

g=ΛT gΛ

1=ΛT gΛg

Λ

Immediately, a few very useful applications follow.

- The combination ∂µ ∂
µ = ∂2

c2 ∂t2
− ~∇2 = � (the d’ Alembert operator) has to be

invariant under Lorentz-transformations. This implies that equations like ∂µ ∂µ Φ = 0

will be the same in all inertial frames of reference.

- An important result (which we will not proof) is that the scalar and vector potential
of electromagnetism form together a 4-vectors Aµ = (ϕ, ~A). The transformation
properties of the electromagnetic fields, ~E = −∇ϕ− 1

c
∂
∂t
~A and ~B = ~∇× ~A are more

complicated. In the relativistic context it is useful to combine them into the so-called
field strength tensor

Fµ ν = ∂µAν − ∂νAµ =


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx

−Ez By −Bx 0

 (3.5)

The 6 independent components of this antisymmetric tensor describe all electromag-
netic field. It can, for example, be used to read off the transformation properties
of the electromagnetic fields. From the transformation rules for ∂µ and Aµ we find
directly for any moving coordinate system

F ′µ ν = Λµµ′ Λ
ν
ν′ F

µ′ ν′

- Also energy and momentum can be combined to a 4-vector:
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Πµ =

(
E

c
, ~p

)
(3.6)

Later we will want to identify (according to the correspondence principle of quantum
mechanics) i~∂µ with Πµ. In the coordinate system where a particle is at rest, one has
Πµ = (m0c, 0, 0, 0) where m0 is the (rest) mass of the particle. We can immediately
conclude that Πµ Πµ = 1

c

(
E2 − p2c2

)
= const. = m2

0c
2 has to be a constant in any

intertial frame of reference and we obtain the famous energy-momentum relation of
Einstein

E2 =
(
m0c

2
)2

+ (pc)2 (3.7)

- The continuity equation ∂t%+ ~∇~j = 0 for any conserved density % can be written
as

∂µj
µ = 0

if we define jµ = (c %, ~j). As the continuity equation is valid in any coordinate
system, we can conclude that jµ has to transform like a contravariant vector.

3.2 Lorentz group

As mentioned above, the set of all Lorentz tranformations Λ, which leave the distance
measure s invariant form a group called O(1, 3). As discussed in Eq. (3.3), the 4x4 matrices
Λ are defined by the property that they leave the metric tensor gµν invariant

O(1, 3) =
{

Λ ∈ R4×4
∣∣∣ΛT gΛ = g

}
The notation O(1, 3) refers to the fact that one entry in gµν is +1, while 3 entries are −1.
It is useful to compare this to the group O(3) = O(3, 0) = O(0, 3), the group of rotations,
mirror symmetries and inversion, which leave distances in space (∆~x)2, or – equivalently

– the matrix

1 0 0

0 1 0

0 0 1

 invariant.

The group O(1, 3) has three discrete elements. They are (i) the inversion of space, usually
called parity P defined by ~x → −~x, t → t, (ii) time reversal T defined by ~x → ~x,
t → −t, and (iii) PT is the combined transformation of time-reversal and parity. The
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corresponding matrices are therefore given by

ΛP =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , ΛT =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , ΛPT =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(3.8)

If one considers only the continuous symmetries, i.e. Lorentz boosts, rotations and combi-
nations thereof one obtains the so-called proper Lorentz group SO+(1, 3) defined by

SO+(1, 3) =
{

Λ ∈ R4×4
∣∣∣ΛT gΛ = g , detΛ = 1 , Λ00 > 0

}
Note that from the equation ΛT gΛ = g one can immediately conclude that (detΛ)2 = 1.
Furthermore from the 00 component of the equation one finds that 1 = Λ002−Σi=1,2,3Λ0i2

and therefore Λ002 ≥ 1. By multiplying elements of SO+(1, 3) with ΛP , ΛT and ΛPT one
can switch the sign of the determinant and the sign of Λ00 thus obtaining all elements of
O(1, 3).
The group of rotations, SO(3), is generated by 3 generators characterized by the commu-
tation relations [Lm, Ln] = iεmnkLk. For example, rotations around the x,y and z axis are
generated by L1, L2, L3 with

L1 = i

0 0 0

0 0 1

0 −1 0

 L2 = i

0 0 −1

0 0 0

1 0 0

 L3 = i

 0 1 0

−1 0 0

0 0 0

 .

A finite rotation is obtained by ei
∑
i φiLi . For example a rotation around the z axis is

described by

eiϕL3 = lim
N→∞

(
1+ i

ϕ

N
Lz

)N
=
∑
n

(iφLz)
n

n!
=

cos(ϕ) − sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1


.
Similarly SO+(1, 3) can be built up from three generators of rotations J1, J2, J3 and three
generators of Lorentz boosts denoted by K1, K2, K3 for boosts in x, y and z direction.
Here we use a slightly different convention than above and include the factor i in the
definition of the generators. Therefore the rotations are written as e

∑
i=1,2,3 φiJi with

Jk =


0 0 0 0

0

0 iLk

0
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The generator for a boost in x direction can be obtained by expanding the transformation
matrix for a finite boost (3.4) for small velocities. One finds that the boosts are generated
by the matrices

K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 Kz =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



To check the result, let us calculate eϕKx =
∑ ϕn

n!
Kx
n . As K2

x =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


one findsK0

x = 1, K2n
x = K2

x for n ≥ 1 andK2n+1
x = Kx. Using this, the exponential

series can be summed up to obtain

eKx =

∞∑
n=0

ϕn

n!
Kn
x = (cosh(ϕ)− 1)K2

x + sinh(ϕKx) + 1 =


coshϕ sinhϕ 0 0

sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1


consistent with Eq. (3.4) for sinh(ϕ) = βγ and cos(ϕ) = γ = 1√

1−β2
. As a check, note

that 1 = cosh2(ϕ)− sinh2(ϕ) = 1
1−β2 − β2

1−β2 = 1.

Using the definitions given above, one can easily work out the algebra of the generators
of SO(1, 3) which is given by

[Ji, Jj ] = εijk Jk, [Ki, Jj ] = εijkKk, [Ki, Kj ] = −εijk Jk (3.9)

3.3 Klein Gordon Equation

After the Schrödinger equation had been found, an important challenge was to find a rela-
tivistic generalization of this equation. For guessing the form of the Schrödinger equation,
the correspondence principle, E → i~∂t and ~p → −i~~∇ was a very useful approach.
In relativistic notation this reads

pµ =

(
E

c
, ~p

)
→ i~∂µ =

(
i~

∂

c∂t
, −i~~∇

)
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Can we use the correspondence to derive a relativistic version of the Schrödinger equation

starting from E =

√
(m0c2)2 + (pc)2? It is tempting to ‘guess’ the equation i~∂tΦ(~r, t) =√

(mc2)2 +
(
−ci~~∇

)2
Φ(~r, t). But this is not a good idea as space and time are treated

very differently and a Taylor expansion in the second term leads to arbitrary high powers
of ∇.
Instead, one can try to start directly from the squared equation: E2 =

(
m0c

2
)2

+ (cp)2.
Using the correspondence principle, one obtains (i~∂t)2 Φ −

(
m0c

2
)2

Φ − (−i~∇)2 Φ = 0.
This is the Klein-Gordon Equation:. In relativistic notation it takes the form(

∂µ ∂
µ +

m2
0c

2

~2

)
Φ = 0 (3.10)

Two versions of the Klein-Gordon equations exist, both with imporant applications: Φ can
either be a real or complex field. We will discuss in the following primarily the complex
case.
The solutions of this equation are obviously plane waves

Φ(~x, t) = exp(i
~p~x− Et
~

) = e−i
pµx

µ

~ (both sign, positiv & negativ energies)

with pµpµ = (m0c)
2, or, equivalently, E = ±

√
(m0c)2 + (pc)2. Interestingly, both signs

of the energy appear to be allowed.
But what is the physical interpretation of this equation? In the case of the Schrödinger
equation the key was to realize that |Ψ|2 can be interpreted as a probability. Does in
this case also exist a quantity which can be interpreted as a probability? An important
property of any probability is that the total probability is conserved and normalized to
1,
∫
|Ψ|2 d3r = 1. A first important step is therefore to ask whether the Klein-Gordon

equation also has a conserved quantity. Does a local quantity % (a conserved density) and
a current ~j exist which fulfills a continuity equation %̇ + ~∇~j = 0? In relativistic notation
one defines the 4-vector jµ = (c%,~j) and the continuity equation has the form

∂µj
µ = 0

Using that Φ∗
(
∂µ∂

µ +
m2

0c
2

~2

)
︸ ︷︷ ︸

=0

Φ−
[(
∂µ∂

µ +
m2

0c
2

~2

)
Φ∗
]

Φ = 0, we can show directly that

∂µj
µ = 0 where

jµ = ic (Φ∗∂µΦ− (∂µΦ∗)Φ)

describes the conserved density

% = j0/c = i

(
Φ∗
(
∂Φ

∂t

)
−
(
∂Φ∗

∂t

)
Φ

)
(3.11)
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with the associated current density ~j = ic
(

Φ∗~∇Φ−
(
~∇Φ∗

)
Φ
)
. As

∫
% d3r = const., one

can ask the question whether % can be interpreted as a probability density, similar to |Ψ|2

in the non-relativistic limit. The answer is negative: as % can be negative it cannot be a
probability!
When the Klein-Gordon equation was first found, the interpretation of it had several prop-
erties which at that time seemed to make it completely useless to describe the properties
of nature. First, the natural conserved density ρ could be both positive and negative and
there was not quantity which could be interpreted as a probability. Second, arbitrarily
large negative energies were allowed which seemed to contradict the stability of matter
and the fact that one cannot generate infinite amounts of energy out of the vacuum. And
finally, the equation was not describing the spin of the electron.
After the formalism of second quantization had been found, the solution to all questions
given above is known: the Klein Gordon equation describes not only positively charged
particles but simultaneously negatively charged antiparticles. The conserved quantity ρ
thereby is the total charge density which can be positive or negative. The negative energy
solutions describe antiparticles with positive energy (see below). While the Klein-Gordon
equation does not describe the properties of electrons, it is the correct theory for particles
with spin 0. It has many applications and can be used to describe the Higgs particle and
plays, e.g., an important role in the theory of superconductivity.
We will not discuss the Klein-Gordon equation in much detail but just describe briefly how
the theory can be quantized and interpreted. One way to obtain the correct quantization
rules is to rewrite the equation in the Hamiltonian formalism. Then one obtains the
quantized theory by replacing Poisson brackets by commutators following the example that
the Poisson brackets for position and momentum, {x, p} = 1, correspond to [x, p] = i~ in
the quantum world.
Here we will not follow this route but just give the final result, especially as it turns out to
be very similar to the quantization rules of the vector potential in Coulomb gauge described
in chapter 2.1. This arises as the equation for the vector potential ∂ν∂µ ~A = 0 is up to the
mass term identical to the Klein-Gordon equation.
The most important point is that Φ and Φ† are not fields but field operators which create
and destroy bosons and their antiparticles. Using the notation Kµ =

(
ωK
c ,

~K
)
where we

define ωK = +1
~

√
(m0c2)2 + (~ ~Kc)2 always larger than 0, we can identify Φ† with a field

operator
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Φ+(r, t) =

√
~√
V

∑
~K

1√
2ωK

(
eiωKt−i

~K~r c†K︸ ︷︷ ︸
positiv energy =̂

creation of particle

+ e−iωKt+i
~K~r bK︸ ︷︷ ︸

negative energy =̂
destruction of anti-particle

)
(3.12)

with besonic commutation relations:
[
cK , c

†
K

]
= δKK′ =

[
bK , b

†
K

]
[b, c] =

[
b†, c

]
= [b, b] = [c, c]

[
b, c†

]
= 0

Obviously this field operator satisfies the Klein-Gordon equation. c†k creates a boson with
momentum k while bk destroys a different type of particle which turns out to have opposite
charge: it is the antiparticle. When one replaces in the above equation bk by ck one obtains
a quantum field with Φ† = Φ providing a solution for the Klein-Gordon equation for a
real-valued field, which corresponds to a quantum theory where the particle is its own
antiparticle (this is exactly the situation for photons).
The form of the Hamiltonian we can read off from the time dependence of the operators
evident from Eq. (3.12): c†K′(t) = eiωKt cK(0) and bK(t) = e−iωKt bK(0). This implies that
the Hamiltonian has the form

H =
∑
K

~ωK
(
c†KcK + b†KbK

)
+ const. (3.13)

Note that this implies that both particle and antiparticle have positive energies ~ωK ≥ 0.
There is no problem with negative energy solutions.
As we will discuss in the problem set accompanying the lecture, the Hamiltonian can be
rewritten as

H =

∫
Π†(x) Π(x) + c2(∇Φ†)(∇Φ) +

m0c
2

~
Φ†Φ

with Π = ∂t Φ†

and
[
Φ(~x), Π(~x′)

]
= i~δ

(
~x− ~x′

)
To obtain the charge of the particles we evaluate % defined in Eq. (3.11) using Eq. (3.12).

Q =

∫
%(~r, t) d3~r =︸︷︷︸

ρ=j0/c

i

∫
Φ+∂tΦ− (∂tΦ

+)Φd3~r

=︸︷︷︸
1
V

∫
ei(K−K

′)r=δKK′

~
∑
K

i

(
c+
K

−iωK
2ωK

cK + bK
iωK
2ωK

b†K + bK
−iωK
2ωK

cKe
−2iωKt+

+c+
K

iωK
2ωK

b+Ke
2iωKt

)
+ h.c.

The last two terms cancel after the hermitian conjugate has been added and we find for
the total charge
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Q = ~
∑
K

(
c+
KcK − b

+
KbK

)
(3.14)

Thus c†K creates a particle with momentum K and energy ωK (according to Eq. (3.13))
and charge ~ . That its charge turns out to be „~“ is only an artifact of our conventions:
obviously one can redefine the Q operator by multiplication with a constant. Independent
of the convention is, however, that b†K creates a particle with the same momentum and
energy but the opposite charge: it is the creation operator of the antiparticle.
This chapter gave a brief overview of some of the most essential ideas of relativistic quantum
field theory (which we will discuss in more detail for the Dirac equation, describing electrons
and positrons): relativistic quantum theory can only be interpreted in the context of second
quantization. A remarkable feature is that the presence of antiparticles is enforced by its
mathematical structure.

3.4 Gauge invariance

One of the most successfull concepts in physics is the notion of Gauge invariance: it
describes not only electrodynamics, but also weak and strong interactions in elementary
particle physics. In this context, Gauge invariance is postulated as a fundamental principle
– a root which we will also follow here. But in modern solid state theory, we also know
that in some situations Gauge theories are ‘emergent’ which means that they naturally
arise when one describes the low-energy long-distance properties of some states of matter
which on a microscopic level is not described by a Gauge theory.
In this section we will discuss the coupling of matter to the electromagnetic field using the
Klein-Gordon equation as an example. The arguments used here can equally be applied
to the Schrödinger equation and, in the following chapters, to the Dirac equation.
Probably the single most important postulate of quantum mechanics is that states are
described by complex amplitudes while only their modulus squared – a probability – can
be measured. That implies that multiplying all amplitudes simultaneously by a phase
factor, eiϕ has no effect. As the group of multiplication by such phase factors is called
U(1) (the unitary 1× 1 matrices, one calls this property a global U(1) symmetry.
Surprisingly, it turns out that a much stronger postulate is at the heart of electromagnetism:
physics is invariant when one multiplies wavefunctions or field operators by an arbirary
space- and time-dependent phase factor

Φ(x)→ eiϕ(x) Φ(x)

where ϕ(x) is an arbitrary real function of x = xµ = (x0, x1, x2, x3), i.e. of space and
time1. This is called a gauge transformation.

1Sometimes we use either xµ or x to denote the dependence of time and space.

65



On first glance, this appears to be a postulate contradicting the basic fact that rel-
ative phases and interference are an imporant part of quantum mechanics. Further-
more, the Schrödinger, Klein-Gordon and Dirac equations are all formulated in terms
of derivatives of fields. Applying a derivative to the transformed field, ∂µ

(
eiϕ(x) Φ(x)

)
=

eiϕ (i (∂µϕ) + ∂µ) Φ(x), one obtains an extra term proportional to ∂µϕ.
Here the most important insight is that there is an other place in physics, where an unob-
servable function ϕ(x) shows up: electromagnetic fields are not modified when one changes
the vector potential by Aµ(x) → Aµ(x) + ∂µϕ̃(x). Within Maxwell’s theory this was just
a result of a simple mathematical trick (see discussion in chapter 2.1). In the context
of quantum mechanics and quantum field theory it became on the deepest observations:
multiplying quantum fields by a phase factor and redefining vector potential is actually
the same and ϕ(x) and ϕ̃(x) are proportional to each other. If one can guarantees that all
derivatives arise in a linear combination with vector potentials, the factors ∂µϕ can cancel
with each other.
When formulating the postulate of gauge invariance , we have to take both transfor-
mations into account

Gauge invariance:
All physical observables are invariant under the gauge transformation

Φ(x)→ exp
(
i
q

~c
ϕ(x)

)
Φ(x) , Aµ(x)→ Aµ(x)− ∂µϕ(x) (3.15)

Here q/(~c) is a factor of proportionality relating the two transformations. q can later be
identified with the charge of the particle described by the field Φ(x) (which can also be 0

in some cases).
The postulate of Gauge invariance enforces that the Hamiltonian and all observables have
a specific structure: all derivatives of fields have to be accompanied by a vector-potential
term written as

Dµ = ∂µ + iq
~c A

µ

This also implies that we can easily ‘guess’ how the coupling electromagnetic field couples
to a give quantum theory: in each term we just replace ∂µ by Dµ. This procedure is
called minimal coupling. As the name indicates, other gauge invariant couplings are
also possible in general2 but this is certainly the simplest ‘minimal’ solution
Let us check how a gauge transformation affects the combination DµΦ.

DµΦ→
(
∂µ +

iq

~c
(Aµ − ∂µϕ)

)(
exp
(
i
q

~c
ϕ(x)

)
Φ
)

= exp
(
i
q

~c
ϕ(x)

)(
∂µ +

iq

~c
Aµ
)

Φ = exp
(
i
q

~c
ϕ(x)

)
Dµ Φ

2An example are intraband transitions in solids induced by light which cannot be derived from general
principles of gauge invariance without knowledge of the detailed wave functions.
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In an Hamiltonian, the remaining multiplicative phase cancels with the corresponding
phase factor for Φ†; in the equations of motions it can just be divided out.
Therefore, the Klein-Gordon equation which describes also the coupling to the electromag-
netic field is simply given by (

Dν D
µ +

m2
0c

2

~2

)
Φ = 0

which by construction is gauge invariant. Adding Maxwells equation one can derive that
q is indeed the charge of the particle created by c†k in this context.
Up to the factor q, the charge of the created particle, the principle of gauge invariance can
be used to fix the coupling of the electromagnetic field to matter! This is an extremely
powerful concept which also works for weak and strong interactions. It is probably fair to
say, that much of our understanding of the world around us and of its quantum properties
comes from this basic principle.
Historically, the importance of the concept of gauge invariance has first been recognized
in the context of general relativity. Therefore also the name gauge invariance (in German
Eichinvarianz) refer to a change of the scale of measurement.

3.5 Dirac equation

As a straightforward interpretation of the Klein-Gordon equation along the lines of the
Schrödinger equation was not possible, Dirac was searching for a relativistic equation
which like the Schrödinger equation is linear in ∂t. Now assuming that time and space
have to be treated similarly in any relativistic setup, he concluded that the equation should
also be linear in space-derivatives, ~∇.
The lead to the following ansatz for a relativistic version of the Schrödinger equation

i~∂tΨ =
(
c~α~p+ βm0c

2
)

Ψ = HDΨ (3.16)

where ~p = −i~~∇. This equation should fulfill the relativistic energy-momentum relation,
E2 =

(
m0c

2
)2

+ (pc)2, with E to be replaced by i~∂t. To achieve this, one has to take one
more derivative

E2Ψ =̂−~2∂2
t Ψ = H2

DΨ =
(
c~α~p+ βm0c

2
)2 !

=
(
(m0c

2)2 + (pc)2
)

Ψ

This leads to the condition

(
c~α~p+ βm0c

2
)2

= β2(m0c
2)2 +

c2

2

∑
i j

(αiαj + αjαi)pi pj +
∑
i

(αiβ + βαi)pim0c
2

!
=
(
(m0c

2)2 + (pc)2
)

Ψ

or, equivalently
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β2 = 1, (αiαj + αjαi) = 2δij , (αiβ + βαi) = 0 (3.17)

Obviously, this set of equation does not have any solution for αi, β ∈ C. But Dirac realized
that solutions do exist when αi and β are Hermitian matrices.
More convenient than αi and β are the so-called γ-matrices defined by γ0 = β, γi = βαi

with i = 1, 2, 3). From this definition we obtain (γi)2 = βαiβαi =︸︷︷︸
αiβ=−βαi

−αiββαi = −1. All

conditions from Eq. (3.17) can be combined in the compact equation

{γµ, γν} = 2gµ ν 1 (3.18)

where – as before – we define {A, B} = AB +BA.
The smallest possible matrices which fulfill these equations are 4 × 4 matrices. One can,
for example, choose the following solution

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
(i = 1, 2, 3)

with the Pauli matrices σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

It is also useful to define

γ5 = iγ0 γ1 γ2 γ3 =

(
0 1

1 0

)
Note that also other representations are possible. If one redefines γµ → MγµM−1 with
arbitrary unitary matrices M , physics will not change (only some observables have also to
be redefined).
As the γ matrices are 4 × 4 matrices, it is clear that the wave function must have also

4 components. It is called a spinor , Ψ =


Ψ1(x)

Ψ2(x)

Ψ3(x)

Ψ4(x)

. For the moment we will pretend

that the components are complex functions, Ψi(x) ∈ C but later we will see that they
are actually field operators. A warning is appropriate in this context: while Ψ(x) has 4
compents it is, nevertheless, not a covariant or contravariant 4-vector. The transformation
properties of Ψ are completely different and will be discussed in chapter 3.6.
Now we can rewrite (3.16) by multiplying it with γ0

c to obtain the Dirac equation

(−i~γµ∂µ +m0c)Ψ = 0 (3.19)
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As discussed in chapter 3.4, the coupling to the electromagnetic field can be obtained
simply by replacing ∂µ by Dµ = ∂µ − e

cAµ and one obtains

(−i~γµDµ +m0c) Ψ = 0 ⇔
(
−i~ /D +m0c

)
Ψ = 0 (3.20)

where we introduced as a short-hand notation the so-called Feynman slash notation (some-
times also called the Feynman dagger): /a =

∑
µ=0,...3 γ

µaµ defines a 4× 4 matrix.
Historically, it was a goal of Dirac to find an equation where a positive quantity, Ψ†Ψ

can be interpreted as a probability. Later we will see that such an interpretation is not
possible. ρ = Ψ†Ψ describes instead the charge density. As this is an important quantity,
we will derive its continuity equation. From the Dirac equation in the form i~∂tΨ = HDΨ

with HD = i~c~α~∇ + βm0c
2 we obtain by Hermitian conjugation conjugation −i~∂tΨ† =

(HDΨ)† = −i~c(∇iΨ†)αi +m0c
2Ψ†β. Therefore

ρ̇ = Ψ†∂tΨ +
(
∂tΨ

†
)

Ψ

=
1

i~

(
Ψ†γ0

(
i~cγi∇i

)
Ψ + Ψ†γ0m0c

2Ψ +
(
i~c
(
∇iΨ†i

)
γ0γiΨ−Ψ†γ0m0c

2Ψ
))

= −c∇i
(

Ψ†γ0γiΨ
)

= −~∇~j

We therefore obtain the conserved 4-current

jµ = (cρ, ~j) = cΨ̄γµΨ with ∂µj
µ = 0 ⇔ ∂tρ+ ~∇~j = 0 (3.21)

where we introduced Ψ defined by

Ψ = (γ0Ψ)† = Ψ†γ0 =
(

Ψ†1,Ψ
†
2,−Ψ†3,−Ψ†4

)
For complex functions Ψi(x) we have Ψ†i = Ψ∗i , but for field operators it is important to
use instead Ψ†i (x).

3.6 Lorentz covariance of the Dirac equation

If the Dirac equation is a valid relativistic equation, it should have the same form in all
frames of reference. This we will show in this chapter. This will also help us later to find
and understand the solutions of the Dirac equation.
We consider the Lorentz transformation, xµ → x̃µ = Λµνxν+aµ, or, equivalently, without
indices in a matrix notation

x→ x̃ = Λx+ a
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In the new frame of reference the Dirac equation has to have the form(
−iγµ ∂

∂x̃µ
+m

)
Ψ̃(x̃) = 0 (3.22)

where we have used units with c = ~ = 1 and have set m = m0. We have now to find out
how Ψ̃ and Ψ are related. We set

Ψ̃(x̃) = SΛΨ(x) = SΛΨ
(
Λ−1(x̃− a)

)
(3.23)

where the (yet unknown) 4× 4-matrix SΛ, acts on the spinor index only.
Using ∂

∂x̃µ = Λ ν
µ

∂
∂xν we obtain from Eq. (3.22)

(
−iγµΛ ν

µ ∂ν +m
)
SΛΨ(x) ⇒︸︷︷︸

S−1·...

(
− i S−1

Λ γµΛ ν
µ SΛ︸ ︷︷ ︸

!
=γν

∂ν +m
)

Ψ(x) = 0

Therefore S−1
Λ γµSΛΛ ν

µ = γν or, equivalently

S−1
Λ γµSΛ = Λµνγ

ν (3.24)

Below, we will see that SΛ does exist and therefore we have shown that the Dirac equation
is indeed Lorentz invariant, i.e., it looks the same way in all coordinate systems when the
transformation

x→ x̃ = Λx+ a

Ψ(x)→ Ψ̃(x̃) = SΛΨ(x) = SΛΨ(Λ−1(x̃− a)) (3.25)

is considered.
To construct SΛ it is useful to investigate first only infinitesimal transformations

Λ = 1+ ∆ω︸︷︷︸
small

, S = 1+ ∆τ︸︷︷︸
small

where both ∆ω and ∆τ are small (!) 4 × 4 matrices. As S−1 = 1 − ∆τ + O(∆τ2), we
obtain from Eq. (3.24) −∆τγµ + γµ ∆τ = ∆ωµν γν which is solved by

∆τ = − i
4

∆ωµ ν σµ ν =
1

8
∆ωµ ν gµν′ [γ

ν′ , γν ], with σµ ν =
i

2
[γµ , γν ]

Let us see, how we can use this equation to find out how spinors are rotated. A rotation
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around the z axis is described by the matrix

Λ =


1 0 0 0

0 cos(ϕ) − sin(ϕ) 0

0 sin(ϕ) cos(ϕ) 0

0 0 0 1

 ⇒ ∆ω = ϕ


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


Therefore only ∆ω12 = −ϕ and ∆ω21 = ϕ are finite and therefore

∆τ = − i
4

(−ϕσ12 + ϕσ21) =
i

2
ϕσ12 = −ϕ

4
(γ1γ2 − γ2γ1)

= −ϕ
2

(
0 σx

−σx 0

)(
0 σy

−σy 0

)
= +

iϕ

2

(
σz 0

0 σz

)

Therefore we find that for small rotation angles, SΛ is given by S = 1 + i
2ϕ

(
σz 0

0 σz

)
.

From this we can easily construct S for a finite rotation by an angle ϕ by considering N
rotations by the angle ϕ/N .

S(ϕ) =
(
S
( ϕ
N

))N
= lim

N→∞

(
1+

iϕ

2N

(
σz 0

0 σz

))N
= exp

(
i
ϕ

2

(
σz 0

0 σz

))

As similar formulas hold for rotations around the y and z axis with σz replaced by σx and
σy, respectively, we can conclude that

the generator of rotation of spinors is given by ~S = ~
2

(
~σ 0

0 ~σ

)

The prefactor ~ appears here as a convention: a finite rotation is described by ei~ϕ~S/~. To
describe the full rotation of a spinor wave function, Ψ → Ψ̃ with Ψ̃(x̃) = SΛΨ(x), we
have to take into account that also the coordinate system has been transformed, x → x̃,
see Eq. (3.25). As the generator of rotation in space is given by the angular momentum,
~L = ~r × ~p = ~r × (−i~~∇), we obtain that a rotated wavefunction Ψ̃(x) is obtained from

Ψ̃(x) = ei~ϕ
~J/~Ψ(x) with the total angular momentum ~J = ~L+ ~S,

which is the generator of rotations involving both real and spin space.
While in a relativistic theory neither ~L nor ~S is conserved separately, the statement that
the physics is identical in a rotated coordinate system implies that[

~J , HD

]
=
[
~L+ ~S , HD

]
= 0,

the total angular momentum is conserved.
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We can repeat the discussion given above without any problem also for boosts. A boost
in x-direction is described for a small η ≈ v/c� 1 by

Λ =


cosh(η) − sinh(η) 0 0

− sinh(η) cosh(η) 0 0

0 0 1 0

0 0 0 1

 ≈ 1+ η


0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 = 1+ ∆ω

Following exactly the same steps as in the case of the rotation described above one finds
that the corresponding transformation of the spinor is obtained by the 4 × 4 matrix S =

exp

(
−η

2

(
0 σx

σx 0

))
. We conclude that in general

boosts of spinors are generated by 1
2

(
0 ~σ

~σ 0

)
.
We have therefore determined how the continuous group elements affect spinors. What is
missing are the discreet transformation, P , T and PT . We just give the result.

The inversion transformation P of a spinor is described by

SP =


1

1

−1

−1

 = γ0

More complicated is time reversal, at it is not a linear operator but also involves complex
conjugation using that i~∂t = −i~∂−t. One obtains that

time reversal is described by
t→ −t , ~r → ~r , i→ −i, Ψ(t, ~r)→ iγ1γ3Ψ∗(−t, r)

The combined transormation PT is obtained by multiplying both transformations Ψ(t, ~r)→
iγ0γ1γ3Ψ∗(−t,−r).
It is important to note that SΛ turns out to be not a unitary transformation but instead
one finds for proper Lorentz transformation (excluding time-reversal which is special)

S†γ0 = γ0S−1.

This implies that not Ψ† but only Ψ̄ has simple transformation properties.
Ψ = Ψ†γ0 → (SΨ)†γ0 = Ψ†S†γ0 = Ψ†γ0S−1 = ΨS−1

Therefore it is not surprising, that physical observables are often expressed in terms of Ψ̄

and Ψ. For example, we have found for the conserved 4-current, that jµ = ΨγµΨ. Let us
check how jµ transforms under a Lorentz transformation

jµ = ΨγµΨ → Ψ̃S−1 γµ SΨ = Λµν j
ν
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where we used Eq. (3.24). As expected, jµ transforms like any covariant 4-vector.
Similarly, ΨΨ has to be a Lorentz scalar, it does not change under a Lorentz transformation
ΨΨ → ΨS−1SΨ = ΨΨ.
The matrices SΛ have to form a group. This group is, however, not identical to SO(1,3).
This is very similar to the situation known from the group of rotations: rotating of a spin
by 2π leads to a minus sign in the wave function, therefore SU(2), describing rotation
of spins, and SO(3) are not identical. The group of Lorentz transformations acting on
spinors is called spin(1, 3) which turns out to be identical to the group SL(2,C), the group
of complex 2×2-matrices M with detM = 1 which is also parametrized by 6 real variables.
For completeness, we mention one more important symmetry transformation, C, of the
Dirac fields, which is obtained by considering the complex-conjugated version of the Dirac
equation. The symmetry is called charge conjugation (hence the letter C) or – more pre-
cisely – particle-antiparticle transformation as this transformation turns out to transform
an electron to a positron and vice versa (c.f. chapter 3.8). It is given by

charge conjugation C: Ψ→ CΨ̄T with C = iγ2γ0

3.7 Solution of the Dirac equation

In this chapter we will solve the Dirac equation in the absence of electromagnetic fields as
a differential equation in the absence of fields. These solutions will also be the building
block of the quantized theory. We want to solve

(−i~�∂ +m0c) Ψ = 0

We first determine the zero-momentum solution of a particle at rest. We therefore set the
spatial derivative to zero, ∂

∂~rΨ = 0(
−i~
c

∂

∂t

(
1

1

−1

−1

)
+m0c1

)
Ψ = 0 ⇒ i~∂tΨ = m0c

2 ·

(
1

1

−1

−1

)
Ψ

This 4x4 matrix equation has 4 solutions

Ψ
(+)
i (x) = e−im0c2t/~ui(0) Ψ

(−)
i (x) = e+im0c2t/~vi(0)

with u1(0) =


1

0

0

0

 , u2(0) =


0

1

0

0

 , v1(0) =


0

0

1

0

 , v2(0) =


0

0

0

1


The two + solutions have an obvious interpretation: they describe electrons at rest with

energy m0c
2. As we have determined the spin-operator to be ~S = ~

2

(
~σ 0

0 ~σ

)
, we also know
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that Ψ
(+)
1 and Ψ

(+)
2 describe electrons with ↑ and ↓ spins, respectively. The interpretation

of the solution with negative energy is unclear at the moment, later we will use these
solutions to describe the antiparticle of the electron, the positron.
To obtain solutions of the Dirac equation at finite momentum one can just perform a
Lorentz transformation to a coordinate system moving with velocity −~v such that the
particle at rest obtains the velocity +~v. This is left as an exercise. Here we just derive the
solution starting from a straightforward plane-wave ansatz

Ψ
(+)
i = ui(K)e−iKµx

µ
, Ψ

(−)
i = vi(K)e+iKµxµ

From the Dirac equation one finds directly(
/K − m0c

~

)
ui(K) = 0,

(
/K +

m0c

~

)
vi(K) = 0

We have therefore just to determine the eigenvectors of some 4× 4 matrix with eigenvalue
0. This is simplified by a trick: /K /K = Kµγ

µKνγ
ν =

KµKν
2 {γµ , γν} = KµKνg

µν 1 =

KµK
µ 1. Therefore we find(

/K − m0c

~

)(
/K +

m0c

~

)
= KµK

µ
1−

(m0c

~

)2
1

!
= 0

From this we can directly read off the relativistic energy-momentum relation
E = c~K0 = +

√
(m0c2)2 + (~Kc)2

Using this Kµ, we also find that ui(K) = α
(
�K + m0c

~
)
ui(K = 0) solves the desired

equation
(
�K − m0c

~
)
ui(K) = 0 where the normalization constant α is chosen to be α =

~c√
(2m0c2(m0c2+E))

, see discussion below.

Finally, we obtain

ui(K) = α
(
�K +

m0c

~

)
ui(K = 0) =


(

(E+m0c2)
2m0c2

)1/2
χi

~c~σ ~K√
((2m0c2)(m0c2+E))

χi



vi(K) = α
(
�K +

m0c

~

)
vi(K = 0) =

 ~c~σ ~K√
((2m0c2)(m0c2+E))

χi(
(E+m0c2)

2m0c2

)1/2
χi

 (3.26)

where χ1 =

(
1

0

)
and χ2 =

(
0

1

)
.

The normalization constant α has been chosen such that uiuj = u†iγ
0uj = δij and

vivj = v†i γ
0vj = −δij . Here we used that the combination ΨΨ is Lorentz invariant. This

guarantees that the solutions at different ~K can be obtained from Lorentz transformations.
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Figure 3.1: Apparently, the Dirac equations has solutions with positive and negative ener-
gies, ±

√
(m0c2)2 + (pc)2. Dirac used as an interpretation, that all states with

negative energy are occupied.

Note that in general the solutions at finite ~K are not eigenstates of Sz = ~
2

(
σz 0

0 σz

)
.

This reflects that the direction of the spin changes when we switch to a moving coordinate
system. An exception is the case when ~K is in the z direction.
It is instructive to calculate the charge density of our solutions

Ψγ0Ψ = Ψ†Ψ =
E +m0c

2

2m0c2
+

(
c~ ~K

)2

(E +m0c2) (2m0c2)
=

1

2m0c2

(
E +m0c

2 +
E2 − (m0c

2)2

E +m0c2︸ ︷︷ ︸
E−m0c2

)

=
E

m0c2
=

1√
1− (vc )2

where we used that χ†i ( ~K~σ)2χi =︸︷︷︸
σiσj=δij+iε

ijkσk

~K2 + 0 While the charge density depends on the frame

of reference, this is not the case for the total charge Q =
∫

d3rρ(~r) which is Lorentz

invariant as from r′ =
r − vt√
1− (vc )2

we obtain dr =
√

1− (vc )2 dr which cancels the change

of the charge density discussed above. We will use the above derived result again and
therefore remember

uiγ
0uj = δij

E

m0c2
= viγ

0vj (3.27)

3.8 Interpretation of Dirac equation

As we have already seen in the case of the Klein Gordon equation, the energy of excitations
described by the Dirac equation, E = ±

√
(m0c2)2 + (~Kc)2, can – apparently – be not

only positive but also negative. Clearly something which does not occur in nature. Dirac
found a solution to this problem: he argued that all states with negative energy have to
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be already occupied even in the vacuum. This state is called the “Dirac sea” . The Pauli
principle ensures that this state is stable. An electron at rest, for example, cannot gain
extra energy by by moving to a negative energy state as such processes are forbidden by
the Pauli principle. One might ask the question whether the infinite negative charge of the
vacuum is a problem. The answer is that the negative charge is canceled by the positively
charged Dirac sea of other particles (e.g. the protons or, more precisely, the quarks building
up the proton). A more tricky (and presently unresolved) question is whether the nominally
infinite negative energy density of the Dirac sea exists which can couple to gravity. Is this
contribution (almost) exactly canceled by a positive energy density arising from bosonic
modes (see discussion in Sec. 2.1)?
Dirac realized, that his interpretation also implies that there is a new type of excitation:
removing one of the negative energy states costs a positive amount of energy,

E − Evacuum = +
√

(m0c2)2 + (~Kc)2.

The excitation therefore has exactly the same mass as the electron. But as one negatively
charged electron is missing, this excitation has a positive charge. Based on this inter-
pretation, Dirac predicted in 1928 the positron, which was experimentally discovered by
C.D. Anderson in 1932, when he investigated how particles coming from cosmic rays are
deflected by a magnetic field. Due to their opposite charge positrons and electrons are
deflected in opposite directions.
From a modern point of view, the Dirac construction is a valid point of view. A more flexible
approach is, however, to define from the beginning the vacuum and the field operator in
such a way that negative energy states never arise. We have seen that such a procedure
works also to interpret the negative energy states of the Klein Gordon equation, which
describes Bosons (therefore Pauli’s principle, an important element of Dirac’s construction,
is not applicable).
To obtain a valid quantization of the Dirac field, we proceed in three steps. First, we expand
Ψ(x) in the four plane wave solutions Ψ

(+/−)
1/2 . Second, we rewrite the energy of the system

in terms of the corresponding expansion coefficients. And, third, we replace the expansion
coefficients by creation and annihiliation operators such that the Hamiltonian has the
expected structure, H =

∑
k Eknk, with Ek =

√
(m0c2)2 + (~kc)2 being the relativistic

energy-momentum relation and nk an operator counting the number of particles. We will
now follow this program. To simplify notations at a later stage, let us first define two
new functions, w1(k) = v2(k), w2(k) = −v1(k) (this is actually a part of a particle-hole
transformation, see Eq. (1.12) in Sec. 1.4.5). We therefore write

Ψ(x) =
∑

K,σ=1,2

αK
(
bσ,Kuσ(K)e−iKµx

µ
+ d∗σ,Kwσ(K)eiKµx

µ)
(3.28)

where αK ∈ R is a normalization factor to be determined later and bσK , dσK ∈ C are
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some complex expansion coefficients. As the bσK , dσK will later become operators, we will
keep track of their ordering during the following calculations and instead of d∗σ,K we will
write d†σ,K .
As a next step, we need a formula for the energy, or better, the 4-vector describing both
energy and momentum pµ =

(
E
c , ~p

)
. Starting point is the correspondence principle which

(in first quantization) identifies pµ with i~∂µ plus the requirement of Lorentz invariance.
Both requirements are fulfilled by

pµ =

∫
d3~xΨ†i~ ∂µΨ = i~

∫
d3~xΨγ0∂µΨ (3.29)

The extra γ0 is needed to compensate for the Lorentz contraction of d3r. Now we plug
(3.28) into (3.29) and obtain

pµ = i~
∫

d3~x
∑
K σ
K′ σ′

αKαK′
(
b†σ′K′uσ′(K

′)eiK
′
µx
µ

+ dσ′K′wσ′(K
′)e−iK

′
µx
µ
)

· γ0
(
−iKµbσKuσ(K)e−iKµx

µ
+ iKµd†σKwσ(K)e+iKµxµ

)
We can now perform the integration using

∫
eiK

′
µx
µ
e−iKµx

µ
d3x = δKK′V and

∫
eiK

′
µx
µ
eiKµx

µ
=

δK−K′V · e2iK0tc. With EK = c~K0 =
√

(m0c2)2 + (~Kc)2 and copy from Eq. (3.27) the
relations uσγ0uσ′(K) = EK

m0c2
δσ σ′ = wσ(K)γ0wσ′(K). We obtain

pµ =
∑
K,σ

α2
K

EK
m0c2

V ~Kµ
(
b†σKbσK − dσKd

†
σK

)
As this equation should have the form ~Kµ times an occupation number we set

αK =

√
m0c2

EKV

such that
pµ =

∑
K,σ

~Kµ
(
b†σKbσK − dσKd

†
σK

)
The Hamiltonian is therefore given by

H = cp0 =
∑
K σ

EK

(
b†σKbσK − dσKd

†
σK

)
Now, we want to interpret bσK and dσK as operators. now: bσK dσK become creation and
annihiliation operators. Due to the − sign, a interpretation in terms of bosonic operators
is not possible as in this case an accelerating particle would gain more and more energy,
clearly unphysical. We conclude that

The Dirac equation can only be quantized with fermionic creation and
annihilation operators

77



to avoid negative energies.
We therefore postulate that

{
dσK , d

†
σ′K′

}
= δσ σ′ δKK′ ,

{
bσK , b

†
σ′K′

}
= δσ σ′ δKK′ (3.30)

while all other anticommutators vanish, 0 =
{
d, b

}
=
{
d†, b†

}
=
{
d, b†

}
=
{
d†, b

}
.

The Hamiltonian can therefore be written as

H =
∑
K,σ

EK

(
b†σKbσK︸ ︷︷ ︸

# of electrons

+ d†σKdσK︸ ︷︷ ︸
# of positrons

−1
)

(3.31)

Ψ(x) and Ψ†(x) are now field operators with

Ψ(x) =
∑
K,σ

√
m0c

EKV

(
bσKuσ(K)e−iKµx

µ
+ d†σKwσ(K)eiKµx

µ
)

(3.32)

One can easily check that the time dependence of the field Ψ(x) is consistent with the
Heisenberg equations of motions. According to the Hamiltonian (3.31) one has bK0(t) =

e−iEKt/~bK σ and d†K(t) = e+iEKt/~d†K σ reproducing the terms e−iK0ct and eiK
0ct in Eq.

(3.32). Expressed in these quantum fields, the Hamiltonian (3.31) can also be written as

H =

∫
d3~x Ψ̄γ0i~∂tΨ =

∫
d3~x

∑
i=1,2,3

Ψ̄(−i~cγi∂i +mc2)Ψ (3.33)

The first equality was our original ansatz for the energy, the second equality follows directly
from the Dirac equation.
To define the Hilbert space, one start from the vacuum state |0〉 which is defined by

bσK |0〉 = 0, dσK |0〉 = 0

All other basis states of the Hilbert space are created by applying products of creation
operators to |0〉.
To find the correct interpretation for bσK and dσK one can repeat the calculation sketched
above to show that the momentum is given by ~p =

∑
K σ

~ ~K
(
b†σKbσK + d†σKdσK

)
and the

total charge by

Q = q

∫
Ψγ0Ψ = q

∫
Ψ†Ψ = q

∑(
b†σKbσK + dσKd

†
σK

)
= q

∑
K σ

(
b†σKbσK − d

†
σKdσK

)
+ const.

where an overall prefactor q is a convention.
Based on these formulas, we can conclude that
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b†K σ: creates an electron with energy EK and charge q = e

d†K σ: creates an positron with energy EK and charge −q = −e

In conclusion, we have shown that the quantization of the Dirac equation naturally leads to
a description of an electron with a spin 1/2 which is a fermion. It also predicts the presence
of its antiparticle, the positron. Exactly the same equation can be used to describe other
fermions, including the proton and the neutron (or the quarks, the constituents of proton an
neutron). Using our prescriptions for minimal coupling, we can also immediately describe
the coupling to the electromagnetic field and therefore also the coupling of protons and
electrons.
We finish this section by calculating the commutator of our quantum fields using the
commutation relations (3.30). For equal times one has to compute

{
Ψα(~r), Ψ†β(~r ′)

}
=
∑
~K ~σ

m0c
2

EKV

(
ei
~K(~r−~r ′)uσ α(K)u∗σ β(K) + wσ α(K)w∗σ β(K)e−i

~K(~r−~r ′)
)

To simplify this expression one needs the relation
∑
σ
uσ αuσ β =

(
~�K+m0c

2m0c

)
αβ

and
∑
σ
wσ αwσ β =(

~�K−m0c
2m0c

)
αβ

which are easy to check. One finds the expected anticommutation relations

{
Ψα(~r), Ψ†β(~r ′)

}
= δαβ δ

3(~r − ~r ′)

Note that the commutation relations for fields at different times are much more complicated
even in the absence of interactions. But one always has the property that

{
Ψα(r, t), Ψ†β(r′, t′)

}
=

0 for |r − r′| > c|t− t′|, such that no information can propagate from r to r′.

3.9 Graphene as a Dirac material

In recent years, the Dirac equation and variants thereof have found remarkable applications
in the description of the properties of actual materials. In this section we discuss briefly
a by now famous example in two spatial dimensions: the physics of graphene. Graphene
is a single layer of graphite, where the carbon atoms form a honeycomb lattice. For our
purpose, the best way to view the honeycomb lattice is to split it into two sublattices, A
and B, both formed by carbon atoms, see Fig. 3.2. Using the two basis vectors

~a1 = a(1, 0), ~a2 = a
(

cos
π

3
, sin

π

3

)
= a

(
1

2
,

√
3

2

)
(3.34)

the A-sublattice is spanned by the vectors

~R~n = n1~a1 + n2~a2, n1, n2 ∈ Z.
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Figure 3.2: In graphene carbon atoms are located on a hexagonal lattice. The hexagonal
lattice splits into two sublattices, A and B, shown in red and blue.

Similarly, the B-sublattice is spanned by ~R~n + ~∆, with

~∆ = a

(
0,

1√
3

)
. (3.35)

We want to describe electrons hopping from one site of the graphene lattice to a neighboring
site. We therefore introduce creation operators, c†A,~n and c†B,~n, which creates electrons
at the graphene atom located at n1~a1 + n2~a2 and n1~a1 + n2~a2 + ~∆, respectively, with
~n = (n1, n2). To be precise, the operators create an electron in the pz orbital of the
respective carbon atoms but this detail is not really important for the following discussion.
The physics is simply that atoms tunnel from one carbon atom to the neighboring carbon
atom with a rate t. Thus the Hamiltonian is simply given by

H = −t
∑
〈~n,~n′〉

c†A,~ncB,~n′ + c†B,~n′cA,~n (3.36)

where 〈~n, ~n′〉 means that the sum only extends to nearest neighbors. This means that
within our approximation (which can easily be improved), we only consider the tunneling
from one atom to each three neighboring atoms. As an atom on the A sublattice is
surrounded by three atoms on the B sublattice, we have always tunneling between A and
B sides. The sign of the prefactor, t > 0, is not obvious but turns out to come out when
one calculates the tunneling rate.
In the following, we will need the vectors pointing from an atom on the A side to its
three nearest neighbors. They are simply given by the vector ~∆ introduced above and by
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rotating this vector by the angle 2π/3 = 120◦ and 4π/3 = 240◦,

~n1 = ~∆ = a

(
0,

1√
3

)
, ~n2 = R2π/3 · ~n1 = a

(
−1

2
,− 1

2
√

3

)
, ~n3 = R4π/3 · ~n1 = a

(
1

2
,− 1

2
√

3

)
.

(3.37)

The next step in solving the problem is a simple Fourier transformation. We introduce
creation operators in momentum space with

c†A,~n =
1√
N

∑
~k

e−i
~k ~R~nc†

A,~k
, c†B,~n =

1√
N

∑
~k

e−i
~k(~R~n+~∆)c†

B,~k
. (3.38)

We simply use this relation when evaluating H using that∑
〈~n,~n′〉

e−i
~k ~R~nei

~k′ ~R~n′ =
∑

~n,i=1,2,3

e−i
~k ~R~nei

~k′(~R~n+~ni) = N
∑

i=1,2,3

δ~k,~k′e
i~k~ni . (3.39)

This allows to rewrite

H =
∑
~k

(
c†
A~k
, c†
B~k

)( 0 α~k
α∗~k

0

)(
c
A~k

c
B~k

)
(3.40)

with α~k = −t
∑

i=1,2,3 e
i~k~ni . I have skipped a ‘detail’ in the discussion above which concerns

the question what is precisely meant by
∑

~k
. The sum actually runs over the so-called 1st

Brillouin zone, a concept discussed in the lecture on solid state physics but it is not directly
relevant for the following discussion.
The eigenvalues of the 2 × 2 matrix are simply ±|α~k|. There are two special points in
momentum space, where the complex function α~k vanishes, the so-called K-points with
momentum ~K0 = (4π

3a , 0) and ~K ′0 = − ~K0. Let us Taylor expand the momenta around these
points. We obtain

α ~K0+~q = c̃(qx − iqy) +O(q2)

α ~K′0+~q = c̃(−qx − iqy) +O(q2) (3.41)

where we will see that c̃ = ta
√

2/2 will later take over the role of the speed of light in the
Dirac equation.
To obtain our final result in a form which resembles the Dirac equation, we introduce the
4-component operator ψ~q = (cA, ~K0+~q, cB, ~K0+~q, cA, ~K′0+~q, cB, ~K′0+~q)

T and the corresponding
field in real-space ψ(~x) = 1√

N

∑
~q e
−i~q~xψ~q. This field will describe our low-energy excita-

tions using Eq. (3.41), therefore we implicitly assume that the momentum sum used in its
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definition only spans small ~q. Furthermore, we introduce two 4× 4 matrices

αx =

(
σx 0

0 −σx

)
, αy =

(
σy 0

0 σy

)
. (3.42)

Finally, we are able to rewrite the low-energy excitations of graphene in a from strongly
resembling the massless Dirac equation

H = c̃
∑
~q

ψ†~q (qxαx + qyαy)ψ~q

= c̃

∫
d2~x ψ†(~x)(−i~∂xαx − i~∂yαy)ψ(~x). (3.43)

Thus, we have shown that the low-energy excitations in graphene are really described by
a two-dimensional variant of the massless Dirac equation. In other materials, one can also
realize the three-dimensional version.
There are many reasons why materials following the Dirac equation are interesting. First,
one can use them to realize some of the effects which have been previously known for the
Dirac equation in a solid state context. For example, in 1929 the physicist Oscar Klein
studied potential scattering in the context of the Dirac equation and found that electrons
could tunnel through a high barrier with essentially no reflection from the barrier. This
effect is called Klein paradox (or Klein tunneling). This effect can easily be observed in
graphene (and turns out to be a major problems as it complicates the creation of electronic
devices from graphene). But more generally, the properties of materials like graphene
turned out to have many interesting properties due to their intrinsically linear dispersion
and vanishing density of state. For example, the react much stronger to magnetic fields,
allowing to observe the quantum Hall effect at room temperatures.

3.10 Non-relativistic limits

We now come back to the ‘real’ Dirac equation where c is the speed of light. In most
situations occuring on earth, electrons are much smaller than the speed of light, v � c,
and therefore relativistic effects are small. To quantify this statement, we can use the
discussion of Sec. 2.3.3 where we already observed that the fine structure constant α ≈ 1

137

controls velocities and energies with
v
c ≈ α binding energy ∼ m0v

2 ∼ m0c
2α2

We can therefore expect that all relativistic connection, typically of order O((vc )2) ≈
O(10−4) are indeed small. Nevertheless, they play an important role. For example, they
lift some degeneracies. This becomes of technological importance for magnetic memories:
due to relativistic effects, there is no spin rotation invariance and one can build devices
where the magnetization aligns along preferential directions. Quantitatively, relativistic
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effects are large in all materials with heavy elements. The reason is that electrons are
flying faster in such elements. We can make a naive estimate of this effect (assuming that
only a single electron is present): the Coulomb potential of a nucleus with Z protons is
obtained by replacing e2 with Ze2. Therefore one can view this as a replacement of α by
Zα (e.g., Z = 79 in gold). Quantitatively, this naive estimate cannot be applied due to the
influence of all the other electrons but one can in general expect sizable relativistic effects
mainly in heavy elements.
The goal of this chapter is to derive relativistic corrections to the Schrödinger equation.
It turns out, that it is possible to derive the leading terms without using the language of
second quantization. As this approach is slightly more easy and as most books use this
approach, we will also follow this historical route in this chapter. We start from the Dirac
equation in the presence of a vector potential Aµ)

(−i~ /D +m0c)Ψ = 0

and read it as a wave equation. Our goal is to obtain a systematic expansion in powers of
α� 1 in situations where one electron is present. We therefore focus on the solution with
positive energies,

Ψ = e−iE
t/~ Ψ(~r) , E > 0.

Positrons are assumed to be absent, or, more precisely, they will only occur as virtual
quantum fluctuations during the calculation.
To order O(α0), we can neglect the motion of the particle completely, v = 0, and obtain
E = m0c

2 and therefore−m0c
2 ·


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

+m0c
2
1

Ψ(~r) =


0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 2

m0c
2 Ψ(~r) = 0

The upper two components ΨA =

(
ΨA ↑

ΨA ↓

)
of the spinor Ψ =

(
ΨA

ΨB

)
play therefore a

completely different role than the lower two comonents, ΨB =

(
ΨB ↑

ΨB ↓

)
. To O(α0), ΨB

(describing positrons) vanishes while ΨA can be arbitrarily large. In the non-relativistic
limit, we can therefore view ΨA as large while ΨB is small.
We can rewrite the Dirac equation in terms of Ψa , Ψb using the notation

~Π = ~p− e

c
~A.

As in our convention we have γi =

(
0 σi

−σi 0

)
we obtain γi

(
ΨA

ΨB

)
=

(
σiΨB

−σiΨA

)
. One
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therefore can rewrite the 4-component Dirac equation as two 2-component equations

~σ ~Π ·ΨB =
1

c
(E − eφ−m0c

2)ΨA

~σ ~Π ·ΨA =
1

c
(E − eφ+m0c

2)ΨB

The second equation is solved by

ΨB = c
1

E +m0c2 − eφ
~σ ~ΠΨA (3.44)

We can plug this result into the first equation. Using the definition of a non-relativistic
energy, ENR = E −m0c

2 we find

~σ ~Π · c2

2m0c2 + ENR − eφ
~σ ~Π ·ΨA = (ENR − eφ)ΨA

This 2-component equation is exact and contains all the physics of the Dirac equation. It
is, however, non-linear in the energy ENR. We can easiliy find an approximation to this
equation using a simple Taylor expansion based on ENR � m0c

2.
To obtain the leading contribution, we approximate 2m0c

2 +ENR − eφ ' 2m0c
2 +O(α2)

in the denominator of Eq. (3.45) and obtain directly the Pauli equation

to O(α2) : ENRΨA =

(
(~σ ~Π)2

2m0
+ eφ

)
ΨA

To rewrite the Pauli equation in terms of the equivalent Schrödinger equation we use
σiσj = δij + iεijkσ

k and

iεijkΠiΠj = iεijk
1

2

[
Πi, Πj

]
=︸︷︷︸

[pi,pj ]=0
[Ai,Aj ]=0

e

c
~εijk

[
∂i, Aj

]
=
e~
c

(~∇× ~A)K

(as [∂x, f(x)]g(x) = ∂x(f(x)− f(x)∂x)g(x) = (∂xf)g) and obtain therefore

ENRΨA =

(
(~p− e

c
~A)2

2m0
+ eφ− gµB ~S ~B

)
ΨA

with ~S = ~~σ2 and Bohr’s magneton µB = e
2me

. Most importantly, we obtain the prefactor
of the coupling of spin and magnetic field

g = 2
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Before Dirac’s equation, the so-called g-factor was only known experimentally. While the
coupling of the angular momentum to the B-field is given by −µB~L~B, the electron spin
has the extra factor g = 2. This factor is exact within the pure Dirac theory, but if
quantum fluctuations of the light are included, one obtains a small correction to this value,
g ≈ 2+ α

~ +O(α2) = 2.0041. Obtaining the correct value for the g factor was an important
success of Dirac’s theory.
To obtain the relativistic correction to the Dirac equation arising to O(α4), we just have to
expand our equations one order higher. Before doing so, we have, however, to consider the
normalization of the wave function. Using the total charge to normalize our wave function
for a single electron we demand ∫

Ψ†AΨA + Ψ†BΨB = 1

where it turns out to be sufficient to determine ΨB from (3.44) expanded to leading order
in α, ΨB ≈ ~σ ~Π

2m0c
ΨA.

∫
d3xΨ†A

1 +

(
~σ ~Π

2m0c

)2
ΨA

!
= 1

For a Schrödinger equation (with relativistic corrections), we do, however, want to have
the standard normalization

∫
|Ψ|2d3x = 1. Therefore we define

Ψ = ΩΨA

Ω ≈

√√√√1 +

(
~σ ~Π

2m0c

)2

≈ 1 +
(~σ ~Π)2

8m2
0c

2
+O(α4), Ω−1 ≈ 1− (~σ ~Π)2

8m2
0c

2
+O(α4)

Furthermore, we approximate now to next-to-leading order c2

2m0c2+ENR−eφ '
1

2m0
− ENR−eφ

4m2
0c

4

and obtain after multiplication of Eq. (3.45) from the left side by Ω

Ω(ENR − eφ)Ω−1 Ψ = Ω~σ ~Π

(
1

2m0
− ENR − eφ

4m2
0c

4

)
~σ ~Π Ω−1 Ψ

With the above found approximation for Ω this is the desired equation. After collecting
various terms (which takes a few more steps) one obtains

ENR Ψ = HΨ with H = H0 +H1 +H2 +H3 +O(α6)

where

H0 = Hpauli =

(
~p− e

c
~A
)2

2m0
− 2µB ~B~S + eφ

as before. In the following we give the formulas for the relativistic corrections only for
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~A = 0 (results for finite magnetic fields can, e.g., be found in the book of Schwabl). One
obtains

H1 = − p4

8m3
0c

2
(3.45)

H2 = −e~~σ( ~E × ~p)
4m2c2

(3.46)

H3 =
e~2

8m2
0c

2
∇2φ(r) (3.47)

The first term, H1, has a simple interpretation as it just arises from the Taylor expansion of
the relativistic energy momentum relations in powers of the momentum,

√
(m0c2)2 + (pc)2 ≈

m0c
2 + p2

2m −
p4

8m2
0c

2 + . . .. More interesting is the second term, H2, the spin-orbit cou-
pling. One way to understand at least qualitatively, where it is coming from is to perform
a Lorentz transformation to a frame of reference comoving with the electron with a ve-
locity p/m. In this frame of reference, an existing electric field in the original frame of
reference will produce a magnetic field which couples directly to the spin. This argument
does not reproduce the numerical prefactor but otherwise gives the correct dependence of
~E, ~σ, m0 and ~p. H3 is called the Darwin term. For a 1/r Coulomb potential it gives a
contribution at the origin and affects therefore only affects only s electrons with vanishing
angular momentum.
The most important term is by far the spin orbit coupling, H2 as it links the spin orienta-
tion, the motion of the electron and electric fields. It can be used to fix the orientation of
the magentization in magnetic memory, allows for an electric control of the spin orientation
(important for the field of spintronics which studies the use of the electron spin in future
computers), it lifts degeneracies in the spectrum of atoms and is an important player in
driven complex states of matter (e.g., topological insulators).
For a central potential, which depends only on r one can use ~E = −~∇φ = −~rr

∂φ
∂r and

~L = ~r × ~p to rewrite the spin-orbit coupling as

H2 =
e

2m2
0c

2
~S ~L

1

r

∂φ

∂r
(3.48)

which immediately implies that the spin and the angular momentum of an atom are always
coupled. More precisely, it implies that at least for a single electron spin and angular
momentum are always parallel (this is part of the so-called Hundt’s rule).
Let us investigate how relativistic corrections affect the hydrogen atom. We will not
calculate numerical values but instead just show how such a calculation has to be performed
and we will discuss the qualitative results. We first quote the well known result without
relativistic correction, i.e., the result to order α2. Here one uses that H, L2, Lz and
Sz are commuting conservation laws to introduce the quantum numbers n, l, mz and sz.
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S2 = 1
2(1

2 +1) = 3
4 is also conserved but it takes for the single electron of the hydrogen atom

always the same value. The eigenenergies of the bound states, En = −E0
n2 , n = 1, 2, ...,

with E0 = 1
2α

2m0c
2 depend only on n.3.

As En is independent of the other quantum numbers, each state has the

degeneracy to O(α2) : 2

n−1∑
l=0

(2l + 1) = 2n2

which will be partially lifted by relativistic corrections.
To calculate the relativistic corrections to O(α4), we use perturbation theory (an exact
solution is also possible for the hydrogen atom, but not for more complicated situations).
We define the perturbation ∆H by

H = H0 + ∆H, ∆H = H1 +H2 +H3

In situations without degeneracy the shift of the energy of eigenstates is calculated from a
formula derived in the undergraduate quantum mechanics course

Eα = E0
α + 〈α|∆H |α〉 −

∑
α 6=β

| 〈β|∆H |α〉 |2

E0
β − E0

α

+O(∆H3) (3.49)

As we are only interested in corrections linear in ∆H (which are of O(α4)) it seems that the
first correction is sufficient. This is, however, not correct in the presence of degeneracies as
in this case the correction proportional to (∆H)2 diverges in general as the denominator can
vanish, E0

β − E0
α = 0. The solution of this problem (found under ’degenerate perturbation

theory’ in undergraduate textbooks) is to choose a new basis {|α̃1〉 , . . . , |α̃N 〉} to describe
the space spanned by all the eigenstates of H0 with the fixed energy E0

α, {|α1〉 , . . . , |αN 〉}
with H0 |αi〉 = E0

α |αi〉. In this basis all the problematic terms in Eq. (3.49) vanish. We

have to choose |α̃i〉 =
N∑
j=1

cij |αj〉 such that 〈α̃i|∆H |α̃j〉 = 0 for i 6= j. Finding these

states is exactly equivalent to the problem of finding eigenstates of the N × N matrix
〈αi|∆H |αj〉.
We therefore conclude that we have to diagonalize ∆H in the space of degenerate wave
functions to obtain the leading correction linear in ∆H. Here it is very useful (especially
for the interpretation of the result) to use the available symmetries to effectively reduce
the dimension N of the matrix. In the case discussed below, one can actually construct the
basis in which ∆H is diagonal just by a symmetry analysis (in general this is not possible).
Due to the spin-orbit coupling terms, neither Lz nor Sz is conserved, [Lz, H] 6= 0 , [Sz, H] 6=
0. We have, however, determined in Sec. 3.2 the generator of rotations J which has to

3Due to the finite mass mp of the proton, the effective mass in the center-of-mass coordinate system is

not the electron mass me but instead given by m0 =
(

1
me

+ 1
mp

)−1
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commute with H for any rotation invariant potential

~J = ~L+ ~S,
[
~J, H

]
= 0

The reader is encouraged to check that ~J indeed commutes with the spin-orbit coupling

term (rewrite ~S ~L = 1
2

((
~S + ~L

)2
− ~S2 − ~L2

)
).

As also
[
L2, H

]
= 0 and

[
J2, H

]
= 0 we obtain

commuting operators H L2 S2 = 3
4 J2 Jz

quantum number n l j mj

with L2 = ~2l(l + 1) and J2 = ~2j(j + 1), Jz = ~mj , mj = −j,−j + 1, ..., j. These
quantum numbers are used when describing the quantum states of atoms. For example
2p1/2 describes a state with n = 2, j = 1/2 and the angular momentum l = 1 (s, p, d, f ,...
describes states with l = 0, 1, 2, 3, ...).
As an example, let us consider all states with n = 3. In the absence of relativistic cor-
rections there are 2n2 = 18 degenerate states with l = 0, 1, 2 which we have to couple
to the spin with sz = ±1

2 . We will not discuss here the rules for the addition of angular
momentum (covered in most QM textbooks) but instead just use the intuitive result that
a state with angular momentum l and a spin 1/2 can either be combined to j = l + 1/2

or j = l − 1/2 with the exception of l = 0 which always gives a state with j = 1/2. We
therefore obtain the following values of j and corresponding degeneracies
l = 0 ⇒ j = 1

2 ⇒ degeneracy 2

l = 1 ⇒
j = 1− 1

2 = 1
2 ⇒

" 2
j = 1 + 1

2 = 3
2 " 4

l = 2 ⇒
j = 2− 1

2 = 3
2 ⇒

" 4
j = 2 + 1

2 = 5
2 " 6

18
We recover the total number of 18 states, but have now relabeled them. To construct the
corresponding eigenfunctions, |n, l, j,mj〉 as linear combinations of the states |n, l,mz, sz〉,
one needs the rules for the addition of angular momentum (not discussed here), for exam-
ple,

∣∣n, l, j = l + 1
2 ,mj = l + 1

2

〉
=
∣∣n, l,mz = l, sz = 1

2

〉
.

The main advantage of the construction discussed above is that in the new basis ∆H

is already diagonal, i.e.,
〈
n′, l′, j′,m′j

∣∣∣∆H |n, l, j,mj〉 = 0 if only one of the quantum
number differs. Furthermore, the matrix elements have to be independent of mj due to
the rotational invariance of ∆H. Therefore one can therefore use, e.g., mj = j, and
calculate

E(n, l, j) = −E0

~2
+ 〈n, l, j,mj = j|∆H |n, l, j,mj = j〉+O(α5)

We have therefore reduced the problem to the computation of a simple matrix element.
The calculation can be reduced to simple integrations over the radial direction when one
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uses that for fixed j and l one has

~S ~L =
1

2

((
~S + ~L

)2
− ~S2 − ~L2

)
=

1

2
(j (j + 1))− l (l + 1)− 3

4

For the computation ofH3 one finds for the Coulomb potentialH3 =
e

8m2
∇2φ =

e

8m2
4πδ3(r)

which implies that this term only contribution for l = 0, as Ψ(0) = 0 for l > 0.
Further effects which we have not discussed is the hyperfine coupling of the electronic and
the nuclear spin, an effect of O

(
me
mp
α4
)
. Furthermore, quantum fluctuations arising from

photons contribute to order O(α5 ln( 1
α)) (the so-called Lamb-shift).

The most important result of this section was the formula for spin-orbit coupling. In
most systems, this is the most important relativistic effect which, for example, strongly
determined the properties of magnets. Due to this term, the magnetization of any crystal
has preferred directions determined by the interplay of crystalline structure and spin-orbit
coupling. In a cubic crystal, for example, the presence of neighboring atoms implies that
a state with angular momentum directed towards the next atom or oriented in some other
direction will have a different energy. By spin-orbit coupling, this information is transfered
to the spin direction.

3.11 Outlook: QED, renormalization and regularization

When the Dirac equation in its second quantized form is combined with the quantized
theory of electromagnetic waves one obtain quantum electrodynamics (QED) .
This is a very powerful theory, experimentally tested with very high precision. One can
easily extend it to include the atomic nuclei. In this form it describes almost all phenomena
in the world around us with only very few input parameters (the electron mass, the fine-
structure constant and the masses of nuclei) including, for example, all of chemistry, all
known biological processes and all of our technology with a few exceptions (like nuclear
power plants) mentioned below. More precisely, a simple classical gravitation potential
has to be added for many of these phenomena to QED which is easily possible. QED
does not describe phenomena related to weak- and strong forces which are needed to
understand radioactivity, nuclear fusion (i.e, why the sun shines), the structure of nuclei
and their magnetic moments. Note that the statement that QED describes in principle a
phenomenon does not imply that this helps to understand the phenomenon (e.g., how our
brain works) or that one is able to solve the relevant equations. In contrast, one can obtain
numerically exact answers from QED only for problems involving very few particles (e.g.,
one or two electrons).
The most precise experimental tests of QED come from electron-positron scattering exper-
iments, from atomic physics and from experiments on trapped electrons (e.g., the measure-
ment of the magnetic moment of the electron). For example, the g factor of the electron
is known with a precision better than 10−12. Perturbative calculations in α (for, e.g., a
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single electron) can be performed with similar precision up to order α4.
The techniques needed to perform perturbative calculations within QED and other field
theories are usually covered in courses on quantum field theory. Here we want to discuss
briefly an important aspect: naive perturbation theory produces notoriously not finite
answers but instead one finds corrections of the form α2 ×∞. When QED was developed
it therefore seemed to be a useless and wrong theory for some time.
Let us illustrate this problem with an example from classical physics. We calculate the
energy of a point charge. More precisely, we consider a particle with charge e and radius
R and we consider the energy stored in the electric field.

∫
E2d3r =

∞∫
R

( e
r2

)2
d3r = 4π

∞∫
R

e2

r2
dr =

4πe2

R
= 4πα

~c
R
→∞ for R→ 0

Classical physics therefore predicts an infinite energy for a single electron. It turns out that
this divergence is not a problem in QED. Here quantum fluctuations induce an effective
radius of the electron given by Reff = ~

mc and the strong divergence with 1/R is gone.
It turns out, that it is, however, replaced by a weaker, logarithmic divergence. A field
theoretical calculation of the energy (or, equivalently, the mass) of an electron at rest
arising from its electric field and the absoprtion and emission of virtual photons at rest
gives

m ≈ m0

(
1 +

3α0

4π
ln
( Λ2

m2
0c

4

)
︸ ︷︷ ︸
∞ forΛ=∞

)
(3.50)

where m0 and α0 are the mass and fine-structure constants entering the theory and we
had to introduce a new parameter, Λ, usually called cutoff, which is the maximal possible
energy (of, e.g., virtual photons). Λ plays the same role as the inverse radius 1/R in the
classical example given above. For Λ→∞ the perturbative correction diverges. How can
this result be interpreted?
The solution to this problem consist of two steps. In the first step, called regularization
one has to perform a calculation for finite but large Λ carefully keeping track of all diverging
contributions. From this calculation, one obtains a formula for some physical observable,

Ai = Ai(α0,m0,Λ) (3.51)

which depends not only on the ’bare’ coupling constant α0 and the ’bare’ mass m0 but
also the cutoff Λ (the ’bare’ parameters are the parameters entering our field theory for a
given value of Λ).
The main element of the second state, renormalization, is to realize that m0 and α0 are
not the measured mass and fine structure constant. Those have to be computed from an
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extra calculation. Like for any other observable, one finds

m = m(α0,m0,Λ), α = m(α0,m0,Λ) (3.52)

While α0, m0 and Λ are unknown, the measured mass m and the measured strength of
the Coulomb potential α are known from experiments. For a given Λ, one can solve Eq.
(3.52) for α0 and m0 to obtain

m0 = m0(m,α,Λ), α0 = α0(m,α,Λ)

These equations can now be used in Eq. (3.51) to calculate

Ai = Ai(α0(α, m, Λ), m0(α, ,m, Λ), Λ) ≡ Ai(α, m, Λ) (3.53)

For QED one finds surprisingly that Ai expressed in this way in terms of the measured
values of m and α is finite and independet of Λ for large Λ. Predictions for experiments
can therefore be obtained from

Ai = lim
Λ→∞

Ai(α,m,Λ) (3.54)

Theories, which have this remarkable property that all dependence on the cutoff Λ vanish
after the coupling constants are fixed with a few experiments, are called renormaliz-
able. It turns out, that (in contrast to many other possible theories) Gauge theories are
renormalizable. In 1999 t’Hooft and Veltman received the Nobel prize for showing that
the theory of electroweak interaction (which includes QED and the Higgs mechanism) is
renormalizable.
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4 Scattering Theory

Scattering experiments play a decisive role in physics. Often the only way to find out
what is inside a material, an atom or the atomic nucleus is to do a scattering experiment
by shooting something at the object of interest. In 1911, for example, Ernest Rutherford
scattered α particles from a gold foil. His amazing conclusion was that practically all of the
scattering came from a tiny nucleus smaller than 10−14m, less than 0.01% of the the size
of an atom. A more modern example are the scattering experiments at the Large Hadron
Collider (LHC) at the CERN in Geneva, where protons and antiprotons are accelerated in a
with a diameter of 26 km with velocities of 99.999999% c. But also phenomena in everyday
life, for example the blue sky during the day and the red sunset are a consequence of an
energy-dependent scattering rate of photons. Other example for scattering experiments
are the use of seismic waves to investigate the properties of the core of the earth or the use
of neutron scattering to investigate the properties of materials.
In this chapter we will develop methods to calculate the scattering properties of quan-
tum particles. We thereby focus for simplicity on the scattering of electrons in the non-
relativistic limit.

4.1 Scattering cross-section

A central quantity which we will use to describe the scattering from an obstacle is the
differential cross section. Here one considers an experiment characterized by a constant
flux of incoming particles (e.g., electrons). The incoming flux, I, is described by the number
of incoming particles (often of a fixed energy) per area and time,

I =
#particles
time× area
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detector

target

�ux of incoming
particles

∆Ω

The scattered particles are detected
with a detector located far away
from the scattering target. We de-
scribe the direction in which the de-
tector is located either by two angles
θ and φ or by the unit vector Ω̂. The
detector is assumed to count all par-
ticles arriving within a small open-
ing angle ∆Ω.

∆N is the number of detected particles during the time interval ∆t. The differential cross
section is then defined as

dσ(Θ, ϕ)

dΩ
=

number of counts
time-intervall× incoming flux× solid angle of detector

=
∆N

∆t · I ·∆Ω

units:
[

dσ

dΩ

]
=

#× time× area
#× time× solid angle

=
area

solid angle
(4.1)

In general, the differential cross section will only depend on the orientation of the detector
(parametrized by θ and φ), the direction of the incoming flux and the energy (and type) of
the incoming particles. It is independent of the incoming flux (as long it is small enough to
avoid non-linear effects) and of the size of the detector (as long as the angular resolution
is sufficient).
The total scattering cross section: can be obtained by integrating the differential cross
section over all directions

σ =
everything scattered
time× incoming flux

=

∫
dσ

dΩ
dΩ =

∫
dσ(θ, ϕ)

dΩ
sin(θ) dθdϕ

The total cross section has the units of an area.
For the interpretation of σ, consider a flux of classical
particles scattering from an obstacle. All particles hit-
ting the obstacle are scattered. Therefore the number
of scattered particles per time is given by the effective
area of obstacle perpendicular to the beam of incoming
particles times the incoming flux.

We therefore find that the total cross section is in this case exactly given by this area.
σ = effective area of obstacle ⊥ to beam

For a hard sphere of radius R, for example, one obtains σ = πR2 in the classical limit.For
scattering experiments in high-energy physics, the cross section is often measured with the
unit 1 barn = 1 b = 100 (fm)2 = 10−28m2. The word barn refers allegedly to the saying ‘as
big as a barn’ (in German: so groß wie ein Scheunentor), describing a cross section which
is rather easy to detect in a typical high-energy experiment.
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4.2 Scattering states

We will now study the quantum mechanical problem of scattering from a given potential
V (~r) in the non-relativistic limit. We therefore search for solution of the Schrödinger
equation (

− ~
2

2m
∇2 + V (~r)

)
ψ = E ψ

with a boundary condition which describes an incoming plane wave, Ψin = eik0z. Far
away from the detector, we assume that the potential vanishes, V (~r → ∞) = 0. In
this region, the Schrödinger equation simplifies to

(
− ~2

2m∇
2 − E

)
ψ = 0, or, after Fourier

transformation
(
∇2 + k2

)
ψ = 0 as E = ~2k2

2m . Far away from the scattering target, one
therefore has a linear superposition of plane waves with momenta which all have the same
modulus, |~k| = k0.
How does the outgoing, scattered wave can be described far away from the scattering
center?

target

incoming
plane wave

outgoing
spherical
wave

While the incoming plane wave has the prop-
erty that the current per area is a constant
(more precisely, the probability current), the
outgoing spherical wave comes from a point-
like scattering center and far away from the
scattering center it therefore has to have the
property that at fixed distance r the current
through a solid angle,

∫
jr2dΩ, has to be inde-

pendent of r. Therefore the current has to de-
cay with j ∼ 1/r2 and the wave function with
1/r.

This is precisely the property of a spherical wave (as we will check below)

ψout ∼
1

|~r|
eik0|~r|

Such a wave can be considered as a superposition of plane waves ei~k~r = eikr cos θ with fixed
k = |~k| but averaged over angles.
We use these results to guess the general solution of the scattering problem for r → ∞

ψ(|r| → ∞) = c
(

eik0z︸︷︷︸
incoming
plane wave

+ f(ϑ, ϕ)
eik0r

r︸ ︷︷ ︸
outgoing

spherical wave

)
(4.2)

To interpret this important result and check our arguments, we have to calculate the
corresponding (probability-) current density

~j =
1

2m

(
ψ∗(−i~~∇)ψ + h.c.

)
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For the incoming flux, we obtain a current into the z direction, ~jin = ẑ ~k0
m |c|

2. For the calcu-
lation of the outgoing flux, we recall that ∂

∂~rh(r) = ∂r
∂~rh
′(r) = r̂h′(r) as

(
∂
∂~r

√
x2 + y2 + z2

)
=

r̂. Therefore, ∂
∂~r

eik0r

r = r̂ik0
eik0r

r +O( 1
r2 ) and the outgoing current is given by

~jout =
~k0

m
|c|2 |f(ϑ, ϕ)|2 1

r2
+O(

1

r3
) = |~jin|

|f(ϑ, ϕ)|2

r2

Now consider a particle detector with the opening angle ∆Ω. The area where it detects a
current is given by Ad = r2∆Ω. Therefore the total probability current into the detector
(the incoming flux) is given by Idetector = |jin| |f |2 ∆Ω and we find for the differential cross
section the important result

dσ

dΩ
=

total flux into detector
incoming flux / area×∆Ω

= |f(ϑ, ϕ)|2 (4.3)

To calculate the scattering cross section determined, we therefore only need to determine
the scattering amplitudes f(ϑ, ϕ) obtained from the behavior of the scattering states
for r → ∞. The modulus squared of the scattering amplitudes determines the probability
that particles are scattered into the direction given by ϑ and φ.
A remark on the interpretation of the wave function: Above, we discussed a single-particle
Schrödinger equation and calculated probability currents. We did, however, not specify
the normalization constant c. For scattering states, a normalization with total probability
1,
∫
|Ψ|2 = 1, is problematic, as one cannot easily define a finite system with has boundary

conditions consistent with the scattering state. We have therefore not specified c (it drops
out from the final result). For a more rigorous treatment, one could, for example, build a
wave packet out of the scattering solutions and normalize the wave function of this wave
packet. For practical purposed, one can also choose c in such a way, that the incoming
current jin has nominally the units number of particles per area and time and adjust it to
the experimental flux of particles. Here one should, however, not forget that we are only
considering a single-particle wave function.

4.3 Scattering from central potential: phase shift

For a rotationally invariant central potential, V (~r) = V (r), the determination of the differ-
ential cross section simplifies significantly as one can use angular momentum conservation.
We search for simultaneous eigenfunctions of H, L2, Lz with E = (~k)2

2m . They have the
general form

ψl,m,k(r, ϑ, ϕ) = Y m
l︸︷︷︸

spherical
harmonics

(ϑ, ϕ)
ukl(r)

r
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where we assume that the reader is already familiar with the spherical harmonics Y m
l which

are functions of the angles only, which have the property

L2Y m
l = l(l + 1)~2Y m

l , LzY
m
l = ~mY m

l m = −l, . . . , l

Plugging this ansatz into the Schrödinger equation, one obtains the radial Schrödinger
equation for ukl(r)

(
− ~

2

2m

∂2

∂r2
+
l(l + 1)~2

2mr2
+ V (r)

)
ukl(r) =

(~k)2

2m
ukl(r) (4.4)

with ukl(r = 0) = 0

This equation has to be supplemented by a normalization condition. From
∫
|ψ|2 d3r = 1

follows the condition
∫
|Y m
l |2︸ ︷︷ ︸

=1

dΩ
∞∫
0

dr r2 |u|2
r2

!
= 1 and therefore

∞∫
0

|uk l|2 = 1.

Our main goal is to analyze the solution for r → ∞ where V (r) = 0 and therefore(
d2

dr2 + k2
)
uk,l(r) = 0. Therefore for r →∞ we obtain necessarily

uk,l(r) = Aeikr +B e−ikr

As this is a stationary state, current conservation implies that |A|2 = |B|2. Therefore we
can write

uk,l(r → ∞) = |A|
(
eikr ei ϕA − e−ikr ei ϕB

)
= c

(
e−ikr ei l

π
2 − eikr e−i l

π
2 e2 i δl

)
(4.5)

= c′ sin

(
kr − lπ

2
+ δl

)
This equation defines the

scattering phase shifts δl(k)

which are, in general, functions of the momentum k. The extra factors e±i
π
2
l have been

chosen such that: δl = 0 for V (r) = 0 as we will show below. The scattering phase shifts
encode all information on V (r) needed to describe any scattering experiment!
We can plug our result into the equation for the wave function

ψl,m,k(|~r| → ∞) = −Y m
l (ϑ, ϕ)

( e−ikr ei l
π
2

2ikr︸ ︷︷ ︸
incoming

spherical wave

− eikr e−i l
π
2 e2 i δl(k)

2ikr︸ ︷︷ ︸
outgoing spherical wave

with extra phase shift δl(k)

)
(4.6)
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We will now check the limit V = 0.(
− ~

2

2m

d2

dr2
+
l(l + 1)~2

2r2m

)
uk, l(r) =

~k2

2m
uk, l(r)

⇔
(

d2

dr2
+ k2 − l(l + 1)

r2

)
uk, l(r) = 0

· 1
k2

⇔
x=k·r

(
d2

dx2
+ 1− l(l + 1)

x2

)
ul(x) = 0

with uk, l(r) = ul(k · r︸︷︷︸
x

). This equation is solved by

uk, l(r) ∝ 2kr (α jl(k r) + β yl(k r)) (4.7)

with the spherical Bessel functions

jl(x) = (−x)l
(

1

x

∂

∂x

)l sin(x)

x
first kind

yl(x) = −(−x)l
(

1

x

∂

∂x

)l cos(x)

x
second kind

In the following, we will mainly need the asymptotic behavior of these functions which is
easily obtained from their definition

jl(x→ ∞) =
1

x
sin

(
x− l π

2

)
, jl(x→ 0) =

xl

(2l + 1)!!

yl(x→ ∞) = −1

x
cos

(
x− l π

2

)
, yl(x→ 0) = −(2j − 1)!!

xl+1
(4.8)

where (2l + 1)!! = (2l + 1) · (2l − 1) · (2l − 3) . . .. As uk l(r = 0) = 0, we can immediately
conclude that without a scattering potential, V (r) = 0, uk l(r) = 2kr jl(k · r) and therefore

uk l(r → ∞) = c · sin
(
kr − l π

2

)
= c′

(
e−ikr eil

π
2 − eikr e−il

π
2

)
If we compare this to Eq. (4.5) we conclude that indeed δl = 0 for V = 0.

4.4 Phase shifts & cross section

We have found two ways to express the wave functions of a scattering problem for r →∞,
first the formula eik0z + f(ϑ, ϕ) eikr

r and second the formula (4.6) for ψl,m,k(~r) expressed
in terms of phase shifts δl. If we can relate the two formulas, we will be able to express
f(ϑ, ϕ) and therefore the differential cross section by phase shifts only.
To reach this goal, we have to express eik0z in incoming spherical waves. Here we can use
that eik0z is a solution of the Schrödinger equation for V = 0. Therefore it can be written
in the form

eikz = eik cos(ϑ) =
∑

Y m
l (ϑ, ϕ) jl(k r) al m
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Our goal is to determine the (up to now) unkown parameters al m. As eik cos(ϑ) depens
only on ϑ but not on φ, only m = 0 contributes to the sum. We recall (from some other
course which gave a more thorough introduction to spherical harmonics) that Y 0

l (ϑ, ϕ) =√
2l+1
4π Pl(cos(ϑ)), where Pl is a Legendre Polynomial defined by Pl(x) =

1

2l l!

dl

dxl
(x2− 1)l.

Therefore we can write

eikr cos(ϑ) =
∑

αl jl(k r)Pl(cos(ϑ)) (4.9)

The prefactors αl can, e.g., be determined from a Taylor expansion

eikr cos(ϑ) =
∑
n

(ikr cos(ϑ))n

n!
(4.10)

If we use from Eq. (4.8) that jl(x) = xl

(2l+1)!! +O(xl−1) and that

Pl(x) =
1

2l l!

dl

dxl
(x2l + . . .) =

(2l)!

l! l! 2l
xl +O(xl−1)

we find for the product of the two functions

jl(k r)Pl(cos(ϑ)) =
2l!

(2l + 1)!! 2l(l!)2
(k r)l(cos(ϑ))l +O((kr)m (cos(ϑ))n)

with: m 6=n

Now we can compare the coefficients of the two expansions (4.9) and (4.10) by setting
n = l and find

in

n!
= αn

(2n)!

(2n+ 1)!! (n!)2
⇒ αn =

in (2n+ 1)!! 2nn!

(2n)!
== in (2n+ 1)

where we have used for the last equation (2n + 1)!! 2n n! = (2n + 1) · (2n − 1) · (2n − 3) ·
. . . · 2n(2(n− 1)) · (2(n− 2)) = (2n+ 1)!. We therefore obtain

eikr cos(ϑ) =
∑
l

il(2l + 1) jl(kr)Pl(cos(ϑ)) (4.11)

We want to use this equation to rewrite

ψ(r → ∞) = eikr cos(ϑ)) + f(ϑ)
eikr

r

by using Eq. (4.11) and from Eq. (4.8) that jz(x → ∞) = 1
x

1
2i

(
ei(kr−l

π
2

) − e−i(kr−l
π
2

)
)
.

Therefore,

ψ(r → ∞) =
∑
l

(−1)
il(2l + 1)

2i

(e−ikr eilπ2
kr︸ ︷︷ ︸

incoming

− e
ikr e−il

π
2

kr

)
Pl(cos(ϑ)) + f(ϑ)

eikr

r︸ ︷︷ ︸
outgoing

98



We use now that ψ(r → ∞) can be written as a linear combination of ψl,m,k obtained
from Eq. (4.6)

ψ(r → ∞) =
∑
l

βl Pl(cos(ϑ))

(
e−ikr eil

π
2

kr︸ ︷︷ ︸
incoming

− e
ikr e−il

π
2

kr

(
1 + e2iδl − 1

)
︸ ︷︷ ︸

outgoing

)

Comparing the two equations, we find βl = (−1) i
l(2l+1)

2i and

f(ϑ) =
∑
l

(
βl(e

2iδl − 1) e−il
π
2 Pl(cos(ϑ))(−1)

1

k

)

Using furthermore e2iδl − 1 = eiδl sin(δl) 2i and e−il
π
2 = (−1)l we obtain our final result

f(ϑ) =
1

k

∑
l

(2l + 1) eiδl(k) sin(δl(k))Pl(cos(ϑ)) (4.12)

valid for scattering from a rotationally invariant potential.
For the differential cross section we obtain immediately

dσ

dΩ
= |f(ϑ, ϕ)|2 =

1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1) eiδl sin(δl)Pl(cos(ϑ)

∣∣∣∣∣
2

To compute the total cross section σ =
∫

dσ
dΩ dΩ we use that

∫
Pl(cos(ϑ))Pl′(cos(ϑ)) dΩ =

∫
(Y 0
l (ϑ))∗

√
4π

(2l + 1)
Y 0
l′ (ϑ)

√
4π

(2l′ + 1)
dΩ = δll′

4π

2l + 1

and finally obtain the simple formula

σ(k) =
4π

k2

∑
l

(2l + 1) sin2 δl(k) (4.13)

Note that the total cross section has the unit of an area (set by the wavelength of the
incoming particles). We will discuss examples for the formula in the next chapter.
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4.5 Scattering length, resonant scattering

In this section we will mainly discuss some examples for scattering and use this to introduce
the concept of the scattering length and of resonant scattering.
First, we consider the quantum-mechanical scattering from a hard sphere of radius R.
We therefore have to solve the radial Schrödinger equation(

− h2

2m

d2

dr2
+
l(l + 1)

2mr2

)
ukl(r) =

(~k)2

2m
ukl(r)

for r > R with the boundary conditions ukl(R) = 0.
We already know that the solution of this equation are given by spherical Bessel functions,
see Eq. (4.7), and therefore we just have to impose the boundary condition.

ukl = 2kr( αjl(kr) + βyl(kr)︸ ︷︷ ︸
spherical Bessel function

) with: ukl(R) = 0

⇒ ukl(r) = 2kr

(
jl(kr)−

jl(kR)

yl(kR)
yl(kr)

)
To read off the phase shift, we have to analyze this result for r → ∞. With x = kr, we
use Eq. (4.8)

jl(x→∞) =
sin(x− lπ2 )

x
, yl(x→∞) = −

cos(x− lπ2 )

x

Our goal is to write the result in the form given by (4.5)

u(x → ∞) ∝ sin(x− lπ
2

+ δl) = sin(x− lπ
2

) · cos δl + cos
(
x− lπ

2

)
sin δl

= cos δl

(
sin
(
x− lπ

2

)
+ tan δl cos

(
x− lπ

2

))
Comparing the equations, we find

tan δl =
jl(kR)

yl(kR)
(4.14)

which is the exact result for a hard sphere.
It is instructive to study the limit where the radius of the sphere is much smaller than the
wavelength, x = kR� 1, using (4.8)

jl(x)

yl(x)
=

xl

(2l + 1)!!

(
−(2l + 1)!!

xl+1

)−1

for x→ 0

Therefore we obtain
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δl ≈ −
(kR)2l+1

(2l + 1)!! (2l − 1)!!
∝ k2l+1 for k → 0 (4.15)

δ0 ≈ −kR for k → 0

In this limit, scattering is dominated by s-wave scattering, l = 0, and we obtain from
Eq. (4.13)

σ(k → 0) ≈ 4π

k2
sin2 δ0 = 4πR2

which is 4 times larger than classical value πR2.
Motivated by the result for the hard sphere, we define the scattering length

a = − lim
k→ 0

δl=0(k)

k
(4.16)

By construction, the scattering length of a hard sphere is given by its radius, a = R.
While a is positive for repulsive potentials, it can also take negative values for attractive
potentials. Below, we will see that for resonant scattering it can diverge.
Above, we have analyzed the limit that the radius of the hard sphere is small compared to
the wavelength. It is also instructive to study the opposite limit, kR� 1. For short wave
length, we expect to recover the classical result. Using again (4.14) and (4.8) we obtain

tan δl = −
sin
(
kR− lπ2

)
cos
(
kR− lπ2

) ⇒ δl = l
π

2
− kR for l . lmax

This result is valid up to a maximal angular momentum which we can obtain from the
properties of the spherical Bessel functions. Instead of analyzing those, we estimate the
maximal l from classical physics, which tells us that all incoming particles scatter which
have a distance smaller than R from the origin. As the angular momentum of a particle
passing at distance R is ~L = ~R×~p, L2 = (~kR)2 ≈ lmax(lmax+1) and therefore lmax ≈ kR
for kR� 1.
For the cross section we find from Eq. (4.13)

σ =
4π

k2

∑
l

(2l + 1) sin2 δl ≈
4π

k2

∑
l<lmax

(2l + 1)
1

2

(
1− (−1)l cos(2kR)

)

≈ 4π

k2

∑
l<lmax

(2l + 1)
1

2
≈ 4π

k2

1

2

lmax∫
0

2l dl ≈ 2
π

k2
l2max = 2πR2 for kR� 1

This is unexpected, as this is twice the classical result, πR2. Usually, one has to obtain
classical results when the wavelength of the particle gets shorter and shorter. Does this
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imply that we have found a violation of classical physics in a regime where is has to be valid
or do we have made a mistake in the calculation? Both is not the case. A more careful
analysis shows that 50% of the scattering occurs in a tiny angle almost parallel to the
incoming beam, θ ≈ 0. This angle vanishes for k →∞. An experiment which measures the
total cross section is usually blind for very small angles as it should not count unscattered
particles. Such an experiment will therefore always measure the classical cross section for
kR� 1. In formulas, we can define a cross-section excluding very small angles, θ < θ0, by
σθ0 =

∫ π
θ0

sin θ dθ
∫ 2π

0 dϕ dσ
dΩ . Then limθ0→0 limkR→∞ σθ0 = πR2 is the classical result (easy

to measure), while the other limit limkR→∞ limθ0→0 σθ0 = 2πR2 gives the quantum result.
As a second example, we consider a spherical potential well, spherical potential well

V (r) =

V0 for r < R (region I)

0 r > R (region II)
We can use our previous results to solve first the problem in region I and II separately,
gluing the solutions together in a second step. In region II, for r > R0, we have

uIIkl(r) = 2kr(αjl(kr) + βyl(kr)) ; E =
~k2

2m

In region I, r < R0, the situation is simpler. As yl(kr) diverges for r → 0 and ukl(r →
0) = 0, the solution is expressed in jl(k̃r) only, where k̃ has to be chosen to compensate
for the constant potential V0. We therefore find

uIkl(r) = 2r jl(k̃r), E − V0 =
(~k̃)2

2m

To obtain also a solution of the radial Schrödinger equation for r = R, we have to fulfill
the two boundary conditions

uIkl(R) = uIIkl(R),
d

dR
uIkl(R) =

d

dR
uIIkl(R)

From these two equations, we can determine the unknown coeffcients α and β as function
of k and l.
We will focus on the limit of small k only, where only l = 0 contributes with j0(x) =
sin(x)
x , y0(x) = − cos(x)

x . Therefore the boundary conditions can be written as

sin(k̃R) = α sin(kR)− β cos(kR) = α′ sin(kR+ δ0)

k̃ cos(k̃R) = α′k cos(kR+ δ0)

where we used trigonmetric formulas to rewrite α sin(kR) − β cos(kR) as α′ sin(kR + δ0)

such that α′ and δ0 (the scattering phase shift) are now the constants to be determined.
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After solving the first equation for α′, we obtain from the second equation the condition

k̃ cos(k̃R) =
sin(k̃R)

sin(kR+ δ0)
k cos(kR+ δ0)

or, equivalently,

tan(kR+ δ0) =
k

k̃
tan(k̃R)

which is solved by

δ0(k) = arctan

(
k

k̃
tan(k̃R)

)
− kR, σ =

4π

k2
sin2 δ0(k)

In the limit k → 0 we have (~k̃)2
2m = −V0 and therefore k̃ = 1

~
√
−2mV0. We can use the

definition Eq. (4.16), to calculate the scattering length (i.e. the radius of a hard sphere
which has the same cross section)

a = − lim
k→0

δ0(k)

k
= R

(
1− tan(k̃R)

k̃R

)

a

R
= 1− tan

√
−α√
−α

, α =
V0

( ~R)2 1
2m

= (k̃R)2

In Fig. 4.1, we plot a/R = 1 − tan(
√
−α)√
−α as a function of α = −(k̃R)2 = V0

( ~
R

)2 1
2m

. For
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Figure 4.1: Scattering length as function of α = V0

( ~
R

)2 1
2m

.

V0 > 0, the scattering length is positive and approaches a = R for V0 → ∞ as expected.
a vanishes for V0 = 0 and for small, negative V0 one obtains a negative scattering length.
Something dramatic happens, however, when for sufficiently negative V0 we hit the pole
of the tan function at

√
−α = π (n + 1

2). Let us analyze the proximity of this point by
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setting
√
−α = π (n + 1

2) + ∆x. For ∆x → 0 the scattering length diverges and changes
its sign

a = R− 1

k̃

sin
√
−α

cos
√
−α
≈ 1

k̃∆x

What we observe here is resonant scattering : for sufficiently attractive potential one
gets a bound state (see problem set, where we check this). The scattering length diverges
and changes its sign exactly at the point where a new bound state forms at E = 0.
It is also instructive to calculate the total cross section directly at the resonance for small
but finite kR� 1. We first consider the scattering phase shift

δ0(k) = arctan

(
k

k̃
tan(k̃R)︸ ︷︷ ︸
diverges at
resonance

)
− kR = π

(1

2
+ n

)
− kR︸︷︷︸
�1

≈ π
(
n+

1

2

)

Therefore the total cross section is given by

σ =
4π

k2
sin2 δ0 ≈

4π

k2
=

1

π
λ2

Note that in our limit λ = 2π
k � R and therefore the cross section at the resonance is

strongly enhanced. Directly at resonance it is given by the square of the wavelength.
The effect that the scattering length is strongly enhanced and can be changed easily when
there is a resonant state, is frequently used to control the atom-atom scattering in exper-
iments based on the manipulation of ultracold atom. One uses the above described effect
to modify the atom-atom scattering using a so-called Feshbach resonance controlled by a
small magnetic field. Here one uses that the number of bound states of a system of two
atoms (i.e. the number of molecular states) can be changed by changing the magnetic field.
In this case, the magnetic field plays exactly the same role as the depth of the potential V0

(or, equivalently, the value of α) in the example above. Thus one can control the scattering
length describing the atomic scattering with high precision. One can switch from repulsive
(a > 0) to attractive interactions (a < 0) interactions, and one can strongly enhance the
scattering of atoms. The use of Feshbach resonances is therefore a very important tool in
a field which studies the collective states of ultracold atoms.
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4.6 Lippmann-Schwinger equation and Green functions

The goal of this chapter will be to develop a new formulation of the Schrödinger equation,
the Lippmann-Schwinger equation, which is especially useful to treat scattering problems.
Importantly, we will use this approach to develop methods to calculate scattering rates
and cross sections using perturbation theory.
Let us recall the general setup of a scattering problem. We want to solve the Schrödinger
eqation, H |ψ〉 = E |ψ〉, with the boundary condition of an incoming plane wave. The
Hamiltonian is thereby separated into two parts,

H = H0 + V

where H0 is a part without the scattering center, in our case just, H0 = p2

2m , while V is the
scattering potential. This general setup is flexible and can easily be generalized to complex
many particle systems (e.g. electrons scattering from a defect in a solid).
The boundary condition is defined by an eigenstate of H0

H0 |φin〉 = E |φin〉

while the scattering state should fulfill

(H0 + V ) |ψ〉 = E |ψ〉 ⇔ (E −H0) |ψ〉 = V |ψ〉

It is not difficult to make a first guess, how a formal solution of this problem might look
like

|ψ〉 = (E −H0)−1V |ψ〉+ |φin〉

This equation obviously fulfills the Schrödinger equation (you can show this by multipliying
it with E −H0) and at least for V = 0 the boundary condition. While our final result will
look very similar, it is important to note that this equation is ill defined (and therefore
meaningless) due to the divergence of (E −H0)−1.
To find a solution to this problem, we consider a more well defined setup: Let us assume
that initially (i.e., for t→ −∞) the system was unperturbed, V = 0, with |ψ(t→ −∞)〉 =

|φin〉. Then, V is switched on very slowly (‘adiabatically’), e.g. V (t) = V e−ε|t| for t < 0 and
V (t) = V for t > 0 with ε→ 0. We expect to obtain by this construction an eigenstate |ψ〉
with energy E, (H0 +V ) |ψ〉 = E |ψ〉, which does, however, still remember the initial value
|φin〉. We will not prove this, but the idea is that this setting (adiabatically switching-on
of the perturbation), will give results which are equivalent to a setup where an incoming
wave package is prepared in the far distance, then hits the obstacle, is scattered and finally
detected again in the far distance from the scattering center.
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Let us therefore consider the time dependent Schrödinger equation with

(i~∂t −H0) |φin(t)〉 = 0, (i~∂t −H0) |ψ(t)〉 = V (t) |ψ(t)〉 (4.17)

To find a solution to this problem, let us pretend that we already know the right-hand side
of the equation, V (t) |ψ(t)〉. Then a solution of the left-hand side with the right boundary
condition can be found by introducing a Green function G0(t) with

(i~∂t −H0)G0(t) = δ(t) · 1 (4.18)

with this definition (which we will have to refine soon), we can easily convince ourselves
that

|ψ(t)〉 = |φin(t)〉+

∫
G0(t− t′)V (t′)

∣∣ψ(t′)
〉

dt′

is a solution to the full time-dependent Schrödinger equation. Let us check this:

(i~∂t −H0) |ψ〉 = 0 +

∫
δ(t− t′)1V (t′)

∣∣ψ(t′)
〉

dt′ = V (t) |ψ(t)〉

Now comes the decisive step: to fulfill the correct boundary condition, we have to define
G0(t) in such a way, that |ψ(t)〉 is only modified after the potential has changed (causality).
The Green function which fulfills this condition is called retarded Green function, G+

0 (t)

with
G+

0 (t) = 0 for t < 0

This condition and Eq. (4.18) is fulfilled by the retarded Green function

G+
0 (t) =

1

i~
Θ(t) e−iH0t/~ (4.19)

Let us check this: i~∂tG+
0 = H0G

†
0 + δ(t)1. Note that also a different solution of (4.18)

exists, the advanced Green function (which we mention here only for completeness)

G−0 (t) = − 1

i~
Θ(−t) e−iHt/~

fulfilling the boundary condition G−0 (t > 0) = 0. After having identified the Green func-
tion with the correct boundary condition, we obtain our central result, the Lippmann-
Schwinger equation (here in the time domain)

|ψ(t)〉 = |φin(t)〉+

∫
dt′G+

0 (t− t′)V (t′)
∣∣ψ(t′)

〉
(4.20)

This fulfills our boundary condition |ψ(t→ −∞)〉 = |φin(t)〉 due to G+
0 (t < 0) = 0 and the

full time-dependent Schrödinger equation as we have already proven above. The Lippmann-
Schwinger equation is fully equivalent to the time dependent Schrödinger with the added
advantage that it explicitly includes the boundary condition at t = −∞.
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To obtain stationary states as function of the energy E we will need the Fourier transfor-
mation of G+

0 (t)

G+
0 (E) =

∞∫
−∞

e−iEt/~G+
0 (t) e−

ε
~ t sgn(t)︸ ︷︷ ︸

needed for convergence
at t→ ±∞ , ε infinitesimal

dt =

∞∫
−∞

1

i~
Θ(t) ei(E+iε−H0)t/~ = (E + iε−H0)−1

In the energy domain, we therefore find

G+
0 (E) = lim

ε→ 0+
(E + iε−H0)−1, G−0 (E) = lim

ε→ 0+
(E − iε−H0)−1

retarded Green function advanced Green function (4.21)

The reader is strongly encouraged to check that the all-important ε factors guarantee that
upon transforming the Green function back to the time domain, the proper θ(t) factors
are recovered.
Defining the stationary wave functions |Ψ〉 and |Φin〉 as usually from |ψ(t)〉 = e−iEt/~ |ψ〉
and |Φin(t)〉 = e−iEt/~ |Φin〉, we easily obtain for a time independet V by a Fourier trans-
formation of Eq. (4.20) the stationary Lippmann-Schwinger equation

|ψ〉 = |φin〉+G+
0 (E)V |ψ〉 (4.22)

which is a reformation of the stationary Schrödinger equation appropriate for a scattering
problem, which includes the boundary condition |φin〉. We have been a bit sloppy in one
step of the derivation of this stationary equation: we did not mention during the derivation
that V is switched on adiabatically. It is, however, not difficult to convince oneself that
this factor is precisely taken into account by the ε in the definition of G+

0 (E).
Let us finally check the result

(E −H0) |ψ〉 = 0 + lim
ε→0

E −H0

E + iε−H0
V |ψ〉 = V |ψ〉

By definition, G+
0 (E) is an operator. For calculations it is necessary to write it in a suitable

basis. We will therefore discuss its properties in momentum space and in real space. In
momentum space we can write G+

0 (E) =
∑
k,k′

∣∣k′〉 〈k′∣∣ G+
0 (E) |k〉 〈k|. Therefore we define

g+
0 (k′, k) =

〈
k′|G+

0 (E)|k
〉

= δk,k′ g
+
0 (E,~k)

g+
0 (E,~k) =

1

E + iε− εk
, εk =

(~k)2

2m
(4.23)

Similarly, we can find a representation in real space, which will be especially useful. In
this case, the operator is written as G+

0 (E) =
∫

d3r d3r′ |r′〉 〈r′|G+
0 (E) |r〉 〈r| which can be
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obtained from the momentum-space representation by a Fourier transformation as

g+
0 (E, r′, r) =

〈
r′
∣∣G+

0 (E) |r〉 =

∫ 〈
r′
∣∣ k′〉 〈k′∣∣G+(E) |k〉 〈k| r〉 d3k d3k′

(2π)6

=

∫
d3k

(2π)3
ei
~k(~r−~r ′) 1

E + iε− εk
= g+

0 (E, r′ − r)

In spherical coordinates we obtain using u = cosϑ

g+
0 (E,~r) =

1

(2π)3

∫
dk k2dϕ

1∫
−1

du eikr u
1

E + iε− εk

=
2π

(2π)3

∫
dk k2 e

ikr − e−ikr

ikr

1

E + iε− εk

We can use the residue theorem to evaluate this k integral using that E + iε − (~k)2

2m =
~2

2m ((k0 + iε′)− k) ((k0 + iε′) + k) where we define E = (~k0)2

2m with k0 > 0. For the terms
oscillating with eikr (with e−ikr) we have to close the contour in the upper (lower) half of
the complex plane and obtain a contribution from the pole at k0 + iε′ (at −(k0 + iε′)) as
r > 0. Combining the two terms we get

g+
0 (E, r) = − m

2π~2

eik0r

r
, E =

(~k0)2

2m
, k0 > 0 (4.24)

Note that g+
0 (E, r) has the form of an outgoing spherical wave, a consequence of the iε term

characteristic for the retarded Green function. In contrast, the advanced Green function,

g−0 (E, r) = − m

2π~2

e−ik0r

r

is based on an incoming spherical wave.
It is worthwhile to check the important result (4.24):

(E −H0) g+(E,~r) =

(
E +

~2

2m
∇2

)
g+

0 (E, r) =︸︷︷︸
∇2 1

r
=−4πδ(~r)

δ3(r)

Using the real-space form of the Green function, we can also write the Lippmann-
Schwinger in real space using 〈r| ψ〉 = ψ(r)

ψ(r) = ei
~k0~r +

∫
d3r′ g+

0 (E,~r − ~r ′)V (r′)ψ(r′) (4.25)

Again, this is just a reformulation of the Schrödinger equation. Instead of a differen-
tial equation it is a linear integral equation. As we will see it is especially useful when
calculation scattering problems in perturbation theory.
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As a final check, we can convince ourself that Ψ(r) from Eq. (4.25) indeed fulfills the usual
Schrödinger equation

(E +
~2

2m
∇2)ψ(r) =

∫
d3r′ δ(r − r′)V (r′)ψ(r′) = V (r)ψ(r)

4.7 Born series and Born approximation

For small scattering potential, we can solve the Lippmann-Schwinger equation

|ψ〉 = |φin〉+G+
0 V |ψ〉

iteratively, starting from the case V = 0:

O(V 0) : |ψ〉 = |φin〉

O(V 1) : |ψ〉 = |φin〉+G+
0 V |φin〉

O(V 2) : |ψ〉 = |φin〉+G+
0 V |φin〉+G+

0 V G
+
0 V |φin〉

Repeating this to infinite order, we obtain the Born series

|ψ〉 =
∞∑
n=0

(
G+

0 (E)V
)n |φin〉 =

(
1−G+

0 (E)V
)−1 |φin〉 (4.26)

We can rewrite the last expression

(
1−G+

0 (E)V
)−1 |φin〉 =

(
G+

0 (E)
(
G+

0 (E)−1 − V
))−1 |φin〉

=
1

E + iε−H0 − V
(E + iε−H0) |φin〉

which leads to the simple-looking but rather subtle equation for the scattering state

|ψ〉 = Ω+ |Ωin〉 with Ω+ =
iε

E + iε−H
|φin〉 = lim

t→∞
e−iHt/~︸ ︷︷ ︸

time
evolution

eiH0t/~︸ ︷︷ ︸
removes trivial
time evolution

of Ωin

where Ω+ is called the Møeller operator. To show the last equality, we first note that

lim
t→∞

f(t) = δ
∞∫
0

e−δt
′
f(t′) for δ → 0 if the limit exists. Therefore,

Ω+ |φin〉 =︸︷︷︸
δ= ε

~

ε

~

∞∫
0

e−εt
′/~ e−iHt

′/~ eiH0t′/~ |φin〉 =
ε

~

∞∫
0

e−i(H−E+iε)t′/~ |φin〉

=
iε

E + iε−H
|φin〉
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In the following we will introduce a few useful concepts for scattering theory. For the
Lippmann-Schwinger equation the central element was the Green function G+

0 (E) = (E −
H0+iε)−1 defined with the help of the unperturbed HamiltonianH0. This is also sometimes
called the ’bare’ Green function distinguishing it from the ’full’ Green function defined using
H instead of H0

G+(E) =
1

E + iε−H
=
(
G+

0 (E)−1 + V
)−1

The Taylor series describing the perturbative expansion of G+(E) is given by

G+(E) = G+
0 (E) +G+

0 (E)V G+
0 (E) +G+

0 (E)V G+
0 (E)V G+

0 (E) + . . .

= G+
0 (E) +G+

0 (E)T (E)G+
0 (E)

where the last equation defines the so-called T matrix

T (E) = V + V G+
0 (E)V + V G+

0 (E)V G+
0 (E)V + . . . = V + V G+(E)V

While we will not use the T matrix in the following, but we note that often the in prac-
tical calculation one often calculates first the T matrix and then expresses quantities like
differential cross sections in terms of T .
Our next goal is the determine the scattering amplitudes f(ϑ, ϕ) starting from the Lippmann-
Schwinger equation in real space, Eq. (4.25). As f(ϑ, ϕ) is defined, see Eq. (4.2), from the
asymptotic behavior of the wave function, we have to determine Ψ(r →∞). We have there-
fore to expand g+

0 (r−r′) for large r using that |r−r′| =
√

(~r − ~r ′)2 =
√
r2 − 2~r~r ′ + . . . ≈

r − ~r~r ′

r
. We find for r →∞

g+
0 (r − r′) = − m

2π~2

eik0|~r−~r ′|

|r − r′|
≈ − m

2π~2

eik0r

r
e−ik0~r ′ r̂ +O(

1

r2
)

where r̂ = ~r
r . Therefore, we obtain

ψ(r →∞) ≈ ei~k0~r − m

2π~2

eik0r

r

∫
e−ik0~r ′ r̂V (r′)Ψ(r′) d3r′ ≡ ei~k0~r +

eik0r

r
f(ϑ, ϕ)

This allows us to determine the scattering amplitude

f(ϑ, ϕ) = f(~kout,~k0) = − m

2π~

∫
e−i

~kout~r ′V (~r ′)ψ(r′) (4.27)

Here we have introduced a new notation, by writing f(~kout,~k0) instead of f(ϑ, ϕ). We set

~kout = k0r̂

This is the wave vector of the outgoing wave in the direction r̂ where the detector sits.
Instead of parameterizing the scattering amplitude by the angles ϑ and φ, we can use the
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incoming momentum ~k0 and the outgoing momentum ~kout instead with |~kout| = |~k0|
as we consider only energy-conserving elastic scattering from a potential.

In real space, the first few terms of the Born series, Eq. (4.26) are

ψ(R) = ei
~k0~r+

∫
g+

0 (r−r′)V (r′)eik0r′dr′+

∫
g+

0 (r−r′)V (r′)g+
0 (r′−r′′)V (r′′)eik0r′′dr′dr′′+. . .

This formula has a surprisingly simple (and instructive) interpretation: The first term
describes the unperturbed wave, the second describes that when the wave hits the potential,
each point becomes the source of a new spherical wave (reminiscent of Huygen’s principle
from optics). The third term encodes that the emitted spherical wave of the second term
can again be scattered by the potential the due to the potential. The Born series is therefore
just the sum of all scattering and re-scatteing events.
The lowest order approximation to the Born series, where one keeps only the first two
terms is called Born approximation . This very useful approximation is therefore given
by

ψ(r) ≈ ei~k0~r +

∫
g+

0 (~r − ~r ′)V (r′)ei
~k0~r d3r′

As Eq. (4.27) for the computation of the scattering amplitude already contains V , we just
use ψ(r) ≈ ei~k0~r to obtain the scattering amplitude and therefore also the differential cross
section in Born approximation

f(~kout,~k0) ≈ − m

2π~2

∫
e−i(

~kout−~k0)~r ′V (r′) d3r′ = − m

2π~2
V~kout−~k0

(4.28)

dσ

dΩ
≈
( m

2π~2

)2 ∣∣∣V~kout−~k0

∣∣∣2 +O(V 3) (4.29)

The differential cross section is therefore up to a prefactor just the modulus square of the
Fourier transformation of the potential, V~k =

∫
e−ikrV (r), where ~k is identified with the

transferred momentum, ~kout − ~k0.
As a first example, we consider the scattering from a purely local potential V (~r) = Uδ(~r).
We directly obtain to O(U2) the angle-independent result

dσ

dΩ
=

(
mU

2π~2

)2

A very important example is the Rutherford scattering Rutherford scattering, i.e. the
scattering from a a Coulomb potential V (r) = e2

r . The Fourier transformation Vk = 4πe2

k2

can be used directly in Eq. (4.29) to obtain the cross section. To express the differential
cross section in terms of the angle ϑ and ϕ, we use that

k2 =
(
~kout − ~k0

)2
= k2

out + k2
0 − 2koutk0 cosϑ = 2k2

0(1− cosϑ) = 2k2
0 sin2 ϑ

2
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For the differential cross section, we for the Rutherford scattering the differential cross
section

dσ

dΩ
≈
( m

2π~

)2
(

4πe2

2k2
0 sin2 ϑ

2

)2

=

(
e2

4E

)2

· 1

sin4
(
ϑ
2

)
Due to the smallness of the finestructure constant α this perturbative result is a good
approximation for electrons (or, for Rutherford’s experiment, the α particle) with not too
high energies.
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4.8 Optical theorem

In this section we will derive a useful result. To obtain the total cross section, it is not
necessary to integrate over all angles. Instead it is sufficient to study the scattering in the
direction of the incoming beam.
The basic idea behind this result is almost trivial: due to probability conservation the total
flux of incoming particles is either scattered or not scattered

Iin = Iscattered + Inot scattered

Therefore the total cross section can be obtained by computing how many particles are
not scattered

σ =

∫
dσ

dΩ
dΩ =

Iscattered
jin

=
Iin − Inot scattered

jin

We start our analysis from the asymptotic expansion of the wave function, ψ(r → ∞) ≈
c
(
eik0r + f(~k,~k0) e

ik0r

r

)
where ~k = |k0| · r̂ is the outgoing momentum. The corresponding

probability current is given by

~j =
1

2m

(
ψ∗(−i~~∇)ψ + h.c.

)
≈ |c|2 · ~k0

m

(
k̂0︸︷︷︸

incoming current

+| f(k, k0)︸ ︷︷ ︸
scattered

|2 r̂

r2

+
1

2

(
f(k, k0)

r̂

r
ei(k0r−~k0~r) + f∗(k, k0)

r̂

r
e−i(k0r−~k0~r) + h.c.

))
(4.30)

where we used ~∇ eik0r

r = ik0r̂
eik0r

r + O
(

1
r2

)
. We are mainly interested in the information

encoded in the interference term given by the last line of Eq. (4.30). To determine the
current of not-scattered particles, we have to ask what a detector would measure which is
placed in ’forward’ direction, measuring all not-scattered particles of the incoming beam.
Let us assume that the detector has the opening angle ϑ0 To add all the probability current

Figure 4.2: Sketch of a detector placed in forward direction with opening angle ϑ0 measur-
ing all particles which are not scattered.

into the detector arising from the interference term we need to calculate

∫
ϑ<ϑ0

e±i(k0r−~k0~r)

r
r2 sinϑ dϑdϕ ≈

∫
ϑ<ϑ0

e±ik0r
ϑ2

2

r
r2 dϕϑdϑ ≈ 2π

∫ ∞
0

e±ik0r
ϑ2

2

r
r2ϑdϑ =

2π

±ik0

where we used that for small angles k0r−~k0~r = k0r · (1− cosϑ) ≈ k0r
ϑ2

2 . Furthermore, we

used that for r →∞ only small angles, ϑ .
√
k0r, contribute to the integral over e±ik0r

ϑ2

2 .
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Therefore one can extent the integral over ϑ to ∞.
The contribution from the last line of Eq. (4.30) gives precisely the change of the current
in forward direction due to the impurity and therefore the difference of incoming and
not-scattered current.

σ =
Iin − Inot sca.

jin
= − 2π

ik0

(
f(~k,~k0)− f∗(~k,~k0)

) ∣∣∣∣
k→k0

From this, we obtain directly the optical theorem

σ =

∫
dσ

dΩ
dΩ =

∫ ∣∣∣f(~k,~k0)
∣∣∣2 dΩk =

4π

k0
Im
(
f(~k0,~k0)

)
︸ ︷︷ ︸

loss in forward
direction

(4.31)

The total cross section can be computed from the imaginary part of the scattering ampli-
tude in ’forward’ direction, i.e. for ~k = ~k0.

4.9 Inelastic many-particle scattering

Up to now, we have only considered scattering from a given potential. Due to energy
conservation, the energy of the incoming and the outgoing particle were the same: the
scattering was only elastic. In many situations, however, the energy of the scattered
particle does change as, for example, some energy has been deposited in the scattering
target. In this case, the scattering is called ‘inelastic’.
We will not try to develop a complete theory of inelastic scattering here but focus on the
limit of weak scattering where perturbation theory can be applied. This allows, for exam-
ple, to understand what is measured in a neutron scattering experiment, one of the most
important techniques to detect excitations in some material. As neutrons are interacting
very weakly with matter, perturbation theory can be used reliably.

matterneutron

detectorkin
kout

Figure 4.3: Sketch of a neutron scattering experiment. The kinetic energy of the neutron
changes as some energy is deposited in the system.

We consider an (idealized) scattering experiment, where the incoming particle (e.g., a
neutron) has the wavevector ~kin and the associated energy ET

in = (~ kin)2

2m where m is here
the mass of the neutron (´T’ refers to the ‘testing’ particle). Similiarly, the outgoing
neutron has wavevector ~kout and the energy ETout = (~ kout)2

2m . The detector can measure the
direction of the outgoing particle, Ω̂, and its energy ETout. From this one can compute the
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the energy loss
E = ETout − ETin

.
In a typical scattering experiment, the detector will measure during the time ∆t the number
∆N = number of arriving neutrons which have an energy in the energy interval ETin +E ≤
ETout ≤ ETin+E+∆E, where ∆E is the energy resolution of the detector. In analogy to the
differntial cross section for elastic scattering, Eq. (4.1), one can compute a energy-resolved
differential cross section

dσ(E, ϑ, ϕ)

dΩ dE
=

∆N

∆t∆E∆Ω
· 1

incoming flux

which is a function of the transfered energy E. The total cross section is obtained by
integrating over all angles and over the transferred energy,

σ =

∫
dE

∫
sinϑ dϑdϕ

dσ(E, ϑ, ϕ)

dΩ dE

To describe the experiment, we consider the Hamiltonian

H = H0
T︸︷︷︸

testparticle
e.g. neutron

+ H0
S︸︷︷︸

complex
system

+ Hint︸︷︷︸
interaction of test particle

with system

Various interactions are possible. For neutrons, for example, the dominant interactions are
with the nuclei in the system and also a dipole-dipole interaction of the electron spin with
the spin of the neutron. For simplicity, we consider just a density-density interaction

Hint =

∫
d3rd3r′ ρT (r)︸ ︷︷ ︸

density of
test particle

V (r − r′) · ρS(r′)︸ ︷︷ ︸
density in
the system

For neutrons, ρS could be the density of nuclei. In this case one can model the potental
by a contact interaction, V (r − r′) = cδ(~r − ~r ′).
For neutrons, Hint is typically very small, and one can safely use perturbation theory, i.e.,
the generalization of Born’s approximation for inelastic scattering. Equivalently, we can
just use Fermi’s golden rule, used previously by us in Sec. 2.3.2. According to Fermi’s
golden rule, the transition rate from the initial to the final state is given by

Γout, in ≈
2π

~
|〈out|Hint |in〉|2 δ(Eout − Ein) +O(H3

int) (4.32)

where the initial state is given by

|in〉 = |k〉︸︷︷︸
test particle

|ns〉︸︷︷︸
system

, energy Ein =
(~ k)2

2m
+ Esns

115



The total incoming energy is just the sum of the energy of the system, Esns , and the
energy of the test particle. |ns〉 is in general a very complicated quantum state describing
all the particles in the system under investigation, with Hs |ns〉 = Esns |ns〉. At a finite
temperature T this state is occupied with the probability

Pns =
e−Ens/kbT

Z
; Z =

∑
ns

e−
Esns/kbT

For the outgoing state we write

|out〉 =
∣∣k′〉 ∣∣n′s〉 , Eout =

(~k′)2

2m
+ Esn′s

where the quantum state |n′s〉 of the system after scattering is in general not known (and
not measured).
To obtain the scattering rate, we have to sum (4.32) over all incoming states with the
weight Pns and also over all possible final states n′s as each of them contributes to the
probability to have a neutron scattered into the state k′.

Γk,k′ =
2π

~
∑
ns,n′s

Pns
∣∣〈k′∣∣ 〈n′s∣∣Hint |ns〉 |k〉

∣∣2 δ(En′s − Ens − E)

Here

E =
(~k)2

2m
− (~k′)2

2m
, ~q = ~k′ − ~k

are the energy loss and the transfered momentum, respectively. It is useful to rewrite the
matrix element

〈
k′
∣∣ 〈n′s∣∣Hint |ns〉 |k〉 =

∫
d3r d3r′

〈
k′
∣∣ ρT (r) |k〉 V (r − r′) ·

〈
n′s
∣∣ ρs(r′) |ns〉

In first quantized language, the density operator for our test particle (the neutron) is just
given by ρT (~r) = δ(~x − ~r) and therefore 〈k′| ρT (r) |k〉 =

∫
ei(
~k−~k′)~x δ(~x − ~r) = ei(

~k−~k′)~r =

e−i~q~r. Using the Fourier transformation of the scattering potential and the density of the
measured particles, V (r − r′) =

∫
VQ e

i ~Q(~r−~r ′) d3Q
(2π)3 and ρs(r

′) =
∫
ei
~Q′~r ′ρs(Q

′) d3Q′

(2π)3 we
obtain

〈
k′
∣∣ 〈n′s∣∣Hint |ns〉 |k〉 = V~q

〈
n′s
∣∣ ρs(~q) |ns〉

To calculate finally dσ
dΩ dE , we need number of k′ states flying into the detector for a given

opening angle and given energy range, [Etout, E
t
out + ∆E], Here we use that

d3k′

(2π)3
=

1

(2π)3
k′2 dk′dΩk =

1

(2π)3
k′2

dk′

dE
dE′dΩk′ =

1

(2π)3
k′
m

~2
dE′dΩ

as dE′/dk′ = ~2k′/m. Dividing further by the incoming flux and collecting all results, we

116



find

d2σ

dΩk dE
=

1

(2π)3
k′
m

~2

1
~k
m

2π

~
∑
nsn′s

Pns
∣∣〈n′s∣∣V~q ρs(~q) |ns〉∣∣2 · δ(E′ns − Ens − E)

or, equivalently,

d2σ

dΩkdE
=
k′

k

( m

2π~2

)2
S(~q,E)

with ~q = ~k′ − ~k ; E =
(~k)2

2m
− (~k′)2

2m

with the correlation function

S(~q,E) =
∑
ns,n′s

Pns
∣∣〈n′s∣∣V~q ρs(~q) |ns〉∣∣2 · δ(E′ns − Ens − E) (4.33)

=

∫ ∞
−∞

dt

~
eiEt/~

〈
Φ−~q(t) Φq(0)

〉
with Φ~q = V~q ρ

s(~q) (4.34)

Before we derive the last line of this equation, let us interpret the result. The energy-
resolved differential cross section measures directly the ~q and E dependence of the corre-
lation function S(~q,E). Here ~q is the transferred momentum and E the transfered energy
of the scattering test particle (the neutron), respectively. S(~q,E) gives rather direct in-
formations about the excitation spectrum of the system which is investigated. A peak in
S(~q,E) as function of E signalizes that there is an excitation in the system with energy E
and momentum ~~q. That the excitation has the energy E, can directly be seen from the
δ-function in Eq. (4.33). To show that the excitation has momentum ~~q, one uses that
|ns〉 and |n′s〉 can (in a translationally invariant system) be chosen as (quasi-) momentum
eigenstates. One can then show that the matrix element 〈n′s|V~q ρs(~q) |ns〉 is only finite if
the (quasi-) momenta of |ns〉 and |n′s〉 differ by ~q. We conclude

From an inelastic scattering experiment one obtains the correlation function
S(~q,E) which measures excitations with energy E and momentum ~~q obtained
from the energy- and momentum transfer of the scattering particle.

To derive Eq. (4.34), we first not that the time-dependent operator is defined using the
Heisenberg picture, φ−q(t) = eiHt/~φ−qe

−iHt/~. We use the definition of the expectation
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value at finite temperature T

〈
φ−q(t)φq(0)

〉
=
∑
n

e
− En
kBT

Z
〈n|φ−q(t)φq(0) |n〉

=
∑
n,m

e
− En
kBT

Z
〈n| eiHt/~ φ−q e−iHt/~ |m〉 〈m|φq |n〉

=
∑
n,m

Pne
i(En−Em)t/~ 〈n|φ−q |m〉 〈m|φq |n〉

=
∑
n,m

ei(En−Em)t/~ Pn | 〈m|φq |n〉 |2

From a simple Fourier transformation one obtains Eq. (4.33).
Scattering techniques are very useful to obtain precise quantitative information on the
excitation spectrum of a wide range systems, including nuclei, atoms, molecules or solids.
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5 The Standard Model of Particle Physics

This chapter will give a brief introduction to the standard model of particle physics. It
covers about 7 lectures, which are not enough to give a complete picture of all aspects of
the standard model but can, hopefully, give an overview of its structure and of some of its
most important properties.
The standard model is an extremely successful theory of – with the exception of gravity
– all phenomena in the world around us. It is one of the most important intellectual
achievements of physics. It show that it is possible to find an extremely compact description
of nature based on a few symmetry principles. It has been tested in a large number of
high-precision experiments. Nevertheless, the structure of the standard model also suggests
that it is not the final answer to the question of how the world around us is build: like
many other theories it is an approximation valid for only a certain range of energies.
While we will discuss in this chapter some of the most important building blocks of the
standard model, we will not be able to discuss how one can actually calculate, e.g., scat-
tering cross sections. For this further techniques have to be developed which are usually
covered in courses on quantum field theory. The reader is encouraged to use this chapter
also to recapitulate some basic notions of the previous chapters of this book, including
topics like the quantization of light, relativistic quantum mechanics, or the principles of
Gauge invariance. We denote such opportunities in the following by a box in the following
way:

recapitulate: ...

Some of the conventions used in the following are taken from the book by Peskin and
Schröder, An introduction to QFT, which gives a much deeper coverage of the topic than we
can present here. The book of Nachtmann, Elementary Particle Physics, is recommended
as it gives a good non-technical overview over the standard model.

5.1 Lagrange formalism

When writing down the field theory describing the standard model, we will use in the
following the Lagrange formalism. We assume that the reader is familiar with this approach
from the theory lecture on analytical mechanics. We will, however, recapitulate the basic
concepts in the following.
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In classical physics, one can replace Newton’s laws by a new postulate, Hamilton’s vari-
ation principle .

recapitulate: Lagrange formulation of classical
mechanics

Here one investigates the properties of the action S which is defined as a functional of the
path x(t) of a particles, S = S[x(t)]. Hamilton’s variational principle states, that along
the physical trajectory the action is extremal (a miminum, a maximum or a saddle point),
variations of S therefore vanish when the path is varied, x(t) → x(t) + δx(t) while the
endpoints at t = 0 and t = T are kept fixed

δS = S[x(t) + δx(t)]− S[x(t)] = 0 with δx(0) = δx(T ) = 0

An action can usually be written as an integral over a Lagrange function L(x(t), ẋ(t), t),
S =

∫ T
0 dtL(x(t), ẋ(t), t). In this case the variation of the action is given by

δS = S[x(t) + δx(t)]− S[x(t)] =

T∫
0

dt

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ︸ ︷︷ ︸

integration
by parts

)

=

T∫
0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx(t) +

∂L

∂ẋ
δx
∣∣∣T
0︸ ︷︷ ︸

=0 for
δx(0)=δx(t)=0

From the condition δS = 0 for arbitrary δx(t) we therefore obtain the Euler-Lagrange
equation

d

dt

∂L

∂ẋi
=
∂L

∂xi

written here for several components, i = 1, .., N .
For the Lagrange function L = 1

2mẋ
2 − V (x), for example, the Euler-Lagrange equations

give Newton’s law,

d

dt
(mẋ) = − ∂

∂x
V (x)

Newton’s equation are differential equations. The same formalism can, however, also be
applied for partial differential equations, i.e. for Schrödinger, Klein-Gordon, Maxwell, or
Dirac equations. Why do we want to do this? For us, one main reason is that the Lagrange
formalism provides a simple and compact way to write down theories and to identify their
symmetries. The Lagrange formalism also has the advantage that it allows to choose
suitable variables (important for the discussion of the Higgs mechanism). Furthermore, it
is also a convenient starting point to formulate a theory in second quantization. Here one
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can either use the Lagrange formalism to define momenta (pi = ∂L/∂xi) and postulate
canonical commutation relations ([xn, pm] = iδnm~). Alternatively, there exists also a
formulation of quantum mechanics and quantum field theory based on actions S. This
is discussed in courses on quantum field theory: it turns out that it is possible to obtain
quantum mechanical amplitudes just by summing eiS/~ over all possible configurations.
To generalize Hamiltonian’s principle to (classical) field theories, we have to consider ac-
tions which are functional of field configurations Φi(r, t), i = 1, 2, ...N . In one example, Φi

may describe the displacement of a guitar string in another example it could be a wave
function of a single particle. Assuming that the action is a local functional, it can be
written as

S[φ] =

∫
d3r

t∫
0

dt′ L(φ(~r, t), ∂t′φi, ~∇φi(~r, t′))

=

∫
c

d4xL(φi, ∂µφi), µ = 0, 1, 2, 3 with ∂µ =
∂

∂xµ

Here L is the Lagrange density. As before, we study small variations of the field with fixed
boundary conditions at the time t = 0 and t = T

φi(r, t = 0) = φ0
i (~r) , φi(~r, T ) = φ1

i (
~r) (5.1)

The boundary conditions in real space depend on the type of problem. For a guitar string
one would, for example, consider fixed boundary conditions φ(r = 0) = φ(r = L) = 0. We
will use infinite systems in the following thereby ignoring the boundary conditions.
To derive the Euler-Lagrange equations, we have to consider small variations of the field
configuration by a small space- and time-dependent function δφ(r, t) which does vanish at
the boundaries t = 0 and t = T .

δS = S[φi + δφi]− S[φi] =

∫
d4x

(
∂L

∂φi
δφi +

∂L

∂ ∂µφi
∂µδφi

)
=

∫
d4x

(
∂L

∂φi
− ∂µ

∂L

∂ ∂µφi

)
δφi + surface terms

By demanding that δS vanishes for arbitrary δφ(r, t), we obtain the Euler-Lagrange
equations for a field theory

δS = 0 ∀ δφi ⇒ ∂µ
∂L

∂(∂µφi)
=
∂L

∂φi
(5.2)

As a first example, we will consider the Lagrange density for a real field φ(~r, t) = φ(x) ∈ R.
which has the property to be Lorentz invariant. As d4x = c dt d3~r is Lorentz invariant, a
Lorentz invariant Lagrange density implies a Lorentz invariant action S. Considering only
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terms quadratic in φ, a natural candidate is

L = (∂µφ) (∂µφ)− c2m2φ2 =
1

c2
(∂tφ)2 −

(
~∇φ
)2
− c2m2φ2 (5.3)

Using that ∂0 = 1
c
∂
∂t the Euler-Lagrange equations are given by

1

c

∂

∂t

∂L

∂ ∂tφ/c
+ ~∇ ∂L

∂~∇φ
=

1

c

∂

∂t

(
2

1

c
∂tφ

)
+ ~∇

(
−2~∇φ

)
= 2

(
1

c2
∂2
t − ~∇2

)
φ

= 2∂µ ∂
µ φ

!
=
∂L

∂φ
= −2c2m2φ

We therefore obtain directly the Klein-Gordon equation

(
∂µ∂

µ + c2m2
)
φ = 0

Similarly, one can find a Lagrange density describing the Dirac equation formulated for a
spinor field, ψ(r, t) ∈ C4. For spinors, the following Lagrange density is Lorentz invariant

L = ψ(i/∂ −m)ψ (5.4)

where /∂ = γµ∂µ.

recapitulate: Dirac equation and γ matrices

To calculate the corresponding Euler-Lagrange equation, one can express Ψ and Ψ̄ in terms
of 8 real fields Re(ψ) and Imψ. Much more convenient is, however, to remember that one
can choose arbitrary coordinates when investigating the extrema of the action S. Therefore
one can just consider the four component of ψ and the four components of ψ̄ as 8 fields
independent from each other. One obtains in total 8 Euler Lagrange equations, the first 4
from varying the action by changing Ψ̄i

∂µ
∂L

∂ ∂µψi︸ ︷︷ ︸
=0

=
∂L

∂ψi
⇒ 0 =

∂L

∂ψ̄
= (i�∂ −m)ψ

This already gives the Dirac equation in its usual form. 4 more equations are obtained
from the variations with Ψ

∂µ
∂L

∂ ∂µψ
=
∂L

∂ψ
⇒ ∂µ(iψγµ) = −mψ

This equation looks less familiar but we can easily check that this is the Dirac equation
for Ψ̄ = γ0ψ∗. To check this, consider the Hermitian conjugate of the equation

(
∂µ
(
ψiγµ

))†
= −i (γµ)†

(
∂µψ

)†
= −i (γµ)† γ0 ∂µψ = −mγ0ψ
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Multiplying the equation from the left with γ0 and using that (γ0)2 = 1 and γ0 (γµ)† γ0

one obtains again the standard Dirac equation.

5.2 Lagrange function of electrodynamics

Before searching for a Lagrange function to describe quantum electrodynamics, QED, we
recapitulate a few facts on Maxell’s equations (see also chapter 2.1) using units where
c = 1. As we have seen there, any quantum theory of electromagnetism builds on the
concept of a vector potential. Originally this has been introduced so solve two of the four
Maxwell’s equations.

I) ~∇ ~B = 0, ~∇× ~E + ∂t ~B = 0

II) ~∇ ~E = ρ, ~∇× ~B − ∂t ~E = ~j

The first two equations are solved by introducing the scalar potential φ and the vector
potential ~A by

~B = ~∇× ~A, ~E = −~∇φ− ∂t ~A

Importantly, these potentials are not unique. All physical properties are invariant under a
Gauge transformation

φ → φ+ ∂tΓ(~r, t) ; ~A → ~A− ~∇Γ(~r, t)

It is useful to rewrite these equations and also the current in terms of contravariant 4-
vectors.

Aµ = (φ, ~A), jµ = (ρ,~j)

such that the Gauge transformation takes the form

Aµ → Aµ + ∂µΓ

with ∂µ = ∂
∂xµ

= (∂t,−~∇).

recapitulate: 4-vector notation, Lorentz trans-
formations, chapter 3.1
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The electric and magnetic fields are then described by the field strength tensor

Fµ ν = ∂µAν − ∂νAµ =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


The field strength tensor has two important properties: First, it is manifestly gauge in-
variant as under a Gauge transformation

Fµν → Fµν + ∂µ∂νΓ− ∂ν∂µΓ = Fµν .

Second, it transforms as a tensor under Lorentz-transformation

F → F ′ = ΛTF Λ

Fµ ν → Fµ ν = Λ µ′
µ Fµ′ ν′ Λ

ν′
ν

We will not try to find an action S as a functional of ~Aµ build such that its Euler-Lagrange
equations reproduce Maxwells equations. More precisely, we will pretend that we do not
know Maxwell’s equation. We will instead try to guess the correct action S (and therefore
Maxwell’s theory) guided by symmetries. We demand

1. Lorentz invariance of S

2. gauge invariance

3. simplicity (low powers of the fields)

The field strength tensor is Gauge invariant, a natural way to build something Lorentz
invariant from it, is to consider Fµ ν Fµ ν . If we want to include the electric current jµ in the
action, we have to multiply it by another 4-vector to obtain something Lorentz invariant:
therefore one naturally considers the combination jµAµ. We can therefore expect that the
action should have the form

S[A] =

∫
d4x c1 (Fµ ν F

µ ν) + c2Aµj
µ (5.5)

where c1 and c2 are unknown constants. To confirm Lorentz invariance, note that d4x has

this property as
∣∣∣∣∂x′µ∂xν

∣∣∣∣ = det Λ = 1. We should also check Gauge invariance

S[Aµ + ∂µ Γ]− S[Aµ] =

∫
d4x c2 (∂µΓ)jµ =

∫
d4xc2Γ ∂µj

µ︸︷︷︸
=0

+ surface terms

where we used a partial integration for the last equality. Using charge conservation, ∂µjµ =

0 we see that at least up to surface terms everything is Gauge invariant.
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The Euler-Lagrange equations are given by

∂µ
∂L

∂ ∂µAµ
=

∂L

∂Aµ
⇒ 4 c1 ∂

νFν µ = c2 jµ

Looking at these equations, we see that only the ratio of the two constants, c2/c1, enters.
Fixing this ratio is, however, only a convention (it can be reabsorbed into a redefinition
of the charge). One uses c2 = 4c1 as a convention. An overall prefactor of the action
obviously cannot be obtained by just considering the Euler Lagrange equations. We choose
it in such a way that when switching from the Lagrange- to the Hamilton formalism, the
Hamiltonfunction can be identified with the energy. From this condition, one finds c2 = −1

and therefore

L = −1

4
Fµ νF

µ ν −Aµjµ (5.6)

Amazingly, just from a few simple arguments based on gauge invariance and symmetries,
we were able to derive an action describing all aspects of Maxwell’s equation. Postulating
Gauge invariance also for the Dirac equation and the associated action, we will even be
able to get QED, quantum electrodynamics.

5.3 U(1) gauge invariance and Quantum Electrodynamics
(QED)

recapitulate: Gauge invariance, Sec. 3.4

As discussed in Sec. 3.4, the coupling of matter to electromagnetism follows from one
powerful postulate, the invariance under local phase transformations of the quantum fields
describing charged particles. As we will see later, a very similar principle can be used to
describe also the strong and weak interactions. Therefore we repeat the essential argument
here as it allows us to construct the action describing QED. Related concepts are also
used in general relativity – from this field the expression ‘Gauge invariance’ (in German:
Eichinvarianz) arises (the invariance under changing, e.g., the way how length is measured).
The basic idea of Gauge invariance is to postulate of a invariance of fields under the U(1)
transformation Ψ(r, t) → eiφ(r,t)Ψ(r, t). This can, however, be only be achieved, if one
considers simultaneously a the transformation of the vector potential

Gauge invariance:
All physical observables are invariant under the gauge transformation

Φ(x)→ exp
(
i
q

~c
ϕ(x)

)
Φ(x) , Aµ(x)→ Aµ(x)− ∂µϕ(x) (5.7)

In this case, the combination of derivative and vector potential (‘minimal coupling’) be-
comes Gauge invariant
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Dµ = ∂µ +
iq

~c
Aµ (5.8)

as we have shown in chapter 3.4. Here q is the elementary charge, i.e. the electron charge
for cases when Ψ describes electrons.
To obtain the Lagrange density of QED, we just have to combine the Lagrange density of
the electromagnetic fields, Eq. (5.6), with the Lagrange density corresponding to the Dirac
equation, Eq. (5.4) replacing /∂ = γµ∂µ by /D = γµDµ using Eq. (5.8).

LQED = ψ(i /D −m)ψ − 1

4
(Fµ νFµ ν) (5.9)

This simple Lagrange density (together with the appropriate quantization rules) encodes
all of QED and therefore most of the physics in the world around us. From this one can
derive Maxwell’s equations, the Dirac equation, the Schrödinger equation and describe –
at least in principle – everything from a piece of metal to the laser.1

recapitulate: Quantization of the electromag-
netic field, chapter 2.1

By comparing Eq. (5.9) to Eq. (5.6), one can obtain directly a formula for the current

jµ = − d

dAµ
(ψ(i /D −m)ψ) =

q

~c
ψγµψ

where q can be identified with the electron charge e. This is up to a prefactor consistent
with Eq. 3.21.

5.4 Regularization and renormalization of QED

It turns out, that the Lagrange density (5.9) of QED (together with the corresponding
quantization rules) is not sufficient to define properly the theory of quantum electrody-
namics. This can be seen when trying to calculate physical quantities using perturbation
theory: typical calculations give divergent results. Therefore one also need a way to treat
these divergencies. The reader should study chapter 3.11 where this problem is discussed.

recapitulate: Renormalization and regulariza-
tion, chapter 3.11

1In the Quantum Field Theory course you will discuss that the fermionic field ψ in the Lagrange den-
sity (5.8) is not a complex field but a different mathematical object (a Grassmann field) taking into
account that it describes anticommuting fermions rather than commuting bosons. This does, however,
not have any direct consequences for the arguments we want to make in this lecture.
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Two main results of chapter 3.11 are important for our discussion. First, QED (and the
whole standard model) is only well defined when one defines a cutoff Λ, i.e., a maximally
allowed energy or momentum (this step is called regularization). For finite Λ (and finite
energy) one obtains finite results from perturbation theory, which do, however, diverge for
Λ → ∞. Second, by expressing the results of the calculation in terms of the measured
electron mass and themeasured fine structure constants one obtains results for all physical
observables which are finite and independent of Λ for Λ → ∞ (see chapter 3.11). This
property is called renormalizability and is a feature of all Gauge theories of the standard
model.
While the standard model is renormalizable, this is not true for many other competing
theories. For example, a local interaction of Fermions described by a term

∫
(Ψ†(x)Ψ(x))2

in the Lagrange function (or the Hamilton operator in second quantization language) turns
out to be not renormalizable, implying that in general (unknown) details of the physics
at some high-energy scale influence the physics at low energies, which drastically reduces
the predictive power of a theory. In high-energy physics such non-renormalizable theories
have therefore been viewed as less suitable theories to describe nature.
It is the general believe that the standard model in its present form is only a low-energy
approximation to some other, presently unknown theory. The fact that the standard
model is renormalizable means that one can nevertheless predict all experiments with high
precision without any knowledge of the high-energy theory. While this helps a lot to
understand the laws of nature around us, it also implies that it is very difficult to access
the physics beyond the standard model in present-day experiment. From this point of
view, the success of the standard model is actually the main obstacle to understand what
it behind the standard model.

5.5 Strong interactions: quarks and gluons

5.5.1 Quarks

Protons and neutrons are not elementary particles. High-energy scattering experiment
have revealed that they are actually made of so-called quarks. Quarks are fermionic spin
1/2 particles described by a Dirac equation (see below).

Bound states of 3 quarks are called baryons – the most important examples are
the proton and the neutron – while meson is the name for bound states of a
quark and an antiquark.

A pion is, for example, a meson. A single free quark has never been observed and – as we
will discuss in Sec. 5.5.3 – cannot even exist at low energies: only certain types of bound
states are allowed. As quarks are fermions, this implies that baryons are fermions while
pions act as bosons.
There are, in total, 6 different types of quarks:
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u: up c: charm t: top
d: down s: strange b: bottom

One speaks of 6 different flavors of quarks. As we will see later when discussing electroweak
interactions, the u/d, the c/s and the t/b quarks each form a pair. The quantum numbers
of the quarks, e.g. their charge, will be discussed later in Sec.5.8, after we have worked out
the electroweak theory.
The quarks have all different masses2. With the two lightest types of quarks, the up and
the down quark, one can form a stable bound states of 3 quarks which cannot decay (at
least not within the standard model) as one cannot form states with lower energy starting
from 3 quarks. This lowest-energy state is the proton.

The proton is made from two up and one down quark (uud). The antiproton is
therefore build from two three antiquarks (ūūd̄, denoting here anti-particles by a
bar). The neutron, in contrast, is made from two down and one up quark (udd).

As a single particle in vacuum, the neutron decays after about 15 min (see Sec. 5.6) but
it is stable when it is part of a non-radioactive nucleus. Also an anti-neutron (made from
ūd̄d̄) exist. All other bound states of three quarks decay much faster.
The quark picture was developed in the early 80th by people like Murray Gell-Mann which
tried to understand a large zoo of different baryons and mesons by assuming that they
are bound states of some unknown elementary particles. It was realized early that just
two quarks (the u and d) are not sufficient but that at least a third one was needed.
Indeed the c, t and b quarks are much heavier than the u, d and s quarks and therefore
all ‘lighter’ baryons and mesons are made from the latter three. Ignoring all of the heavier
quarks, one can as a first crude approximation consider the mass of the three remaining
lighter quarks u, d and s as being approximately equal (or even zero). Considering only
the strong interactions, u, d and s also feel the same forces. Therefore an approximate
SU(3) symmetry exist: just changing the u, d and s wave function by an SU(3) matrix,
(u, d, s) → U(u, d, s) with U ∈ SU(3) should not strongly affect the mass of a bound
state.3 This approximate symmetry is called the SU(3)-flavor symmetry, which should
not be confused with the SU(3) gauge symmetry (acting on the color instead of flavor)
discussed in Sec. 5.5.2.
A discussion of the SU(3)-flavor symmetry is not part of this lecture and the remarks
below are therefore perhaps a bit too short but have been added as this approximate
symmetry was historically very important to obtain an understanding how quarks form
bound states. The usefulness of the SU(3)-flavor symmetry relies on the fact that it allows
to classify, sort and even predict the zoo of barionic and mesonic states by using the theory
of representations of SU(3).

2As no free single quarks exist, the precise definition of the mass of a quark is a tricky business. Note
that the mass of the proton is not just the sum of the masses of the quarks it is made from as according
to E = mc2 also the binding energy contributes to the mass.

3SU(3) the is the group of all unitary 3× 3 matrices U with detU = 1.
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We will not explain the representation theory of SU(3) or how it is precisely related to the
baryons and mesons but just remind the reader that one can classify for example atoms by
the total angular moment ~J = ~S+~L. While a singlet state, j = 0, is unique, one obtains two
degenerate states for j = 1/2, three states for j = 1 and so on. Each j = 0, 1/2, 1, 3/2, ...

labels one representation of SU(2) and gives rise to a 2j + 1-fold degenerate state.

recapitulate: total angular moment (Sec. 3.6),
spin-orbit coupling (Sec. 3.10)

Similarly, SU(3) has various representations and one expects that the bound states of
quarks can be labeled by these. The approximate SU(3)-flavor symmetry and the group
theory for SU(3) therefore predicts that there is a group of 8 light mesons (the origin of
the number 8 will become clear in Sec. 5.5.2) of similar mass (3 pions, 4 K-mesons and
1 eta meson) and, similarly, that is a group of 8 light baryons (an octet) to which the
neutron and proton and 6 more baryons belong. Another group of 10 baryons (a decuplet)
can also be viewed as belonging to one representation of the approximate SU(3) flavor
symmetry. Long before the strong interactions had been understood and long before any
bound states of quarks could be calculated (and before even quarks have been introduced),
it was therefore possible to understand the basic structure of baryons and mesons based
on the quark model and some symmetry considerations. This approach was coined the
‘eightfold way’ by Murray Gell-Mann (refering to the ‘Noble Eightfold Path’ of Buddhism).

5.5.2 Color and SU(3) gauge theory

Quarks have an important extra quantum number, their so-called color. Each quark comes
in three different colors, often referred to a red, green and blue. We will also label them
by i = 1, 2, 3. To describe all 6 flavors of quarks we need 72 = 6 × 3 × 4 quantum fields
as each quark (for example a red up-quark) is described by a 4-component Dirac spinor:
the 4 spinor components describe the spin-up and spin-down states of the quark and its
antiparticle. The 12 up-quark fields, for example, we will write in the form

ui(x) =


ui1

ui2

ui3

ui4

 i = 1, 2, 3

where i = 1, 2, 3 describes the color and the second index of uiα is the spinor index. The
Lagrange density of the up-quarks is given for vanishing quark mass by the usual Dirac
equation.

L0 =

3∑
i=1

ūi i/∂ ui
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recapitulate: Dirac equation and its interpreta-
tion, Sec. 3.5

To discuss that color index we group the three colors in a 3-component vector

q1

q2

q3

, where

q = u, d, s, c, t, b for each of the 6 quarks and each qi stands for a 4-component spinor as
discussed above for q = u.
Let us recall that the basic idea behind the theory of electromagnetism is the U(1) gauge
invariance: physical laws and observables do not change under a transformation Ψ →
eiϕ(t,~r)Ψ. The basic idea behind the strong interaction is exactly the same: here one
postulates that the physical laws do not change under an arbitrary local renaming of the
three color states.

~q(x) =

q1(x)

q2(x)

q3(x)

→ ~q′(x) =

q
′
1(x)

q′2(x)

q′3(x)

 = U(x)

q1(x)

q2(x)

q3(x)

 , U(x) ∈ SU(3)

where x = (t, ~r) and U(x) as an element of SU(3) is an arbitary unitary 3× 3 matrix with
detU = 1. The SU(3) Gauge theory of the color-index is called quantum chromody-
namics, or shorter, QCD.
Before learning how to cope with such a situation, we have to study a few basic properties
of SU(3). We start by counting the number of independent real parameters needed to
describe a SU(3) matrix. A complex 3 × 3 matrix is described by 18 real fields but the 9
equations U †U = 1 and the extra equation detU = 1 reduce the number of independent
components to 8 = 18 − 9 − 1. We need a convenient way to parametrize the matrices
with 8 real fields. Before doing so, let us recall how this is accomplished in the SU(2) case
which probably more familiar to the reader. An arbitrary SU(2) matrix can be written as
ei

∑3
i=1 φiσi/2 where φi are three angles parametrizing the matrix and σi are the three Pauli

matrices which form a basis of the hermitian, traceless 2× 2 matrices with trσiσj = 2δij .
Similarily, a SU(3) matrix can be written as

U(x) = ei
∑8
α=1 ϕα(x)λα

2 (5.10)

The eight functions ϕα(x) parametrize U(x) and the eight 3×3 matrices λα are the natural
generalizations of the Pauli matrices to SU(3). They are a basis of all traceless, hermitian
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3× 3 matrices normalized to trλiλj = 2δij . A possible parametrization is, for example,

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0



λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 −i
0 0 0

i 0 0



λ6 =

 0 0 0

0 0 1

0 1 0

 , λ7 =

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2


The λi are the 8 generators of SU(3). Similar to QED, we face the problem that when
computing the derivative ∂µ(U(x)~q) = ∂µ(ei

∑8
α=1 ϕα(x)λα

2 ~q) eight terms U(x)∂µϕα
λα
2 are

generated. For QED the solution of this problem was to introduce a vector potential to
cancel the corresponding term. This is precisely what we are forced to do also in the
SU(3) case. Local SU(3) invariance is only possible if for each ϕα we also introduce a
corresponding vector potential.

Eight vector potentials, Gαµ(x), α = 1, ..., 8, µ = 0, 1, 2, 3 are needed to ensure
SU(3)-gauge invariance

The quantized vector potential Aµ describes photons.

recapitulate: Quantization of the electromag-
netic field, Sec. 2.1

Siimilarly, in quantized form the fields Gαµ(x) describe eight bosonic particles, the gluons.
While electromagnetic forces are described by the photon field Aµ, the gluons are the
particles responsible for the strong forces. They glue the quarks together in each baryon
or meson.
It is useful to combine the 8 gluon fields in one Hermitian and traceless 3 × 3 matrix Gµ
using the definition

Gµ(x) =
8∑

α=1

Gαµ(x)
λα

2

The formulas for non-abelian gauge groups like SU(3) or SU(2) are slighty more complicated
than for the abelian U(1) gauge group. Gauge invariance is achieved by the following
combined transformation of quark fields and gluon fields
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q1(x)

q2(x)

q3(x)

→ U(x)

q1(x)

q2(x)

q3(x)

 , U(x) ∈ SU(3)

Gµ(x)→ U(x)Gµ(x)U(x)† − i

gs
U(x)∂µU

†(x) (5.11)

The equations above have been constructed such that the combination

Dµ = ∂µ + igsGµ (5.12)

is allows to formulate a SU(3) gauge invariant Lagrange density L = i ~̄q Dµγ
µ ~q. Let us

check this claim by studying the Gauge transformation of Dµ~q

(∂µ + igsGµ)

q1

q2

q3

→(∂µ + igsUGµU
† + U(∂µU

†)
)
U

q1

q2

q3

 (5.13)

= U

∂µ + igsGµ + U †(∂µU) + U †U(∂µU
†)U︸ ︷︷ ︸

=0


q1

q2

q3

 = UDµ

q1

q2

q3


where we used that U(∂µU

†) = −(∂µU)U † as 0 = ∂µ1 = ∂µ(UU †) = (∂µU)U † + U(∂µU
†).

From Eq. 5.13 it follows directly that the Lagrange density

L = i ~̄q Dµγ
µ ~q (5.14)

does not change under an SU(3) gauge transformation.
Note that in the U(1) case where U(x) = eigsϕ(x) the complicated looking formulas
(5.11) reduce to the simpler formulas (5.7) when identifying gs = q/~c as, for example,
− i
gs
U∂µU

† = −∂µϕ in this case.
After we have found that the postulate of Gauge invariance enforces the existence of
gluons and fixes the form of their coupling to the quarks, we still have to find the SU(3)
generalization of the electric and magnetic fields and of the Maxwell equations. To solve
this question, we have to repeat just the arguments of Sec. 5.2, where we constructed the
action underlying Maxwell’s equations. We first need the the tensor describing the SU(3)
version of electric and magnetic fields. It is defined by

Gλρ =
1

igs
[Dλ, Dρ]

= ∂λGρ − ∂ρGλ + igs[Gλ, Gρ︸ ︷︷ ︸
non-linearity

] (5.15)

132



where we used that the commutator of ∂λ with an arbitrary function f(x) is given by
∂λf(x) as [∂λ, f ]g = ∂λ(fg)− f∂λg = (∂λf)g for arbitrary f(x) and g(x). Note that each
Gλρ is a 3× 3 matrix in color space.
We have to check how Gλρ transforms under a SU(3) Gauge transformation. We can use
that we have shown above, that Dλ~q → UDλ~q = UDλU

†U~q. Therefore,

Dλ → UDλU
†, Gλρ →

1

gs
[UDλU

†, UDλU
†]) = UGλρU

† (5.16)

This implies directly that the combination tr
[
GλρG

λρ
]
is both invariant under a gauge

transformation and a Lorentz transformation (the trace runs over the color indices while
the summation over λ and ρ is part of the usual Einstein convention). tr

[
GλρG

λρ
]
is

therefore the natural candidate to describe in the Lagrange density the gluon analog of
Maxwell’s equations.4 Combining this insight with the the action (5.14), we conclude that
Lagrange density of QCD which describes the strong interactions is given by

LQCD = −1

2
tr
[
GλρG

λρ
]

+
6∑
j=1

i ~̄qj γµ(∂µ + igsGµ) ~q j (5.17)

Here the index j runs over the 6 quark flavors, with q1,...,6 = u, d, s, t, b, c. Each of these
fields has two indices, qjν,i, where ν = 1, 2, 3, 4 is the spinor index while i = 1, 2, 3 is the
color index. The 4× 4 Dirac matrices γµ act on the spinor index while the 3× 3 matrices
Gµ act on the color index. The factor 1/2 in front of the first term is just a convention (it
can be absorbed in a redefinition of the fields and gs. Therefore the only free parameter
of this theory (as long as we neglect the masses of the quarks as above) is the coupling
constant of the strong interaction, gs.
LQCD describes all aspectes of the strong interaction, the force which holds, for example,
the quarks in the nucleus together. It is parametrized by one coupling constant gs, which
takes over the r
The most important qualitative aspect which distinguishes LQCD from QED arises from
the last term in Eq. (5.15) which is quadratic, not linear in the fields Gαµ. Therefore the first
term in LQCD has contributions of the form tr((∂λGρ)[Gλ, Gρ]) and tr([Gλ, Gρ] · [Gλ, Gρ]).
Gαµ. These terms describe interactions of gluons.

Gluons interact with each other, as described by terms cubic and quartic in the
gluon fields Gαµ. The coupling constant is given by gs.

While photons do not interact with each other directly, gluons have strong interactions.
The consequences of this are discussed in Sec. 5.5.3.

4It is possible to add another term, the so-called θ term which does, however, violate time-reversal
symmetry. According to experiment this term is either absent or has an extremly small prefactor.
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5.5.3 Confinement and asymptotic freedom

A single free gluon or a single free quark has never been observed. Quarks and gluons
occur only in bound states involving either three (baryons) or two (mesons) quarks. Also
some other state might exist like bound states of gluons alone (gluonballs) or bound states
of 4 quarks.
This is a consequence of a phenomenon called confinement which states that it costs an
infinite amount of energy to create any object which has a color quantum number. This
implies that only “colorless” bound states exist at low energies. More precisely, only states
exist which are color-singlets whose wave function does not change under any (global)
SU(3) rotation. Here color plays the same role as charge in QED. A charge-neutral object
(e.g. an atom) does not couple to and does not create electromagnetic fields at large
distances. Any object with a net charge, in contrast, creates an electric field E ∝ 1/r2

at large distances. In this case the contribution of this electric field to the energy of the
charged object is finite. Similarly, a colorless bound state does not create any gluon fields
at large distances, but the energy contribution of the gluon fields of an object with color
(a free quark or gluon) would be infinite.
Three quarks can bind to a colorless object by forming a bound state of a red, a green and
a blue quark, symbolically written as |rgb〉 = q†rq

†
gq
†
b |0〉. One can check that this state does

not change under an SU(3) transformation

qrqg
qb

 → U

qrqg
qb

. Such states are baryons.

Also the combination of a quark and an antiquark (a meson) can be colorless, for example
by combing a red quarks and a red antiquark.
What is the origin of the this confinement? The most important aspect is that gluons
interact with each other. This does effectively change how the strong interactions change
with distance (or, equivalently, with momentum).
Let us first discuss the more familiar case of electrodynamics. Photons do not interact with
each other but the Coulomb field of, for example, an electric charge is influenced by the
fact that virtually electron-positron pairs can be created in the vacuum. They screen the
Coulomb interaction and weaken it for large distances. Effectively, this can be described
by a momentum dependence of the fine-structure constant for large momenta compared to
the electron mass m

αQED(q) ≈ α

1− 2
3
α
π ln | qmc |

for qc� m (5.18)

For large momenta, αQED grows while it shrinks for small momenta (or large distances).
For the strong interaction the creation of quark-antiquark pairs also leads to screening
as for QED. The interaction of gluons gives, however, a contribution with opposite sign:
the gluon interaction gives rise to antiscreening. For the corresponding strong coupling
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constant one obtains from perturbative calculations

αs(q) =
g2
s

4π
≈ αs

1 + (11− 2
3f)αs2π ln | qcM |

≈ 2π

(11− 2
3f) ln | qΛ |

(5.19)

Here M is an arbitrary mass scale and αs is defined correspondingly in such a way that
αs(q = Mc) = αs. f is the number of quark species with a mass smaller than q/c,
for high energies f = 6. The constant Λ of the last equality is defined such that 1 =
αs
2π (11− 2

3f) ln(M/Λ). As 11− 2
36 = 7 > 0 the effective strength of the strong interactions

grows for smaller momenta (i.e., larger distances).
Strong interactions become therefore stronger and stronger at large distances and the
perturbative formula (5.19) is not valid any more. The regime where αs effectively becomes
of order 1 is very difficult to calculate analytically but both numerical approaches and
analytical arguments suggest that the interactions indeed become so strong that they lead
ultimately to the confinement scenario discussed above: only colorless bound states can
exist.
Note that the same arguments imply that the strong interactions become less and less
important at high energies. This phenomenon is called asymptotic freedom and it
implies that in experiments which probe quarks at very high energies (like the LHC at
CERN) the strong interactions become weaker and weaker and can be well described by
perturbation theory.
A major success of numerical approaches to QCD (so-called “lattice QCD”) was the cal-
culation of the proton mass with the precision of a few percent from direct simulations of
LQCD. Despite an enormous recent progress in such numerical approaches, it is still not
possible to reach the level of accuracy of QCD predictions which can by achieved for QED
from perturbative calculations.

5.6 Electroweak interaction (Glashow-Weinberg-Salam
model)

While the SU(3) gauge theory describes the binding of quarks to bound states, it fails to
describe another important nuclear reaction, the

β decay of a neutron into a proton, an electron and an antineutrino
n→ p+ e− + ν̄e

Despite this decay channel, the neutron in vacuum has a very long lifetime (compared
to nuclear energy scales) of about 15 min. The new particle, the neutrino, showing in
the equation above, is very difficult to detect directly. Originally, its existence and basic
properties have only be revealed by measuring the energies, momenta and spin-orientation
of the proton and the electron. Comparing the energy of the initial state to the total
energy of proton and electron reveals that one more particle has transported away the
energy. Analyzing also the momentum shows that the mass of this particle is very small.
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The neutrino is a very light (much lighter than the electron) spin-1/2 particle, which
couples neither to the electromagnetic fields nor to the strong forces.
A major surprise was revealed from the analysis of the spin-orientation of the neutrino
which can be reconstructed from the conservation of the total angular momentum ~J =

~L+ ~S. In the β decay and similar nuclear reactions
only left-handed neutrinos are produced, with a spin orientation

antiparallel to the momentum.

This is a very surprising result, especially when one takes into account that under inversion,
~r → −~r, a left-handed particle is mapped to a right-handed particle. This implies that
the laws of nature are not inversion symmetric: left and right are not equivalent. In
particle-physics context, the inversion symmetry is called parity, P . As we will see, P is
completely broken by the weak interaction responsible for the β decay.
To understand the math behind the weak interactions, we first analyze the Dirac equation
for m = 0, given by i/∂Ψ = 0. According to Eq. (3.26) the solutions of the Dirac equations
are simply given by

Ψ+
i =

1√
2|p|

e−ipµx
µ

(
χi

~σ · p̂ χi

)
, Ψ−i =

1√
2|p|

eipµx
µ

(
~σ · p̂ χi
χi

)
(5.20)

It is therefore convenient to choose the spin-quantization axis always parallel to the direc-
tion of the momentum p̂ such that σ · p̂ = σz in this basis. Then, the 4 solutions have the
following simple spinor structure

Ψ+
↑ ∼


1

0

1

0


︸ ︷︷ ︸
right−handed

, Ψ+
↓ ∼


0

1

0

−1


︸ ︷︷ ︸

left−handed

, Ψ−↑ ∼


0

1

0

1


︸ ︷︷ ︸
right−handed

, Ψ−↓ ∼


1

0

−1

0


︸ ︷︷ ︸

left−handed

, (5.21)

The + fields describe particles with spin orientation parallel or antiparallel to the mo-
mentum, the − fields the corresponding anti-particles. They are all eigenstates of γ5 =(

0 1

1 0

)
. We can now rewrite the spinor field Ψ in terms of such eigenfunctions of γ5 using

the definition

Ψ = ΨR + ΨL =
1√
2

Ψ1
R


1

0

1

0

+ Ψ2
R


0

1

0

1

+ Ψ1
L


0

1

0

−1

+ Ψ2
L


1

0

−1

0


 (5.22)
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with ΨR/L = 1√
2


Ψ1
R/L

Ψ2
R/L

±Ψ1
R/L

±Ψ2
R/L

. With this definition, ΨR/Lγ
5 = ±ΨR/L. This equation is

invariant under Lorentz transformations.
We can now rewrite the Lagrange function (5.4) in these new fields. For example the term

Ψ̄Ψ can be written as Ψ†γ0Ψ = (Ψ†R + Ψ†L)

(
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

)
(ΨR + ΨL) = Ψ†RΨL + Ψ†LΨR.

In the new variable the Lagrange function of the Dirac equation therefore has the form

L = Ψ̄Ri/∂ΨR + Ψ̄Li/∂ΨL︸ ︷︷ ︸
conserves chirality

−m (Ψ†RΨL + Ψ†LΨR)︸ ︷︷ ︸
mixes chirality

(5.23)

After the success of Gauge theories for QED and QCD, we will now try to describe also
the weak interaction responsible for the β decay with a gauge theory. The structure of the
Gauge theory has to reflect that only left-handed neutrinos are produced in a β decay. In
the following we will denote the spinor describing electrons by e = eL + eR and the spinor
of the electron neutrino by νe = νeL+νeR, each splitted up in the left and right component
as defined above.
To obtain a Gauge theory able to describe β-decay, we start from an idea which – at first
glance – seems to contradict all experiments drastically. We claim that it is a symmetry
operation to “relabel” a left-handed neutrino and a left-handed electron at each point in
space time by an SU(2) transformation U(x) according to

(
νeL

eL

)
→ U(x)

(
νeL

eL

)
, eR → eR, νeR → νeR, U(x) ∈ SU(2) (5.24)

Note that this symmetry contradicts the obvious experimental fact that an electron and a
neutrino have completely different properties – a fact which we will ignore for the moment
and explain later when we discuss the Higgs mechanism.
We will now follow precisely the program described in the previous chapter on QCD. The
postulate of the Gauge invariance enforces the introduction of corresponding Gauge fields.
As a general SU(2) matrix is described by three angles,

U(x) = ei
∑3
α=1 φα(x)τi/2

where τi are the standard Pauli matrices which act on

(
νeL

eL

)
. We follow directly the

procedure used in the SU(3) case: The postulate of SU(2) gauge invariance enforces the
existence of 3 vector potentials, Wα

µ , α = 1, 2, 3, µ = 0, 1, 2, 3, one for each SU(2) angle.
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We define

Wµ =

3∑
α=1

Wα
µ

τα
2

and the SU(2) field strength tensor

Wµν = ∂µWν − ∂νWµ + ig[Wµ,Wν ]

where g is a new coupling constant. Copying Eq. (5.11) and Eq. (5.16), a simultaneous
gauge transformation of fields and SU(2) vector potentials leads to

(
νeL

eL

)
→ U(x)

(
νeL

eL

)
, eR → eR, νeR → νeR, U(x) ∈ SU(2)

Wµ(x)→ U(x)Wµ(x)U(x)† − i

g
U(x)∂µU

†(x) (5.25)

Dµ = ∂µ + igWµ → U(x)DµU(x)†, Wµν → U(x)WµνU(x)† (5.26)

We can also add to this theory an extra U(1) gauge symmetry so that the total gauge
symmetry is SU(2) × U(1). This new U(1) gauge symmetry will not be the same gauge
symmetry as we discussed for QED but instead we will argue later that QED is a certain
subgroup SU(2)×U(1). To obtain an SU(2)×U(1) gauge symmetry we have to introduce
the new symmetry in such a way that the SU(2) gauge symmetry is not affected. This

means that the left-handed doublet

(
νeL

eL

)
has to be multiplied with one phase while we

can use a different phase factor for the right-handed component. We therefore postulate
the Gauge invariance

eR → eiϕ(x)yReR,

(
νeL

eL

)
→ eiϕ(x)yL

(
νeL

eL

)
(5.27)

where yR and yL are two constants called hypercharge. At the moment yL and yR are
unknown. We are allowed to fix e.g. yL by convention but then the hypercharges of all
other particles are fixed. Later we will show that yL = −1

2 and yR = −1.
We will name the corresponding vector potential Bµ and the corresponding field strength
tensor is by definition

Bµν = ∂µBν − ∂νBµ

The U(1) gauge transformation of the vector potential corresponding to Eq. (5.27) reads

Bµ → Bµ −
1

g′
∂µϕ, Bµν → Bµν

with a new coupling constant g′.
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As we now have to cope with two gauge symmetries simultaneously, it is useful to introduce
for the gauge-invariant derivative the following notation

Dµ = ∂µ + igWα
µ Tα + ig′BµY (5.28)

where we define two new operators, Y and Tα by the way they act on the various fields

Y

(
νeL

eL

)
= yL

(
νeL

eL

)
, Y eR = yReR, Y νeR = 0

Tα

(
νeL

eL

)
=
τα
2

(
νeL

eL

)
, TαeR = TανeR = 0 (5.29)

All fields are eigenstates of these operators, their only job is to multiply each field with
the correct prefactor. Note that we have set the hypercharge of the left-handed electron
neutrino, νeR, to zero (taking the experimental information into account that it interacts
with nothing).
We can now write down the full U(1)× SU(2) gauge theory for the electron, e = eL + eR,
and the electron-neutrino, νe = νeL + νeR,

LU(1)×SU(2) =− 1

4
BµνB

µν − 1

2
tr[WµνW

µν ] (5.30)

+ (ν̄eL, ēL)iγµDµ

(
νeL

eL

)
+ ēR iγ

µDµ eR + ν̄eR iγ
µDµ νeR

Whether one adds the right-handed electron neutrino at this stage or not is a question of
taste as it couples to nothing and therefore has no experimentally observable effect.
Eq. (5.30) defines a very nice gauge theory. It has only one drawback: it is apparently
completely wrong as its prediction contradict completely the properties of nature around
us. First of all, the electron and neutrino have very different properties and are definitely
not the same: this is obviously not consistent with the SU(2) invariance. The electron also
has a mass, described by the term mēReL (see Eq. (5.23)) which clearly violates SU(2)
invariance as defined above. Furthermore, the theory predicts that there are 4 types of
photons – observed is only 1 – and long ranged electroweak interactions with 1/r potentials
– observed are only short-ranged interactions (we can’t use confinement as an excuse here
as free electron do exist). It is therefore very obvious that the SU(2) gauge symmetry is
not present in nature. Surprisingly, this is not the end of the story: when we add only one
more element to the theory, the Higgs mechanism, all these problems will be resolved.
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5.7 Higgs mechanism

5.7.1 Spontaneous symmetry breaking and Higgs condensate

As discussed above, the nature around us, definitely does not have a U(1)×SU(2) symme-
try. Here a concept originally coming from solid state physics, spontaneous symmetry
breaking, turns out to be very useful: The symmetries of a given state of matter do not
have to be the same as the symmetries of the laws of nature.5 A magnet, for example,
where the magnetization points in a certain direction is not rotationally invariant. Any
crystal breaks translational symmetry. This occurs despite the fact that the laws of nature
responsible for forming the magnet or the crystal do have rotation and translation sym-
metry. Similarly, it can happen that our theory (i.e., the Lagrange function) has a SU(2)
symmetry but the vacuum, describing the world around us, does not have this symmetry.
To capture this effect, a new field has to be introduced: the Higgs field.
The Higgs field is a two-component complex field

Φ =

(
Φ1

Φ2

)

Under the previously discussed SU(2) and U(1) gauge transformations (Φ has no color and
does not transform under SU(3)) it transforms as

Φ→ U(x)Φ, U(x) = ei
∑3
α=1 φα(x)τα ∈ SU(2)

Φ→ eiϕ(x)yHΦ, eiϕ(x)yH ∈ U(1) (5.31)

where the hypercharge of the Higgs field, yH with Y Φ = yHΦ, will be determined below.
The Lagrange density describing the Higgs field is given by

LH = (DλΦ†)(DλΦ)− V (Φ†Φ) (5.32)

V (Φ†Φ) = −1

2
µΦ†Φ +

1

4
λ(Φ†Φ)2 (5.33)

where Dλ is usual gauge-invariant derivative. The first part of the action is well-known
from the Klein-Gordon equation, see Eq. (5.3). The Higgs potential V is, however, a
new element. It is chosen in such a way, that it enforces spontaneous symmetry breaking.
As shown in Fig. 5.1, its minimum is not at Φ = (0, 0) but for µ > 0 it is located at

Φ†Φ =
µ

λ
.

5A bit of care has to be used when describing the spontaneous symmetry breaking of Gauge theories as
Gauge degrees of freedom are in principle unobservable. This is, however, at the end only a minor
technical issue of no relevance for our discussion.
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Figure 5.1: The Higgs potential plotted as the function of ReΦ1 and ReΦ2 (for ImΦ1 =
Im Φ2 = 0. Note that the minimum is at a finite field thus breading the U(1) ×
SU(2) symmetry partially. The potential is sometimes described as a Mexican-
hat potential.

A given minimum configuration of the field selects a state which does not have the full
U(1) × SU(2) symmetry.
We will dicuss the consequences later, we first complete the discussion of the Lagrange
function: the Yukawa coupling describing how the Higgs field interacts with the electron
and neutrino. The corresponding Lagrange function has to fulfill three requirements: it
has to obey tbe U(1) × SU(2) gauge symmetry, has to be Lorentz invariant and has to
contain an even number of fermionic fields as the Lagrange density is just a number while
fermions anticommute. The simples term which obeys all these conditions is given by

LYuk = −ce ēR

(
Φ1

Φ2

)†(
νeL

eL

)
+ h.c. (5.34)

where ce is just a numerical coupling constant. Let us check the invariance of this term.

First, it is obviously SU(2) invariant as it couples Φ† to the SU(2) doublet

(
νeL

eL

)
. Second,

it is Lorentz invariant as it couples the spinor index of νeL and of eL to the spinor index
of ēR and we already know that such a combination is Lorentz invariant. It also contains
an even number of fermionic fields. We have, however, still to check the U(1) symmetry
related to the hypercharge. Under such a transformation

LYuk → LYukeiϕ(yL−yR−yH)

If we want that such a term is present (later we will show that it gives rise to the mass of
the electron), we therefore conclude that
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yH = yL − yR (5.35)

Using the values yL = −1/2 and yR = −1, determined below, we obtain yH = 1
2 . Combin-

ing all terms, we obtain the U(1) × SU(2) Higgs model.

L = LU(1)×SU(2) + LYuk + LH (5.36)

What are the consequences of the fact that the Higgs potential has a minimum at a finite
value of the field? It implies that the expectation value of the Higgs field 〈Φ〉 = 〈0|Φ|0〉 is
finite even for the groundstate of the field theory which is the vacuum |0〉 of our universe.
We can parametrize the field configurations at the minimum by

〈Φ〉 = eiϕ0(x)U0(x)

(
0

ρ0/
√

2

)
, eiϕ0(x) ∈ U(1), U(x) ∈ SU(2)

where φ0 and U0 are arbitrary. Ignoring quantum fluctuations, by minimizing the Higgs
potential (5.33), we have ρ0/

√
2 = µ

λ for µ > 0 (the
√

2 factor is just a convention). At
this point it is convenient to fix that gauge and choose one where

〈Φ〉 =

(
0

ρ0/
√

2

)
= const. (5.37)

One can compare this to a magnet, where 〈 ~M〉 is finite in the ground state. Fixing the
direction of 〈 ~M〉 means that for this specific groundstate, the system does not have the
full symmetry any more. We have given more careful discussion of spontaneous symmetry
breaking and why it is a useful concept in the chapter on Bose-Einstein condensation: we
encourage the reader to study again the arguments given there. In analogy to the Bose
Einstein condensation one calls 〈Φ〉 Higgs condensate.

recapitulate: Spontaneous symmetry breaking,
BEC, chapter 1.5.1

Before proceeding, it is useful to analyze the symmetries of the theory for fixed Φ ∝ (0, 1).
Obviously, part of the U(1) × SU(2) symmetry is gone, but a subgroup survives. The
transformation(

0
ρ0√

2

)
→

(
eiϕ(x) 0

0 1

)(
0
ρ0√

2

)
= exp

[
iϕ(x)

(
τz
2

+
1

2yH
Y 1

)](
0
ρ0√

2

)
=

(
0
ρ0√

2

)

does not affect the Higgs condensate.
This implies that despite the spontaneous symmetry breaking a certain U(1) subgroup of
U(1) × SU(2) is still intact.
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The U(1) subgroup of gauge transformations of the form eiϕ(x)Q with
Q = Tz + 1

2yH
Y is unaffected by the condensation of the Higgs field. This U(1)

gauge symmetry gives rise to electromagnetism and Q is the electromagnetic
charge.

We will work this out in more detail below, but as a first check we investigate how the new
operator Q = Tz + 1

2yH
Y affects the electron using the definitions in Eq. (5.29):

QeR = (0 +
yR

2yH
)eR, QeL = (−1

2
+

yL
2yH

)eL, QνeL = (+
1

2
+

yL
2yH

)νeL

Using that yH = yL−yR, Eq. (5.35), we now use the experimental result that the neutrino
does not have a charge, therefore 1

2 + yL
2(yL−yR) = 0 equivalent to yL = yR

2 . Therefore
yH = yR

2 − yR = −yR
2 . As mentioned above, we are free to choose an arbitrary value for

yR, e.g., yR = −1
2 . We conclude that

Q = Tz + Y, QeR = −eR, QeL = −eL, QνeL/R = 0 (5.38)

The charge of the electron with respect to the remaining U(1) symmetry is therefore −1

in our units, while the neutrino does not have a charge.

5.7.2 Massive gauge fields, electron mass and Higgs particle

It is not difficult to derive the effective action in the presence of the Higgs condensate.
Technically, one can just do a straightforward Taylor expansion of all fields taking the
Higgs condensate as the leading term. We will not follow this brute force strategy but
instead take a look at the most important terms.
First, an obvious first task is to identify the electromagnetic fields and the corresponding
vector potential. As Q = Tz + Y , we expect that the vector potential is a linear combi-
nation of W 3

µ and Bµ responsible for the Gauge transformations generated by Tz and Y ,
respectively. We introduce two orthogonal linear contributions

Aµ = cos θWBµ + sin θWWµ, Zµ = − sin θWBµ + cos θWWµ (5.39)

where the Weinberg angle, θW , is determined by rewriting Dµ in the new fields.

Dµ = ∂µ+igW a
µTa+ig′BµY = ∂µ+iAµ(g sin θW Tz+g′ cos θW Y )+· · · ≡ ∂µ+iAµqeQ+. . .

where −qe is the electron charge. The last equality hold only for g sin θW = g′ cos θW = qe,
equivalent to

tan θW =
g′

g
, qe =

gg′√
g2 + g′2
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The combination Zµ in Eq. (5.39) defines the Z boson. The action for the photon,
Lphoton = −1

4FµνF
µν can easily be extracted by rewriting LU(1)×SU(2) in the new fields.

Second, we investigate the consequence of the term DλΦ†DλΦ in Eq. (5.32) evaluated by

replacing the Higgs field by its condensate, 〈Φ〉 =

(
0

ρ0/
√

2

)
.

Dλ〈Φ†〉Dλ〈Φ〉 =
1

4
g2ρ2

0

(
W 1
λW

1λ +W 2
λW

2λ
)

+
g2 + g′2

8
ρ0ZλZ

λ

Instead of discussing the two real fields W 1 and W 2, one often introduces the complex
fields W+/− = W 1 ± iW 2.
The physical consequences of these terms can be seen by realizing that the new terms have
just the form of a mass term in the Klein-Gordon Lagrange function, Eq. (5.3).

The W bosons and the Z bosons become massive particles

m2
W =

g2

4
ρ2

0, m2
Z =

g2 + g′2

4
ρ2

0, (5.40)

while the photon field Aλ remains massless.

An important prediction of the Higgs mechanism is that the ratio of the masses of the Z
boson and the W bosons is given by

mW

mZ
≈ cos θW

To understand better the effect of the mass terms, we can consider how a mass term
modifies the equation for a potential Φ (to be identified, for example, with Z0) in the
presence of a static point charge at the origin

(−∇2 +m2)Φ = 4πδ3(~r) ⇒ Φ(r) =
1

r
e−mr

which can be, for example, be derived by Fourier transformation. We conclude
Interactions mediated by the W± and Z bosons are short ranged and decay on

the length scale ~/(mW c) and ~/(mZc). Only the Coulomb interaction
mediated by the photon is long ranged.

The mass of the Z and W bosons are approximately 91GeV and 80GeV, respectively,
almost 100 times more heavy than a proton. Correspondingly, the length scale of weak
interactions is extremely short, of the order of about 10−18 m, much shorter than, e.g., the
radius of a proton.
Next, we analyze the Yukawa coupling, Eq. (5.34) by replacing again Φ by its expectation

value

(
0

ρ0/
√

2

)
. We obtain directly
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LYuk ≈ −
ceρ0√

2
(ēR eL + ēL eR)

The electron obtains a mass term proportional to the Higgs condensate and the
Yukawa coupling ce

as can be seen by comparing this term to Eq. (5.23).
Due to the spontaneous symmetry breaking the electron and neutrino have very different
properties. Most importantly,

only the electron interacts with the electromagnetic field ( Qνe = 0) and only
the electron obtains a mass from the Yukawa coupling ce

One can ask what would have happened if we had chosen a different value for the condensate

of the Higgs, e.g. ρ0√
2

(
cosα

sinα

)
with arbitrary α. Due to the SU(2) invariance, this has to

give the same physics: in this case the field of the physical left-handed electron would be

given by

(
cosα

sinα

)
·

(
νeL

eL

)
instead of eL.

The last step of our analysis is to investigate excitations of the Higgs field itsself which is
described by fluctuations of the Higgs field around its minimum. Here it is convenient to
choose a gauge in such a way that

~Φ(x) =

(
0

ρ0+ρ̃(x)√
2

)

with a field ρ̃(x) which is purely real for the chosen gauge. In its quantized form, this
field will describe the Higgs particle. In Fig. 5.1 the Higgs particle corresponds to a
fluctuation perpendicular to the minimum of the potential.
To proceed, one just has to expand the Lagrange density (5.36) in ρ̃(x). Collecting all
terms quadratic in ρ̃ we obtain

LHiggs−particle =
1

2
Dµρ̃ D

µρ̃− 1

2
m2
H ρ̃2, m2

H = 2λρ2
0 (5.41)

which is the field theory for a massive bosonic particle with the mass mH . The Higgs mass
is determined by the curvature of the Higgs potential at its minimum, see Fig. 5.1. This is
the celebrated Higgs particle. It interacts with the electron (and other fermions) through
the Yukawa coupling (5.34).
Written in the new fields, our original U(1)× SU(2) gauge theory with Higgs field has in
the symmetry-broken phase the form

L = Lphoton + LW±,Z + Le,ν + LHiggs−particle + Lcouplings

describing the (massless) photon, the massive W± and Z bosons, a massive electron and a
neutrino (massless in the present approximation) and a Higgs particle plus their coupling
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which includes scattering processes of Higgs particles and of Higgs particles with electrons
and neutrinos.
We will add all the other fields from a standard model in the next chapter. Before doing
so, it is useful to make a count of the bosonic degrees of freedom in the system (here we
consider the electroweak theory only, omitting QCD):
If there were no symmetry breaking (a negative parameter µ in Eq. (5.33)), we can count:
1 + 3 Gauge fields, each contribution 2 phonon-like degrees of freedom (there are two
polarizations of light), two complex Higgs fields corresponding to 4 real degrees of freedom
gives in total (1 + 3) · 2 + 2 · 2 = 12 bosonic degrees of freedom to which the massless
fermions have to be added. In the symmetry broken phase in contrast, the massive W±

and Z bosons contribute with three degrees of freedom each (they are spin-1 particles, and
all Gauge freedom is gone after we fixed the Gauge for the Higgs particle). The photon has
still two polarization directions and we have now one Higgs particle. We therefore count
again 3 · 3 + 2 + 1 = 12 bosons plus the fermions.

5.8 The standard model

5.8.1 Leptons, gauge fields and Higgs field

In the previous chapters, we have discussed the Higgs mechanism, the electroweak inter-
action with electron and neutrino and the strong interactions with the quarks. The only
step left is to combine all aspects of the theory adding a few missing particles (the muon,
the tau and the corresponding neutrinos).
The main defining element of the standard model are the

Gauge symmetries: U(1)× SU(2)× SU(3)

These gauge symmetries enforce the existence of gauge fields, one for angle φ parametrizing
elements of the group.

1+3+8 gauge fields: Bµ, Wα
µ , α = 1, 2, 3, Gαµ, α = 1, . . . , 8

where µ = 0, 1, 2, 3 is a Lorentz index. The G fields describes 8 types of gluons while a
combination of the B and W fields encodes the photon, the W± and Z bosons.
For the Gauge fields, one defines the field strength tensors

Bµν = ∂µBν − ∂νBµ

Wµν = ∂µWν − ∂νWµ + ig[Wµ,Wν ], Wµ =
3∑

α=1

Wα
µ

τα
2

Gµν = ∂µGν − ∂νGµ + igs[Wµ,Wν ], Gµ =
8∑

α=1

Wα
µ

λα
2
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Here τα are the 3 Pauli matrices generating SU(2) while λα are the corresponding matrices
generating SU(3) (see chapter 5.5.2). For each gauge symmetry, there is one coupling
constant

coupling constants: g′ of U(1), g of SU(2), gs of SU(3).

The gauge invariant derivative Dµ will be written in the form

Dµ = ∂µ + ig′Bµ Y + ig

3∑
α=1

Wα
µ T

α + igs

8∑
α=1

Gαµ F
α

where we introduced charge operators Y , Tα and Gα. The operator Fα is given by λα
2

whenever it acts on a quark field and is zero otherwise. How the hypercharge operator Y
acts on various fields is described below. The operator Tα acting on all doublets (defined
below) of fields as τα

2 and gives zero otherwise.
All fermions of the standard model are spin-1

2 particles described by 4 component spinors
which are each split into a left-handed and a right-handed component. They are called
leptons and can be grouped into three families (or three generations): for unknown
reason nature has provided three versions of all fermionic fields with identical quantum
numbers but vastly different masses. Each family consists of two types of quarks (each
coming in three colors, two spin directions and as particle and antiparticle), and two
fermions, one electron-like particle and one neutrino (each again with two spin-direction,
particle and antiparticle). The left-handed fields are always grouped in doublets which
couple to the SU(2) gauge transformation and right-handed singlets not affected by SU(2).
They can be ordered in a table:

The three lepton families (also called generations):

T 3 Y Q = T 3 + Y(
νeL

eL

) (
νµL

µL

) (
ντL

τL

)
1/2

−1/2
−1

2

0

−1

eR µR τR 0 −1 −1

νeR νµR µτR 0 0 0(
uL

dL

) (
cL

sL

) (
tL

bL

)
1/2

−1/2
1
6

2/3

−1/3

uR cR tR 0 2/3 2/3

dR sR bR 0 −1/3 −1/3

electron
e-neutrino
up-quark

down-quark

muon µ
µ-neutrino
charm-quark
strange-quark

tau τ
τ -neutrino
top-quark

bottom-quark

The muon and tau are heavier copies of the electron and are accompanied each by an extra
neutrino. The last three columns show how the SU(2) generator T 3 and the hypercharge
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operator Y acts on the fields. The electromagnetic charge is given by Q = T 3 + Y and is
shown in the last column. While all neutrinos have charge 0 and the electron-like particles
have charge −1, the quarks have either charge 2/3 or charge −1/3. This guarantees that
bound states of three quarks always have integer charges, as observed experimentally.
Antiparticle have always the opposite charge of the particle. Therefore all quark-antiquark
pairs have either charge 0 or charge ±1 as 2

3 −
(
−1

3

)
= 1.

A special role is played by the Higgs field Φ =

(
Φ1

Φ2

)
, a doublet of complex fields which

also couples to the SU(2) gauge transformations with the quantum numbers given by the
table

Higgs field
T3 Y Q = T3 + Y(

Φ1

Φ2

)
1/2

−1/2
1
2

1

0

When we identified the particles and their charges in the two tables given above, we
implicitly assumed that we use a gauge where the Higgs condensate, the expecation value

of the Higgs field in the vacuum has the form 〈Φ〉 =

(
0

ρ0/
√

2

)
. With this convention the

Higgs particle is an excitation of the lower component and therefore carries the electric
charge 0. The Higgs is the only bosonic degree of freedom in the standard model besides
the Gauge bosons.
To write down the Lagrange function of the standard model, it is convenient to group all
fermionic fields (i.e., all leptons) into one big field

Ψ = (νeL, eL, eR, νeR, u
1
L, u

2
L, u

3
L, d

1
L, d

2
L, d

3
L, . . . )

In total, these are

(2 · 2 + 2 · 2 + 3 · 2 · 2 · 2) · 3 = 96 lepton fields

and therefore types of particles (each lepton comes with two spin-orientations, all quarks
carry three colors).
We can finally (rolling drums) write down the Lagrange density which defines the standard
model of particle physics in its full glory

LSM =− 1

4
BµνB

µν − 1

2
tr[WµνW

µν ]− 1

2
tr[GµνGµν ]

+ Ψ̄ iγµDµ Ψ + (DµΦ)(DµΦ)− V (Φ†Φ) + LYuk (5.42)

with the Higgs potential V = −1
2µΦ†Φ† + 1

4λ(Φ†Φ)2. The first line gives the Lagrange
density of all gauge fields (i.e., the generalized Maxwell’s equations). The coupling of
the gauge fields to the other fields is fixed by the principles of gauge invariance. With the

148



exception of the Yukawa couplings just 5 numbers (g, g′, gS , µ, λ) determine all interactions
and the properties of the strong and electroweak interactions.

5.8.2 Yukawa coupling

Unfortunately, the last missing part, the Yukawa coupling, LYuk, is less universal and a
bit more complicated. It describes the coupling of the leptons to the Higgs field and is
responsible for the mass of the leptons. It is obtained by writing down all cubic coupling
terms allowed by the gauge symmetries.

LYuk =− (ēR, µ̄R, τ̄R)Ce



Φ†

(
νeL

eL

)

Φ†

(
νµL

µL

)

Φ†

(
ντL

τL

)
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ΦT ε
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eL

)
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)
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Φ†

(
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)

Φ†

(
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)

Φ†

(
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)
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)
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(
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)
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(
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bL

)


+ h.c.

(5.43)

The Yukawa coupling mixes the fields from the three families. This mixing is described
by the four 3× 3 matrices Ce, C′e, Cq and C′q (we will discuss below, that there is some
freedom in choosing those matrices). The ε in LYuk is the two-component ε-tensor with

ε =

(
0 1

−1 0

)
. For example, ΦT ε

(
νeL

eL

)
= (Φ1,Φ2)

(
0 1

−1 0

)(
νeL

eL

)
= Φ1eL − Φ2νeL.

We should check whether all terms in LYuk are gauge invariant. First, they are invari-
ant under SU(3) as all quark fields only occur in combinations like q̄iqj =

∑3
α=1 q̄

α
i q

α
j

where α is the color index. Second, all terms are invariant under SU(2). This is obvious

for the combinations like Φ†

(
νeL

eL

)
which transforms under a SU(2) gauge transforma-

tion to Φ†U(x)†U(x)

(
νeL

eL

)
= Φ†

(
νeL

eL

)
. But also the combination ΦT εΦ†

(
νeL

eL

)
is

gauge invariant as U(x)T εU(x) = ε detU(x) = ε. Finally, we have to check the invari-
ance under U(1) hypercharge transformations eiϕY . The first term in LYuk transforms as
exp[iϕ(−(−1)− 1

2 −
1
2)] = 1 and also the other terms are invariant under this U(1) trans-

formations (0 + 1
2 −

1
2 = 0, 1

3 −
1
2 + 1

6 = 0, −2
3 + 1

2 + 1
6 = 0). Moreover, it is not possible
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to invent other products of three fields which are also gauge invariant. Therefore LYuk is
the most general Yukawa coupling which one can write down.
An important element of the standard model is, see Sec. 5.7, the

spontaneous symmetry breaking: 〈Φ〉 =

(
0

ρ0/
√

2

)

Instead of the full symmetry of the gauge group U(1)× SU(2)× SU(3) only a symmetry
of the form U(1)× SU(3) survives. As discussed in Sec. 5.7, this induces a mass for three
of the Gauge bosons (the W± and the Z) and is responsible, e.g., only the electron has an
electromagnetic charge but not the neutrino and also for the fact that left-handed up- and
down quarks have different properties. It also gives rise to the mass of the leptons, as we
can see when replacing Φ by 〈Φ〉. We obtain

LYuk ≈− (ēR, µ̄R, τ̄R)
ρ0√

2
Ce

eLµL
τL

− (ν̄eR, ν̄µR, ν̄τR)
ρ0√

2
C′e

νeLνµL
ντL



− (d̄R, s̄R, b̄R)
ρ0√

2
Cq

dLsL
bL

− (ūR, c̄R, t̄R)
ρ0√

2
C′q

uLcL
tL

+ h.c. (5.44)

The four terms give the mass for the electron-like particles, e, µ, τ , the corresponding
neutrinos, the d, s, b quarks with electric charge −1/3 and for the remaining u, c, t quarks
with charge 2/3.
When interpreting LSM and the matrices Ce,C

′
e,Cq,C

′
q, we have to realize that up to

now, we have not yet properly defined the fields of the standard model! We can, for exam-
ple, rename fields and introduce new variables, for example, by a unitary transformation

affecting the three families

eLµL
τL

→ U0

eLµL
τL

, U0 ∈ SU(3). This is not a gauge transfor-

mation, U0 is just a constant matrix. If we simultaneously transform also the left-handed
neutrinos with the same matrix U0, the transformation will not affect any of the terms of
the standard model besides the Yukawa coupling. We can use this freedom, to diagonalize,
e.g., the matrix Ce. Indeed the electron, muon and tau are defined to be the eigenstate
of Ce with the smallest, the second largest and the largest eigenvalue. Without any loss
of generality, we can therefore choose the matrices Ce and Cq to be diagonal.
The remaining two matrices, C′e and C′q, cannot be diagonalized without affecting other
terms of LSM. If one, for example, diagonalizes C′q (i.e, if one uses mass eigenstates for
the quarks), one has to pay the prize, that now the coupling of quarks by the W± bosons
is described by a 3× 3 matrix (the Cabibbo-Kobayashi-Maskawa or, short, CKM matrix).
We briefly discuss two important consequences of the mass matrices. In the most important
nuclear process in the sun, four protons effectively merge into on α-particle (a 4He nucleus)
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made from two protons and two neutrons. Two neutrinos are generated in this process.
As one knows the amount of energy generated by the sun, one can reliably calculate how
many neutrinos should arrive here on earth coming from the sun. Surprisingly, only 50% of
those are measured. The explanation for this striking result is not difficult: the matrix C′q

mixes left-handed and right-handed neutrinos: a left-handed neutrino generated in the sun
oscillates back and forth between a right-handed and left-handed version. On average, 50%
of the neutrinos arrive the neutrino detectors in their right-handed version which cannot
trigger any electroweak scattering event and therefore remain undetected. In older versions
of the standard model, the matrix C ′e was omitted because at that time experiments were
compatible with a vanishing mass of the neutrinos. Even today, often the neutrino masses
and oscillations are considered as being “beyond the standard model”. We follow, however,
the philosophy that the matrix C′e is naturally part of the standard model.
Another remarkable aspect is that the Yukawa coupling matrices C′e and C′q can have –
and actually do have – entries which are complex and one cannot remove the imaginary
part of LSM by any basis transformation. This can only occur if there are three or more
lepton families. A consequence of this imaginary entries is that

the standard model is not invariant under time reversal, T .

Surprisingly, the microscopic time reversal symmetry which we know well from most laws of
physics (Schrödinger, Dirac, Maxwell, ... equations) is apparently only an approximation.
The violation of T is only an extremely tiny effect at low energies as it only occurs in
processes where the third and heaviest lepton family is involved.

recapitulate: Lorentz group, chapter 3.2, and
symmetries of Dirac equation,
chapter 3.6.

It is worthwhile to study three discreet symmetries: time reversal symmetry T , the in-
version of space P and a transformation of particles to antiparticles, C (see chapter 3.6).
We have seen that P is maximally broken by weak processes like the β decay, which are,
however, symmetric under the product CP . The so-called CPT theorem going back
to Wolfgang Pauli states that any causal, local, Lorentz invariant quantum field theory
has to be symmetric under the product CPT: the laws of nature do not change when one
simultaneously reverses the arrow of time, replaces particles by antiparticles and does an
inversion of space such that left-handed particles become right-handed particles. As CPT
is a symmetry of LSM and T is not a symmetry, also the CP symmetry is absent when
considering the mixing of the three quark families.

5.9 Outlook and concluding remarks

In 2012 the Higgs particle was discovered at CERN in Geneva and in 2013 the theoreti-
cians Englert and Higgs have been awarded the Nobel prize “for the theoretical discovery
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of a mechanism that contributes to our understanding of the origin of mass of subatomic
particles, and which recently was confirmed through the discovery of the predicted funda-
mental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider”.
Remarkably, the Higgs particle has all the properties expected from the standard model,
and thus its discovery is a spectacular success of the standard model. Here it is useful to
make a careful distinction between the Higgs mechanism (spontaneous symmetry breaking,
mass generation for gauge fields) and the existence of the Higgs particle. While the Higgs
mechanism was well established before the 2012 discoveries, it was much less clear whether
the mechanism for symmetry breaking has anything to do with something like a Higgs field
and whether something like a Higgs particle does indeed exist. Here it is worthwhile to
compare the situation to superconductors: it turns out that superconductivity is a realiza-
tion of the Higgs mechanism (spontaneous symmetry breaking giving rise to a mass of the
photon) but in most superconductors an analog of the Higgs particle does not exist.
The success of the standard model is really impressive: with the exception of phenomena
related to gravity it is believed to explain each and every experiment ever done on earth.
Beautifully, its structure is to a large extent fixed by simple symmetry principles (Lorentz
invariance and the gauge symmetries U(1)×SU(2)×SU(3)). Nevertheless, some aspects of
it are less satisfying. There are 25 free parameters (20 thereof arising from the Yukawa
coupling) which appear to be completely arbitary.6 What determines their values? Why
are electrons a million times heavier than neutrinos? Why is the top quark 100.000 times
larger than the mass of an up quark? Why are all these energy scales a factor 1016 smaller
than the Planck energy, the energy scale believed to govern quantum gravity? Equivalently,
why is the weak force a factor 1032 larger than gravitational forces? Such questions are
referred to as the hierarchy problem. Looking at the world around us, it is difficult to
reconcile the standard model with the fact that around us there is almost only matter
but no antimatter. Where does this come from? Furthermore, it seems that the cosmos
around us is best explained by assuming that it consists of about 70% dark energy, 25%
so-called dark matter, but only 5% is given by the stuff described by the standard model.
This clearly shows that the standard model is not the ultimate answer for everything.
From a modern point of view, the standard model is an effective theory which is very
successful in describing processes up to a certain energy scale. Whether it will ever be
possible to derive the standard model and all its parameters from some other, more general
theory is far from clear at the moment. One can, however, expect surprises in the endeavor
to test its limits experimentally and to find theories beyond the standard model.

6We have not discussed one more free parameter of the standard model, the vacuum angle, θQCD, related
to the generalized Maxwell equations describing QCD. Experimentally, θQCD is either zero or extremely
small.
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