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SOLIDS

1.1 Solids as Crystals

A large part of study of solids is devoted to the understanding of crystals. Crystals are
characterized by a periodic arrangement of atoms in a regular structure that is repeated through
space. The aforementioned idealization also assumes that the crystal is infinite in size. Real
crystals are, however, finite and have a definite beginning and an end (and hence a boundary).
Furthermore, they are also interspersed with random defects that deform the idealized pattern
that one assumes as a first approximation for the sake of simplicity.

Figure 1.1: Left: 2D triangular lattice. Right: 3D simple cubic lattice

It is worthwhile to emphasize that a crystal has a number of remarkable properties. Some of
them sound obvious and trivial but actually should be considered as highly surprising. We will
discuss only two of them (which are actually closely related). First, the positions of the atoms
are highly correlated: when one moves the atoms on the left side of the solid, also atoms on the
right side move, despite being a long distance away. This is surprising when one looks at the
laws of nature which tell us that the direct interaction between those particles is very weak.

Second, we can build objects like bridges or chairs out of solids. These are structures which
can sustain forces without any cost of energy. Let us describe the latter observation is dif-
ferent terms. According to Newton’s law, F' = 0;p, forces are responsible for the change of
momentum. Therefore sustaining a force without any cost of energy is equivalent to a dissipa-
tionless flow of momentum. This is surprising as usually the flow of something (water, charge,
energy,...) is accompanied by friction and dissipation. Dissipationless flow is the exception.
One famous exception is a superconductor where charge is flowing without friction. Solids are
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another exceptions as momentum is flowing without friction in this case, one could even call a
solid a momentum-superconductor. It turns out that the physics and mathematics of the two
phenomena are closely related. We will not go into details here but only give a hint to the
underlying physics. According to Noether’s theorem, momentum conservation arises because
the laws of nature are translational invariant, i.e., they are independent of the position in space.
While a liquid is translationally invariant and looks the same everywhere, this is not the case in
a solid where the atoms are located on a regular lattice. Moving, e.g., by half a lattice spacing
one observes locally a different state. We say that the continuous translational symmetry is
spontaneously broken. Translational symmetry is still a property of the laws of nature but
not of the thermodynamic state of a solid. The periodic arrangement of atoms explains why
they move in such a correlated way and, perhaps, it is also plausible that it is linked to the
fact that a solid can sustain forces without any energy cost. The story of a superconductor
is similar: charge conservation is also related to a symmetry. Here the relevant symmetry is
the multiplication of wavefunctions by an arbitrary phase factor €’?, and in a superconductor
this symmetry is also spontaneously broken - a story we might came back to at the end of the
course.

Another important consequence translational invariance its spontaneous breaking in a solid, is
that it does not cost any energy to move a crystal. We will discuss later how this observation
leads naturally to the existence of acoustic phonons, lattice vibrations whose energy vanishes
in the limit of small momentum.

In passing, we would also like to mention that there a solid objects which cannot be classified
as crystals. One such example is glass, where the atom arrangement has mainly short-rangled
correlations and resembles more a frozen-in liquid. While one can view glasses as liquids with
an extremely high viscosity, they behave similar to solids for most practical purposes. Another
interesting type of solid are quasi-crystals, which are systems with a long-range order which
has no well-defined periodicity.

We will, however, focus in the following on crystals, the by far most simple and most important
type of solid.

1.2 Crystalline Structures

In the following we will give a short crash course on the basic tools needed to describe a solid,
assuming that most of the readers have heard the underlying concepts before, e.g., in a course
on solid state physics on the Bachelor level. For this audience, the following section is a short
reminder. In case that you have never seen this before, I would recommend to consult any book
on solid state physics for an introduction to the subject. Below we simply list the vocabluary
which is used in the following. Wikipedia is also an excellent source to look up some of the
basic concepts listed below.

Bravais Lattice: The most basic structure, which we need to describe periodic arrangements
of atoms are so called Bravais lattices. Bravais lattices are simply periodic arrangements of
points defined by three linearly independent basis vectors, a;, i = 1,2, 3 ;multiplied by integers

R, = nia; + noas + nzas, n; € 2.

For a given lattice, the basis vectors are not unique.

There are 14 different types of Bravais lattices, below we discuss a few which we will need later.
Example 1: Simple cubic lattice (rare)

ai L ay L as, |ai] = [az| = |as].

Example 2: Body-centered cubic lattice (BCC)
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Figure 1.2: Simple cubic lattice

Figure 1.3: Body-centered cubic lattice
a

2
Example 3: Face centered cubic lattice (FCC)

alzaﬁc,agza'g,agz (:fc—i—@—l—%)

Figure 1.4: Face-centered cubic lattice

R a,. . a,. .
al:f(y+z),a2:§(m+z),a3:§(w+y).

Example 4: Triclinic lattice (lowest symmetry)
a1, as, ag along arbitrary directions. And |a;| = |az| = |as| all different.

Coordination Number: Number of nearest neighbors of an atom or a Bravais lattice. The
Bravais lattice with the highest coordination number is the FCC lattice.

Primitive Unit Cell: The smallest volume which fills space after translations by Bravais
lattice. It is also not unique! However, its volume is unique.
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SC BCC | FCC | Triclinic
6 8 12 2

Table 1.1: Coordination number (number of nearest neighbors of a point) in different lattice systems

eg. UC = {x1a1 + 202 + 2303 0 < x; < 1}.
It leads to a unique representation of an arbitrary vector, r, in space as r = R,, + ¢, x € UC.

Wigner-Seitz cell is defined as the volume: {x € R3||z| < |z — R,| V n # (0,0,0)}. It
is a special example of a primitive unit cell which has, e.g., the advantage that it has all the
symmetries of the underlying lattice.

thh@rf Seitz cell

°
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Figure 1.5: Wigner-Seitz cell for a square/rectangular lattice.

Basis: To define a crystal, i.e., a periodic arrangement of atoms, we have to specify (i) the
relevant Bravais lattice and (ii) the positions of each atom within the unit cell. The latter is
called basis.

Examples: 1. The diamond lattice (diamond, Si, Ge) is an FCC lattice with basis 0, %(ﬁ: +
4 + 2); 2. NaCl structure is also an FCC where the Na atoms have the basis vector 0, while

the Cl atoms are located at the basis vector %(i +y+2).

Symmetries: Symmetries which leave a crystal invariant are an important tool to classify
crystals (see below). They furthermore determine many of its properties and are heavily
used when developing the theory for materials. Besides translations these are rotations (only
rotations by multiples of 60, 90, 120 and 180 degrees are possible for periodic structures),
mirror transformations, inversion, and combinations thereof. Each of these transformations
can be written as a combination of a matrix describing rotations, mirror transformations or
inversions and a vector describing a translation.

’_
r= D r+ a

rotation, translation
mirror

Note that a does not necessarily have to be a vector of the Bravais lattice. In this case one talks
about non-symmomorphic symmetries. For example, a symmetry transformation can combine
a rotation by 180 degrees with a translation by half of a unit vector of the Bravais lattice
(screw axis). Similarly, a mirror transformation can be combined with such a translation (glide
plane).

Space groups: The set of all symmetry operations which leave an (idealized) crystal invariant
forms a group, the so-called space group. There are 230 different space groups (if one also con-
siders how time reversal symmetry acts on a magnet, one obtains 1651 magnetic space groups
needed for a complete symmetry classification of all types of magnets and antiferromagnets).

Crystalline point-groups: If one ignores the translation a in the symmetry transformations
of a crystal, one obtains the point group of a crystal (here glide planes and screw axes are simply
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replaced by simple mirror transformations and rotations). There are 32 different point-groups,
for a list and the relevant notations see the corresponding wikipedia article.

1.3 Reciprocal Lattice
The theory of solids is mainly formulated in momentum space. Therefore we need to consider

the Fourier transformation of quantities like the periodic potential V (r)arising from the periodic

arrangement of atoms. We first expand the potential in Fourier modes, V(r) = ZVGm eiGm T,
m

where the set of reciprocal lattice vectors G, has not yet been specified. Now we should
consider which restrictions arise from the condition that the potential is periodic

3
Vir+R,)=V(r), VR, = Zniai, n; €7
i=1
This condition can only be fulfilled if the G, obey the following relation

elGm Bn — | o G, R,=2rm,meZ VG, R,.

This condition is met for all vectors of the so-called reciprocal lattice spanned by the vectors
G,, with

G,, = miG1 +myGy + m3G3, m; € Z,m = (ml,mg,mg) (1.1)
Gi-a; =2m0i,, i,j=1,23 (1.2)

This condition is fulfilled by the following basis vectors of the reciprocal lattice

as X as
G =2r———— 1.3
! aj - (0,2 X a3) ( )
a3 X aj
Gy =2r———— 1.4
2 aj - (CLQ X (13) ( )
Gy =27 BN (1.5)

a - (CLQ X (13)
While the Bravais lattice is a lattice in real space, the reciprocal lattice is a lattice in Fourier

space.

Example: We previously considered NaCl which forms an fcc lattice where basis vectors can
be chosen as

a 0 a 1 1
(1125 1 ,a2—§ 0 , a3 — — 1 ,
1 1 0
0 1

where the Na atom is located at | 1 | + R,, while the Cl can be found at % 1| +R,.
1 1
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From the formula given above, we can compute the basis vectors of the reciprocal lattice

-1 1 1
2 2 2
Gi="|1],G="A-1],6="A1],

a@ \1 @\ 1 a \ 1

these are actually the basis vectors of a body-centered cubic lattice: the reciprocal lattice of
an fcc lattice is a bec lattice (and vice versa).

Figure 1.6: Reciprocal lattice of an fcc lattice is a bece lattice

An important concept, heavily used in the following is the First Brillouin zone, abbreviated
as 1. BZ. It is defined as the Wigner-Seitz cell (see definition given in the previous section)
of the reciprocal lattice. Using the 1. BZ, any arbitrary momentum vector, k, can be uniquely
written as

k = G, + kgy, with kgy € 1. BZ.

As a side remark, let me also mention that reciprocal lattice vectors can be used to identify
planes in the real-space lattice. Each lattice plane of a Bravais lattice (defined by 3 non-
collinear points of the Bravais lattice) is perpendicular to a set of reciprocal lattice vectors
G, = m1G1 +maGs + m3Gs. Therefore a set of three integers, (my,m2, m3), (usually chosen
such that ged(myq, me, m3) = 1), can be used to indentify such planes. They are called are the
Miller indices of this plane. This is, however, a concept which we will not use in the following.

1.4 Scattering from a Crystal

In

Figure 1.7: A scattering experiment

Reciprocal lattice vectors are not only central for the theoretical description of solids but also
for a large set of experiments. The most direct way to determine them is to do a scattering
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experiment using X-rays or neutrons. Let us consider elastic scattering, i.e., scattering without
energy transfer from a crystal. What can we expect when we scatter waves from a periodic
potential? Here we will not try to develop a detailed theory of scattering but instead simply
recall a few basic principles of scattering which most of the readers will already be familiar
with.

2 A 3"
—dn 7

Figure 1.8: Path difference between two interfering rays scattered off of two atoms, one at ro and
the other at ro + d.

. . . . ike- LN C . .
Consider an incoming plane wave described by e’* 7, k = Tn which is scattered to an outgoing
ik-r / 27T A, . . . . . .
wave, "7 k' = S As we consider elastic scattering, ingoing and outgoing waves have

the same wavelength A. The unit vectors f and n/ denote the directions in which the waves
travel. When a given incoming wave scatters from a period arrangement of atoms, then for
most directions n’ there will only be destructive interference. Our goal is to find out, for which
special situations (called Bragg condition) we can expect constructive interference.For this, we
have to consider the path difference of a wave scattered from, e.g., an atom located at position
ro and at position r¢ +d which is given by d- (7n — n' ). Constructive interference is obtained if
the path difference is an integer multiple of the wavelength, d- (ﬁ—ﬁ’ ) = 2wm, or, equivalently,
d - (k — k') = 2rm. Therefore, constructive interference from all atoms of a Bravais lattice
located at positions R,, can only be obtained if

R, (k—K)=2mrm, mecZ
We conclude that scattering from a periodic lattice (Bragg scattering) is only possible if

(k— k') =G, is a reciprocal lattice vector

In more complicated systems with several atoms per unit cell the presence of further symmetries
can lead to extinctions, implying that not all possible G, may be observed in such a scattering
experiment.

For an alternative and more quantitative derivation of the scattering rates one can describe
the interaction of the scattered particl, e.g., a neutron with the solid by an effective potential
AH = V(r). As this potential is usually weak compared to the kinetic energy one can use the
Golden rule formula, Ty, = 2 |(k'|AH|k)|?5(Ex — Ey/), to calculate the transition rate of
the neutron from a state k to a state k’. The transition matrix element is then computed from

WIAHI) = [ ¥ mVirehT dr = Vi

As we argued above, for a periodic potential V() the Fourier transform can only be finite
if (k — k') = G,is a reciprocal lattice vector. Therefore scattering experiments are ideal to
determine reciprocal lattice vectors, the precise structure of a crystal and its symmetries.

This concludes our - very brief - introduction to the some basic notions used to describe solids.






SOLID AS QUANTUM SYSTEM

To develop a quantum theory of a solid appears to be a challenging problem. Even with the
best supercomputer it is only possible to the solve the Schrédinger equation for a handful of
electrons. Just storing a generic quantum mechanical wave function for a few dozen electrons
(with a reasonable discretization) on a computer is simply not possible because the amount
of storage grows exponentially with system size. Surprisingly, it is nevertheless possible to
understand the quantum properties of many materials and therefore of quantum systems with
about 10?3 quantum particles both qualitatively and in many cases even quantitatively. The
main goal of this course is to discuss some of most important approximations underlying
remarkable success story. We start by formulating the many-particle quantum problem which
we have to face.

We start by describing a solid as system consisting of charged ions and electrons. Here “ions”
may refer to the nuclei of atoms but sometimes one also defines an ion as the tightly bound
state of a nucleus plus some surrounding “core” electrons from the inner shells of the atom. To
simplify notations, we will assume in the following that there is just one type of ions and we
will ignore some relativistic corrections which are small for most solids.

The total Hamiltonian of the system can then be written down

H = Hel A Hion a Hel—ion (21)

P? Z2¢2
Hi n — i 71} S —
© Zn 2M+Z|Rn—Rm\
Ze?
Helion = _E ————
el-1on l,n |Tl _ Rn|

Here M and Z are the mass and charge of the ions while m is the electron mass. Besides the
kinetic energies of the quantum particles, there is only the Coulomb energy (we use Gaussian
units here in which the Coulomb energy is “% and in the formula written above, we ignored
for simplicity corrections arising from the core electrons which lead to a modified potential
at close to the ionic core. The simple Hamiltonian (and trivial variants obtained by adding
different types of ions) describes a remarkable amount of physics (and chemistry) ranging from
molecules to solids and can - in principle - also be applied to such complicated structures as the
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human brain. Also many yet undiscovered quantum phenomena and new materials are hidden
in this harmless looking Hamiltonian.

The fast that H is well known is of advantage but the problem is that the solution of the
corresponding Schrodinger equation remains unknown and - as argued above is beyond the
capacity of any supercomputer (perhaps future quantum computers will help to solve such
challenging quantum problems directly).

There are many different approaches how one can make progress here. We will first discuss
how one may try to solve the problem in a directly: we discuss (rather crude) approximation
tailored to solve the problem defined defined by H directly. This set of approaches is called “ab
initio” approaches or solutions “from first principles”, both referring to the fact that one starts
from basic underlying Hamiltonian. Another approach is to use simplified model systems as
the starting point (e.g., a Heisenberg or Ising model to describe a magnet). Finally, one can
try to “guess” an effective low-energy theory (using, e.g., powerful symmetry principles) often
with parameters which then can be fitted to experiments. But we will start with the most
straightforward approach, a direct attack on H .

2.1 Adiabatic approximation

To make progress and obtain a simplified description of a solid, we will first make use of the fact
that electrons are much, much lighter than ions, ™/, ~ 1073. Therefore electrons also move
much faster. As a (very good) approximation, we can assume that on the time-scales relevant
for electron motion, the ions do not move at all. This is called “adiabatic approximation”. Our
starting point is thus the electronic wave function for fixed ion positionsRy, ..., Ry written as

Y =vYR, Ro,..Ry(T1,...,TN)

We will never know this wave function exactly, as the underlying many-particle problem is too
complicated, but for the moment let us just pretend that we know that we know the eigenstates
(or at least the ground state) of the corresponding Schrodinger equation

(Hel =F Hel-ion)w - Eel(Rlv oo 7RN)¢ (22)

where, importantly, the electronic energy depends on the ion positions, E¢' = E(Ry,..., Ry).
We will develop later approaches to find approximate solutions for v .

The wave function of the total system, including the wave function of the ions is then given by

(I)(’I‘l, oo .,’I‘N,Rl, 50 .,RN) ~ ’L/)RLR%_”RN(’IH, 000 ,’I’N)QD(Rl, 000 ,RN) (23)

Here the quantum mechanical probability amplitude (R, ..., Ry) that ions are located at the

positions Ry, ..., Ry is multiplied with the corresponding probability amplitude ¥ r, r,,..rRy (T1,...,7n) Of
the electrons. We now have to check whether this wave function approximately solves the full
Schrédinger equation and we have to derive an equation for ¢ .

We therefore have to investigate H® = (He + Hion + Heloion)®¢. Here the most tricky term
turns out to arise from the kinetic energy of the ions as the operator P, = ihdg, acts on the
R,, coordinate both in ¢ and in ¢. This gives rise to three different terms,

P? P?

"— (YR, R (T1,...,T"N)o(R1,...,RN)) =V —"—¢+

2
2 M ion 20 ion (PP +2(Pyp) - (Put))

2]\4ion
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The first term is the kinetic-energy Hamiltonian of ions applied to the ion wave function. We
will now try to give a hand-waving argument, why we can neglect the other two terms. Can
we estimate how large, e.g., 5 Mlion @P?ﬂ/f is? If we assume that 1 is a function of the difference
of electronic and ionic coordinates (r — R), then we can replace the derivative by respect to
an R coordinate by a derivative with respect to a r coordinate. Thus we can make an order
of magnitude estimate 5 jwlion Piw ~ O(ﬁ - Exin - ). Tt is therefore suppressed by the tiny
factor MTM’ i.e, by about 3 orders of magnitudes, compared to other terms which we keep in

our analysis. If we neglect those and use that (Hej + Hel ion)¥ = E*°l4) we obtain

H® = Hipp ~ (Hion + EX(Ry,...,RN))é

Therefore we obtain the following effective eigenvalue problem for the ion coordinates only

(Hion + E(R4,...,RN))0(R1,...,Ry) = E¢(Ry, ..., Ry) (2.4)

complicated interaction
potential

Here the kinetic energy of the ions is still small due to the large ion mass. Therefore, we can

minimize in a next step only the potential energy Hf)‘;t = Z Vion(Ry—Rp)+EY(Ry, ..., Ry)
nm
which includes the ion-ion repulsion and attractive potentials arising from the electronic part

of the energy. While it is difficult to make any rigorous statement on such a minimization
problem, we expect that the minimum of H”% is obtained by arranging the ions in a periodic
structure, i.e., a crystalline lattice. In practice, one assumes that it is a lattice with a certain
symmetry and then one optimizes the lattice constants and - for systems with several atoms
per unit cell - the position of the atoms within the unit cell. We denote the value of the ion
coordinates at the minimum by RC:

R, = R’ minimizes HP = Z Vien(R, — Ry) + E°(Ry, ..., Ry) (2.5)

ion
nm

The natural next step is to perform a Taylor expansion around this minimum by setting R,, =
R?L + AR, . This Taylor expansion is expected to work as long as the displacements from the
minimum are not too large, which is usually the case as long as the temperature is sufficiently
below the melting transition. The A R,, parameterizes the lattice vibrations. To obtain a theory
of phonons coupled to electrons one has to Taylor expand both the effective ionic Hamiltonian,
Hion + E°' =~ HY  + Hpponon and the electron-ion interaction, Helion ~ HO.i., + Hel-phonon -
——— ———

on

small small
But this will be covered in a separate chapter later in the lecture as we will first concentrate

on the electronic problem.

2.2 Hartree Fock Approximation

We now want to find a reasonable approximate solution for the electronic problem, Eq. (2.2)
assuming that all ion positions have been fixed. Our strategy will be to find the ‘best possible’
(in a way we will define below) non-interacting particle approximation to the interacting many-
particle system.
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Therefore we will first consider a set of N non-interacting electrons described by some Hamil-
N

tonian , Hy = ZHO(ri, p;) . It will be important for the following that we do not specify here

i=1
what Hj is as we want to find a kind of optimal Hy which approximates best our interacting
system. As we consider Fermions the eigen functions of Hy are totally antisymmetric and can
be written in terms of a so-called Slater determinant.

p1(ri,01)  ¢2(r1,01) -+ on(ri,on)
wsl(T10'1,7'202,--~;7’N0'N):\/%det ¢1(’l“.2,0'2) o, e’]\/\L
bi(rn,on) e e b(r.ow)

where ¢, = (zz E:’ B) is a single-particle eigenfunction of Hy.

Our goal is to find the ground state of an interacting system with the Hamiltonian
p; e
H= : _— V(r;).

The exact ground state with the exact ground-state energy can be found from a variational
principle

Ey = min(u|H|1)

Here we minimize over all normalized wave functions (ri01, 7209, ...,7yoN) which can be
written as some linear combination of slater determinants, an object which is impossible even
to store on a computer for any system with more than a few dozens of electrons.

To obtain an approximation, we will, however, not minimize over all many-particle wave func-
tions, but only over those which can be written as a single Slater determinant. We use the
ground state of some not-yet-specified non-interacting Hamiltonian as an variational ansatz
for our interacting problem. The ‘best’ independent electron approximation is thereby the one
which provides the lowest energy.

EO S E[I){F ~ min <¢SI|H|'¢SI>

1 =slater-det

This scheme is called a Hartree-Fock approximation (or, more precisely, a self-consistent
Hartree-Fock approximation). It turns out that it is not too difficult to evaluate the expectation
value. Here we just give the result

N p? (NN
(WalHla) =Y > /¢§(Ta0) <2m + V(T)> ¢j(r,o) dr + 522 > (2.6)
i=lo=1/4 i =1j=lo=1/}

//(|¢j(r,0)|2|¢j(7",0')|2 — 0000857, 0)65, (1, )5 (r", 0" by (7, 7)) ——— dr-de”

|r; — 7]

We have to take the minimum of this expression under the boundary condition that each wave-
function is normalized. The latter condition can be achieved by using a standard trick, so-called
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Lagrange multipliers. This means that we are minimizing (g |H |1)g)) Ze] (¢pj]p;) —1) both

with respect to the wavefunctions and with respect to the real parameters €; (the Lagrange mul-

tiplier). As we search for a minimum, we compute

0
W (st H1bs1) ng (Pjloj) — 1)

0. This give rise to the following equation

2 H ) — 0¥ (yr. !
(-9 + V() dytr.0) — e [ =T gy 00y ' = ejorio) - (27

2m |r — /|

This looks almost like a linear single-particle Schréodinger equation but we have hidden all
complications and non-linearities in two densities, pt(r) and p™(r,r’), defined below. The
first one, the Hartree density, p'(r), is easy to compute and to interpret

H(r - _€Z|¢J 'o!

j’o’

It describes the charge density of all electrons. From this charge density one computes in Eq.
(2.7) the Coulomb potential. The physics is that each electron is affected by the Coulomb
potential from all other electrons.

This is, however, not the full story. There is a correction to this which arises because electrons
are indistinguishable. Therefore one cannot say that one electron is affected by the Coulomb
potential from the other electrons but one has to take into account that the wave function is
antisymmetric. This gives rise to the last term in Eq. (2.6) and the “Fock density”

pjg r, ’I" . _ez ag)¢j’(r70)

](T’U)

The Hartree-Fock equations (2.7) can in principle (but not in practice, see discussion below)
be solved in the following way:

1. Start with guess for wave functions (eg. plane waves).

H(n7\ _ ex /
2. Determine U (r ZVQ ion (7 — n)—e/p (') = p*(r,7") dr’.

r — |

3. Solve Schrédinger equation in potential U(r) and obtain new ¢;(r’, o).
4. With the new ¢;(r’, o) determine the updated U(r) and repeat.

At first glance it seems that the Hartree term is more important than the Fock term because

the total Hartree charge / pH(r") dr’ = —Ne is proportional to the total number of electrons
in the system, while the Fock charge / p(r,r") dr’ = —e contributes only a single electron

(one can use /gb;f, (r',0)¢(r’,0) dr’ = 0;; to derive that). But this is misleading: taking also
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into accout the positive charge of all the ions both are equally important. The energies €;,
also have a direct physical interpretation as ionization energies, which is the energy needed to
remove a particle. The Hartree-Fock approximation is a very powerful and can be used to get
the energy levels of atoms, of small molecules and is also often used in the context of simplified
models of electrons where it can describe phenomena like magnetism (this is discussed later).
There is, however, a major problem: a solution of the full Hartree-Fock equations for larger
molecules or solids turns to be practically impossible due to severe numerical problems. The
algorithm sketched above is just not converging and no good way has been found to solve the
non-local and non-linear integral equations (2.7). The problem here is related to the highly
non-local form of the exchange density. We therefore need to find an approximation which
gives equations which on the one hand can be solved in practice and on the other hand contain
at least part of the physics underlying the Hartree-Fock equation.

2.3 Density Functional Theory (LDA)

2.3.1 A theorem

The discussion in the following paragraph will rely heavily on the concept of a Legendre trans-
formation. This should be familiar to most readers, e.g., from the field of analytical mechanics
where Legendre transformations are used to switch between the Lagrange and the Hamiltonian
formalism. In thermodynamics Legendre transformations are used to switch between different
thermodynamic potentials (energy, free energy, enthalpy, ...). Let us recall the basic concepts
by considering the (internal) energy F(S) as a function of the entropy S. To define the Legen-
dre transform (thus computing the Helmholtz free energy F'(T')) one proceeds in the following
way:

_ 9E(S)
1. Define and compute the temperature T = =5~.

2. Solve this equation for S to compute S(7T').

3. Define the Legendre tranformation of the energy, the (Helmholtz) free energy as function
of T: F(T)=E(S(T)) — S(T)T.

Importantly, in the definition of F, the entropyS was replaced everywhere by S(7) thus that the
free energy is a function of 7', not of S. An important property of the Legendre transformation
is obtained when one calculates its derivative:

oF O0EJS 0S

—=——=-=T-5=-5

or o0sor or
where we used that T = 61?;595) to cancel the first two terms. Using this equation one can
compute the Legendre transformation of F, which gives back E(S). One can also define the
free energy from a minimization principle. Here one starts from E(S) — S T as above but in
contrast to above, one treats S and T as independent variables and defines

F(T) = min[E(S) — §T] (2.8)

The thermodynamic potential is obtained by minimizing E(S) — S T with respect to S. We
can easily check that this is indeed true: taking the derivative with respect to S, we obtain

T= ag(SS)’ the equation defining temperature in an equilibrium state.

A rather straightforward generalization of the principles described above leads to one of the
most influential theorems in physics (and chemistry), the Hohenberg-Kohn theorems which are
the basis of density functional theory outlined in seminal papers of Hohenberg, Kohn (1964) and
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Kohn, Sham (1965). These papers belong to the mostly cited papers in physics and chemistry
of all times and Walter Kohn received the Nobel prize in chemistry in 1998.

Here is the theorem:

The ground state energy of electrons in an arbitrary potential is a functional of the local
charge density:

Bo=Ealpr) = [V ar 3 [[ AP ararsapen 29)

external potential (ions) Hartree

where the exchange functional G[p(r)] is independent of the potential V(7). Minimiza-
tion of Ey[p] gives the ground state energy and its density distribution.

We will not give the original proof of the Hohenberg-Kohn theorems (which is not difficult and
can be looked up on wikipedia) but instead emphasize that they can be understood as arising
from a Legendre transformation. We start from the rather trivial statement, that the ground
state energy of interacting electrons in the presence of a potential V(r) is a functional of this
potential, Ey = FEy[V (r)]. A ‘functional’ is defined as a function which maps a function (here:
the potential) to a real number (here: the ground-state energy). To compute this functional

one has to determine the groundstate of the Hamiltonian H = H(V = 0) + /V(r),ﬁ(r) dr.

Following the general strategy for Legendre transformations outlined above, we first calculate
SEo [V (r)]
oV (ro)
defined? One modifies the potential at the position roby a small € and tracks the change of
the total energy. This can be done using standard perturbation theory, which states that to
1. order in perturbation theory one has to calculate the expectation value of the perturbing

operator. This gives

the derivative of the ground state energy. How is the derivative of a functional

OEG[V(r)]  OEo[V(r)+ed(r —ro)] B A B
5;)/(7“0) = de : o o (PIP(O)[W) = p(ro) (2.10)

The derivative of Eo[V ()] is simply the density. By inverting this relation, one can - at least in
principle - obtain the potential as a (highly non-local and complicated) function of the density,
Vip(r)]. With this knowledge, one can now define the Legendre transformation, precisely in
the same way as we did above when we obtained F(T') from FE(S). Taking the analog step
yields the Legendre transform E[p(r)]of Eo[V (r)] defined by

We also have,

In direct analogy to Eq. 2.8, we furthermore define

Eo[V] = min / V(r)p(r) dr +  Eol)
o ——
independent of V'
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oE
We can easily check from the definition that at the minimum the equation ﬁo) = V(ro)
. pTo
holds. Using furthermore the definition of E, we see that the minimization indeed yields the
groundstate energy and the exact electron density in the ground state. Finally, we obtain (2.9)

by defining G[p(r)] = E[p(r)] — 3 [ 2me() which concludes the derivation of the theorem.

]

2.3.2 Local density approximation and Kohn-Sham equations

The theorem is exact but it has a major problem: the functional G[p(r)] is not known. In its
exact form it much be highly non-linear and non-local as it should be able to describe, e.g.,
the exact properties of phase transitions occuring at zero temperature. But our goal is not to
obtain an exact solution but only a reasonable approximation. Here the key idea is that all the
truely long-ranged aspect of Coulomb interactions is already captured by the Hartree energy
and the remaining physics is 'more or less’ local. Therefore our plan will be to make a Taylor
expansion in space to approximate the functional G[p(r)]. How do we do that? If there is,
for example, a nonlocal term proportional to p(r) — p(r’') we Taylor expand and approximate
p(r") = p(r) + (' —r)Vp(r) + .... Assuming that such an expansion is well-behaved (which
is far from obvious), we can at least in principle write our functional (after subtracting the
kinetic energy, Eji,, see below) as a simple integral Glp] = [ g(p(r),Vp,VVp,...) over a
(still unknown) function which depends on the density and its derivatives. Now comes the
central approximation: we neglect all gradients and assume that we have only a function of
the local density (without gradients)

Glp| = Ekin + /g(p(r), Vp,VVop,...)dr ~ Eg, + /Eexch(p(r)) dr. (2.11)

exchange
This very influential approximation is called Local Density Approximation (LDA).

Note that we still do not know the function F.,.x(p(7)) which is called “exchange” term. But
before we investigate this question, we discuss an algorithm how for a given g(p(r)) one can
calculate the groundstate energy by minimizing our functional in practice. For this, we first
split the energy in a kinetic part and a so-called exchange term is indicated in Eq. (2.11). To
implement the variation we use a trick which greatly simplifies the calculation of the kinetic
energy contribution. In the spirit of a single-particle approximation we parametrize the density
by the wave function of singly occupied single-particle states

pr) = o)

i,0ccupied
The main adantage of this that it allows for a simple calculation of the kinetic energy. Now
we proceed in the same way as in the previous chapter. We minimize Ey using the constraint

/ |¢;]> dr = 1for each single-particle wave function. This is implemented by a Lagrange

multiplier. Therefore we have to calculate

J

575;* Eo — Xj:ej(<¢j|¢j> —-1)] =0

to obtain the minimum. This leads to the famous Kohn-Sham equations which read

OE
To.qu(r) = €;¢; or written out fully
p
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<_2’iv2 +Vaa(r)) 05(r) = €5,

/ 6Eexch( ( ))
Verr(r) |r — r’| op

Here the first term arises from the variation of Ey;,. Above, we cheated a bit because we did
not give a proper definition of Fy;, and did not explain how this is related to the kinetic
energy in the Kohn-Sham equation. Indeed, some extra work is required to show that the
Kohn-Sham equation do give the correct value of the kinetic energy within the spirit of the
LDA approximation.

The Kohn-Sham equation can be solved in a rather straightforward way. One can start with
some guess for the wave functions and use this guess to calculate p(r) and the effective potential.
Then one solves the resulting single-particle Schrédinger equation and determines from the new
wavefunctions a revised potential. Iterating this a few times, one obtains a converged solution
of the Kohn-Sham equations. Importantly, the convergence properties of these local equations
is much better compared to the non-local Hartree Fock equations. In practice, the Kohn-Sham
equations (and variants thereof) can be solved even for complex molecules and solids with
complicated unit cells.

Formally, our starting point was a theory formulated only for the electron density p(r). The
wavefunctions ¢;(r) and the paremeters €; were only introduced as a mathematical trick which
no obvious direct physical meaning. Nevertheless, the form of the Kohn-Sham equation suggests
to interprete them directly as wavefunctions and single-particle energies. While one should
keep in mind, that this is an interpretation not really justified and thus has its limitations,
this interpretation turns out to be extremely useful and quantitatively successful to describe a
broad range of experiments which measure quantities like the electronic dispersion of the shape
of the Fermi surface (see below). Partially this success can be understood from the relation of
the LDA approximation to the Hartree-Fock approch which we will consider next.

2.3.3 Exchange energy

As a last step in our derivation of density functional theory, we have to derive a good ap-
proximation for the exchange energy Fexch(p(7)) as function of the local density. This turns
out to be more simple than it sounds because we can use that - by construction - the density
functional is the same for each external potential V(7). Therefore we can determine it by
considering the simplest possible potential, namely V() = 0 (more precisely, one assumes that
the positive charge density of the ions is constant in space). In this case the electronic density
is also constant in space, p(r) = p. Our task is therefore to calculate for such a model the total
energy. After subraction of the kinetic energy and the Hartree term (which cancels exactly
with the constant positive background charge), one obtains the exchange energy as function of

p.

To obtain an analytical formula, we will use the self-consistent Hartree-Fock approximation.
While we argued that the self-consistent Hartree-Fock equations extremely difficult to evaluate
in general, it is actually very simple in the absence of an external potential. We can use that
we know in this case already the single-particle wavefunctions. They are given by plane waves

1
(bn(T) = Wezkn-r

where V is the volume of the system. To make everything well defined, we use periodic
boundary conditions ¢;(r + L) = ¢;(r) which implies that only a discreet set of lattice vectors
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are allowed

o (M=
kn:% ny |, ni €2,V =L
n,

In the ground state all k,, up to a maximal value are occupied, |k,| < kp. The maximal
momentum is called Fermi momentum. The first step is to calculate the local density for such

a setup.

spin 1 2 1 3 9 3

ikyp T m
R 5 [ 6 5
‘k"n‘<kF \/V 27r L Ikn|<kF
1 2 x4 k3
=2 / dk = 25 7r/de:F. (2.12)
(2m)3 (2m)3 32
|k|<kp

In the second line, we used that the volume is large, thus the sum can be replaced by an integral

using that the distance of neighboring k-values is given by %’T in x,y and z directions.

The next step is to calculate the correction to the groundstate energy arising from the inter-
actions beyond the Hartree term, which is within the Hartree-Fock approximation the Fock
term, defined by the second term in the second line of Eq.(2.6). Therefore the exchange energy
is given by

2 2 * * / * / /
/&mm:—§ﬁﬂriM%M%MMWW%@MhM

k dk’ e? ; / /
- _ / d / // ez(k+k )-(r—7r") dr dr’
(27m)? @m)2J) e —7|

k| <kp k! [<kp

_ v dk / dk’  e%*4r
N (2m)3 (27)3 (k + K')2
|k|<kw |k |<kp
1\® / (47)3 1
1142 1 / 4
= ~Vhpe (27r> /dLIC /da: 2 /d(COS¢>x2+x/2—2x’xcos<b
0 0
1
1274

We can now use Eq. (2.12) to replace kp by the density and find

2

e 3
Eexer = —¢* gkt = = —(31°p)"/ = ——p(3n%p)"/°.

1 2
43 F 4

The corresponding potential which shows up in the Kohn-Sham equations is therefore given by

OFexc 1
‘/exch(p) = ap b = _;(3772)0)1/3 (213)

This concludes our derivation of density functional theory. With the local density approx-
imation as defined above one already has a remarkably powerful approach which despite its
simplicity can be used for quantitative predictions in a broad set of materials. The non-analytic
exchange potential is - somewhat suprisingly - able to capture at least semi-quantitative the
most important part of interaction effects which go beyond the simple Hartree approximation.
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LDA can be improved in various ways, for example by including corrections due to gra-

Av/ 2
dients proportional to ( ﬁ)) or by considering corrections arising from relativistic effects.
3

LDA and its variants are implemented in ready-to-use programs with names like Quantum
Espresso, VASP or Wien2K, some powerful codes are developed at the research center in
Jillich, http://www.judft.de/. The input for these programs can, e.g., be an approximate crys-
talline structures with approximate positions of the relevant ions, from which one can compute
not only the ground state energy (which is then used to optimze the crystalline structure) but
also the band structure of the material (dicussed in the next section).

Despite its success in calculating ground-state energies of many systems, LDA remains a crude
approximation and there are many cases where it fails also completely. These are typically
systems where interactions are really strong (often related to atoms with partially occupied
d or f shells). There are, for example, some insulators with very large gaps (vanadium oxide
being one example) which are predicted to be good metals by LDA. A modern development
is therefore the combination of LDA-style methods with other field-theoretical techniques like
dynamical mean-field theory (DMFT) tailored to treat strong local interactions.






ELECTRONS IN A PERIODIC
POTENTIAL

When studying the physics of electrons in a crystal, the first task is to find the eigenstates of
electrons in a periodic potential U(r),

V2
H¢:E¢,H:*ﬂ+U(T)

with

U(r)=U(r+R,) YR, c Bravais lattice (3.1)
For simplicity, we neglect relativistic corrections like spin-orbit interactions here, which can,
however, be easily added in the following discussions.

For example, when we solve the Kohn-Sham equations for a crystal, the effective potential
U(r) obtains contributions from the ion potentials, from the Coulomb interaction of all the
other electrons, and from the exchange potential calculated, e.g., within the local density
approximation.

3.1 Bloch’s Theorem

The discrete translational invariance of a potential strongly restricts the form of eigenstates v
of the Hamilton operator. This is the content of an important theorem going back to Bloch
(1928) but similar theorems had been discovered before (e.g., by Hill 1877 or by Floquet in
1883).

Bloch’s theorem: The eigenstates of Hy = _h;Z2 + U(r) with a periodic potential
Ulr)=U(r+R,) YR, < Bravais lattice, can be chosen as

Ymk(T) = eik'Tumk(T) with U (r + Ry) = Umk(r) (3.2)

Here k is in the 1. Brillouin zone, k €1. BZ, and m is a band index.
The eigenenergies €, (k) with HY,, = €5,(k)mi are periodic functions in reciprocal
space

em(k+ Gyp) = e (k), (3.3)

where G, is a reciprocal lattice vector.

21
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We have used two different indices, m and m’ in Eq. (3.3) as the scheme how bands are
numbered may be different at the two edges of the 1.BZ.

The theorem is so important that we provide two different proof. The first one is constructive
and can actually be used to compute in a rather efficient way the eigenstates. The second one
emphasizes more the underlying group theory.

The first proof starts from a simple Fourier decomposition of the wavefunction, ¥ (r) =

Zeiq""ck, and the potential, U(r) = ZeiG”""UGn, where importantly only reciprocal lattice
q G,

h2

vectors G, occur. We plug this into the Schrodinger equation, (2V2 + U(r)) P(r) =
m

E(r) , and obtain

h2g? ) ) .
Z . q cqezq»r + Z UGn quz(q+G7,,)-r _ Echezqr
q q,Gn q

Now we want to pick up the components oscillating with the momentum g, = G,,, + k, k €
1.BZ, G,, € reciprocal lattice. Formally, this is done multiplying this equation with e ~(Gm k)7
and integrating over space. From the first and last term only ¢ = G,,, + k, from the second
term only q + G,, = G, + k survives. This leads to the Schrédinger equation in momentum
space,

kic, + Y Uc,CkrG,-c, =0 (3.4)

G,

2 2
h%(k + Gp) _E]
2m

for each k € 1.BZ fixed and for eachG,,. Importantly, the equation connects only momenta
of the form k + G,,» which are connected by reciprocal lattice vectors. Therefore, for fixed
k € 1.BZ, we can cast the Schrédinger equation into a matrix equation

h2
m
n

Diagonal entries are given by the kinetic energy, offdiagonal ones by the Fourier transformation
of the potential.

The rest of the proof is simple: the Hermitian matrix M* has discrete eigenvalues ¢;(k),
J € Nyand we call j the “band-index”. The various elements of the corresponding eigenvectors
are denoted by c, 1@, in the following. From them, we can easily reconstruct the eigenfunctions
in real space

Yik(r) =Y G o= e*Tug(r)
G,

where k(1) = e*ik"'wjk(r) = ZeiG"'rc,iJan =ujr(r + Ry)
G,

Thus we have successfully constructed the eigenfunctions with the desired property. Also the

fact that ,,(k+G.,,) = € (k) follows directly from our construction as the matrices ME  and
MTIZ—ZG"“ coincide after a trivial shift of indices which map G,, + Gy, back to G,,. The proof
is constructive and for relatively smooth potentials with only a few Fourier components one

can directly implement it numerically by approximating the nominally infinite matrix M¥ by
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a finite matrix where one takes into account reciprocal lattice vector up to a maximal length,
|Gm| < Imaz-

The second proof uses the group of translations. Consider the unitary operator Tg, which
introduces translations by a vector of the Bravais lattice, Tr, 9 (r) = ¥(r + R,). Obviously
the discrete translations form an abelian group with Tr Tr, = TR, +R,,- AS

[Hy,Tr,] = 0 and [Tw,,Tr,, | = 0 one can simultaneously diagonalize all these operators.
Consider one common eigenfunction of these operators

1 and let us study its eigenvalues for translations by a basis vector, Tg,1 = ;3. For periodic
boundary conditions, translations are unitary operators and one can therefore expect that
eigenvalues have the property that |7;| = 1 (for periodic boundary conditions there cannot
be wavefunctions which are exonentially growing or decaying). Thus we can write without
loss of generality 7; = €*'%. Doing this for the three basis vectors fixes the vector kuniquely
within the first Brillouin zone. Now we can easily define u(r) = e~*"¢(r) and check that
To,u = e~ ikagik’-ay — 4 is indeed a periodic function, Tr,u=1u.

Let us add a few remarks:

e &£,k is an analytic functions of k at least for most values of k as it arises from the discrete
eigenvalues of an analytic matrix M*. Only when degeneracies occur the energy could
be a non-analytic function.

e e,k is an analytic functions of k at least for most values of k as it arises from the discrete
eigenvalues of an analytic matrix M*. Only when degeneracies occur the energy could
be a non-analytic function.

e One can either define €, as a function of k only in in the 1. BZ, or, alternatively, as a
periodic function in reciprocal space, enr = €n k+G,, -

o h
¢ The quantum number k is not the momentum, py, = —iAV iy = hkwmk—l—elk"'zVumk(r).

One calls hk the “crystalline momentum” which turns out to be conserved only modulo
reciprocal lattice vectors, G,,.

3.2 Electrons in a Weak Periodic Potential

In the general case, we have to use numerical methods to calculate the bandstructure. Only
in certain limits can we expect to make analytical progress. One such limit is to consider
weak periodic potentials. In this limit one can use perturbation theory. Most importantly, the
qualitative insights we get from this calculation can also be used in cases where perturbation

theory is not possible. We consider a periodic potential: U(r) = ZeG"'TUGn, which is
Gn
“weak” (in a sense defined below). To simplify notations, we consider the case with Ug—o =

/ U(r) dr = 0 which we can always achieve by subracting a trivial constant from the potential.

As we plan to do perturbation theory, let us start with a short reminder how this works.
For a Hamiltonian H = Hy + AH, one first assumes that eigenfunctions and eigenvectors of
Hy are known, Ho|m®) = E°/m°). Then one can derive perturbation theory simply doing
a Taylor expansion in powers of the perturbation using (Ho 4+ AH)(Jm°) + |m!) +...) =
(E°+ E' +...)(Jm") +|m') +...). This gives rise the following shift of the energies

AH m
En = ES + (m°|AH|mP) Z [ | |EO ) + O((AH)).
i#Em
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This will work as long as the perturbation is small and as long as there are no degeneracies.
In the latter case, one has to use degenerate perturbation theory (see below).

Back to our original problem which we want to analyze using the Schrodinger equation (3.4)
in momentum space. We have to determine the eigenvalues of the matrix

h2
M = bpn—(k+Gn)*+Ug,, —c,
2m
h2
for k € 1.BZ. For U = 0, the matrix is diagonal and has eigenvalues E° = 2—(k: + G)?
m

with trivial eigenfunctions: ¢, 1@, = Onm corresponding to plane waves, 1) = elktGm) ™  A]]

formulas above are given for a three-dimensional case, but it is useful to think about the more

simple one-dimensional periodic system with lattice constant a, where reciprocal lattice vectors
2m s T

G, = —n. In this case the 1. BZ is given by —— < k < — and we obtain the following Fig.
a a a

3.1.

.. 100 2 K2

Figure 3.1: Bandstructure of a free particle in 1d described using k € 1. BZ and the band-index (1,
2, 3, 4 etc.). The size of the 1. BZ is determined by the size, a, of the unit cell.

Now let us consider finite but small U and first try standard perturbation theory in U. As
ow) ou?

A=A~
above, we use a Taylor expansion of energies , E = E° + E' + E? +..., and the wave
ow)
. 0 1 .
function denoted by ¢ = ¢ + ¢ +4.... We perturb around ¢} g = im collecting the

terms linear in U in the Schrodinger equation Me = Ec. We obtain the equation Elc) i T
E2+Gmc}c+ci = 5ijEI?:+G1;cllc+Gj + UGi_jS%JrGj. For i # m the E; term drops and we find

Ug,-
Chiq, = G G"‘O . This result can also be used to calculate the shift of energy to

~ 7o
Eira,, — Piva,
second order in the potential which gives

. |UG1_Gn |2 3
E=FEgq, — E Jou 0 +0(U”)
Gi#Gn k+G; k+Gp

Importantly, we see that the perturbation theory breaks down when |Ug,_a,| 2 |Ej g, —
E} +Gm|' Let us assume that for a given k and m this happens for a set of n reciprocal
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vectors G; € {Gl, e Gn} We will use degenerate perturbation theory for these cases
but ordinary perturbation theory for the rest.

How does one do degenerate perturbation theory? Onme treats those modes exactly, keeping
in (3.4) only the n ‘dangerous’ modes ¢, ,. For all the other modes we can either use
perturbation theory or just ignore them. Keeping them, we obtain n equations for the n modes

0
(E-Epig)kra, =Y Us, a,%%ie,+ 2, Us atkic

Jj=1 G#G1,...G,
n (]~ U ~
~ o . é.-cYc-G; ) 3
~ ZU i*jSk+Gj + Z EO _ EO ck+Gj +O(U )
j=1 G#£G,,..G, ktG: k+G

can be neglected if smaller than Uéi*éj

One can also view this as a n X n matrix equation which has to be diagonalized to treat the
coupling of the n almost degenerate levels exactly.

Under what condition do we obtain a degeneracy? Obviously when (k + G;)? = (k + G,)?,
i.e. on a plane (called Bragg-plane) which has the equal distance from two vectors in reciprocal
space. This is the case on all boundaries of 1. BZ where n = 2. At edges and corners of the
1.BZ one obtains larger values of n.

Let us focus on the most simple and most important case, n = 2. We have to consider a 2 x 2
matrix of the form

Ue Eiie

which has eigenvalues

E} =

NN

2
EO _ EO
b o)+ (BR) wer

At the degeneracy point, one has E) = Ej) 1+ and the splitting of bands is linear in U due to
the Bragg reflection

E} = B = |Ug| (3.5)

An example of such a band in one dimension can be found in Fig. 3.2.
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Figure 3.2: Splitting of bands in a monoatomic 1d lattice. The band gap opens to linear order in
Uy, due to Bragg reflection from k = £G, £2G etc. where |G| = %”, a being the lattice spacing.

Above, we used a “reduced zone scheme”, considering only momenta in the 1. BZ. Sometimes
it is usefull to continue all bands periodically, in this case one talks about a “periodic” or

“repeated” or “extended” zone scheme.

Figure 3.3: Repeated Zone Scheme for describing bandstructure is obtained by a periodic extension
of the band energies in the first Brillouin zone.

To visualize band structures in more than one dimension, one often plots the bands E}* along
certain high-symmetry lines in the 1. BZ.

3.3 Fermi Surfaces

We continue by discussing basic properties of non-interacting electron using the fact that
within Hartree-Fock or within the LDA approximation we indeed obtain an effective description
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in terms of non-interacting particles. Later we will give more precise arguments why non-
interacting electrons work remarkably well to describe many properties of solids even in the
presence of interactions. But for the moment, we will just assume that we have done some
bandstructure calculation and have obtained the single-particle energies €, where m € N is
the band index and k € 1. BZ.

To find the groundstate of the many-particle system we use Pauli’s principle. As an electron
carries spin, each state with quantum numbers m and k can be occupied by an up and a down-
electron. The many-particle groundstate is obtained by occupying all states up to a maximal
energy, called the Fermi energy.

occupied states: ek < ep,k € 1.BZ
Fermi energy: e

electron spin: each m, k occupied with 1,

Let us do this more precisley. For this we use periodic boundary conditions

wmk("’ + Njaj) = wmk(r),j = 1,2,3,Nj c N, Nj >1

Here N; is the number of unit cells in the direction of a;. From Bloch’s theorem, we know that
Vmk(r + Nja;) = e®Ni%)(r) which allows to conclude that k - a; = %277, m; € Z. This

condition can rewritten using our definition for the basis vector, G1, G2, G3 of the reciprocal
lattice, G; - a; = d;;2m. We find that the following discrete momenta are allowed

3

kmzz%Gj, meZ, kel.BZ,
j=1""J

In the limit of large IN; the grid of momenta becomes denser and denser. We will therefore

often rewrite the sum over the discrete momenta Z ... as an integral. For this we need the

k
volume around each k,, point which is given by

G1 . (Gg X Gg)

3.6
N1 N3yNs (36)

(a; x ax)
a;-(a; x ay)

(2m)°
aj - (0,2 X ag)

Let us calculate this using that G; = 2me; i, . After a bit of algebra we obtain
that

G- (GQ X G3) = (37)

Using the volume per discrete k-point (3.6), we can approximate

N1NoN. dk dk
Z%CJ(IGQX?)C;)/dk:NlNQNg (11'(&2)((13) / :V/
k ! 2 ¥ Bz volume of unit celll. BZ 1.BZ

Identifying Ny NoN3 ap - (as X a3) with the total volume V' of the system, we obtain the
—_—

volume of unit cell
following frequently used formula
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St =V [ s (38)

where f is some arbitary function.

As a first example, let us compute the total number of particles N, and the density of electrons

n = % at zero temperature by counting all occupied states, N, = 2 Z 1, where the factor

Emk <EF
2 arises fI“OIn the Spin.

dk Ne
Z / 2n)? = =" density of electrons (3.9)
T
" kel. Bz
Emk <ER

This formula can also be used to determine the Fermi energy epfrom the electron density n.

We can generalize the formula to finite temperature using that states are occupied with the
probability f(e.,k — p) where f is the Fermi function

1

f(g): eE/kBT+1

Her p is the chemical potential with (T — 0) = e .

flem k=]

1.0

05

u
Figure 3.4: Plot of the Fermi function, f(&,,k— ). The drop at € = pu becomes progressively sharper

as T'— 0.

At finite temperature, u is therefore determined from the equation

Note that within the Hartree-Fock approximation €,,, does in general depend on both on T
and n and one has to solve such an equation self-consistently.

But let us focus now first on zero temperature. Here we want to consider two cases

Case 1: All bands either completely filled or completely empty.
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Figure 3.5: Case 1: All bands either fully filled or fully empty at T' = 0.

This describes typically an insulator or a semiconductor (a counterexample is graphene, where

one obtains a semimetal). In this case the total electron density is just given by integrals over
the full BZ.

dk 1
= 2m0

— 2 _— _—
" o (27T)3 Mlnit-cell

kecl.BZ

where my is the number of filled bands and we used that according to(3.7) the volume of the
1.BZ is (27)3/Vimit-cenn- If one has only filled or empty bands, then the density of electrons is
given by an even number of electrons per unit cell. This is the case for all semiconductors and
(non-magnetic) insulators.

Case 2: In metals, in contrast, one or more bands cross the Fermi energy and bands are only
partically occupied.

Figure 3.6: Case 2: One or more bands only partially occupied at T' = 0.

In this case the equation &,,, = ¢ defines one or several d-1 dimensional manifolds which are
called Fermi surfaces.

Fermi surface: manifold with €,,, = ef (3.10)

As an example one can, e.g., consider the case of a single band in two dimension, €, =
—2t(cos(kga) + cos(kya)), where several Fermi surfaces are shown in Fig3.7 .

To obtain an analytic understanding it is useful to consider various Taylor expansions. For
small k: e = —2t (1 — (kza)® +1— 3(kya)?) =t (k2a2 - 4) giving rise to spherical Fermi
surfaces when the Fermi energy is slightly above —4t. Another special point is e = 0 where
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Figure 3.7: Different Fermi surfaces in 2d for a band with dispersion e = —2t(cos(kza) + cos(kya)).

the Fermi surface has a square shape (why?). Finally for a Fermi energy close to the band
maximum 4t one can again use a Taylor expansion, this time around the edges of the BZ where

Ek-',-(:l:%,:t%) ~t (4 — k:2a2).
We conclude with a few remarks.

— In typical metals the Fermi energy is of the oder of typical atomic binding energies and
thus given by er ~ 1...10eV. Importantly this coresponds to a giant temperature scale of
10,000 -100, 000K, many orders of magnitude larger than room temperature. Therefore thermal
excitations mainly exists very close to the Fermi energy.

— We defined the Fermi surface for a non-interacting system but it turns out that it can also
be exactly defined even for strongly interacting metals.

— Fermi surfaces come with different shapes and topologies.

— Fermi volume, defined by the volume within the Fermi surface is, according to Eq. (3.9)
fixed by the electron density (at "= 0). This turn out to be true even in the presence of
interactions. This relation is also called(Luttinger’s theorem)

dk
(2m)?

Luttinger’s theorem: n = spin-degeneracy X Z /

m
Emk<EFR

Interaction can, however, change the shape and topology of Fermi surface and also the velocity
of electrons at Fermi surface which turns out to be a decisive factor for many properties as we
will discuss next.

3.4 Density of States, van-Hove singularities and
thermodynamics

3.4.1 Density of states

When discussing the physical properties of solids, we often have to do sums of the form

Z g(emr). For example, the total number of noninteracting particles is given by N =
nk,o=1/4
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Z f(enk), the total energy by E = Z €nk f(€nk). From the latter we will be able

n,k,o=1/] n,k,o=1/1
to compute, for example, thermodynamic properties.

The basic trick is to rewrite the sum as an integral over energy

> gEmp). = Z/g(a)é(s — Emk) de = V/g(e)f\/(a) de
n,k

n,k,o=1/4

Here we defined the (total) density of states

Nie) = %Za(e o) (3.11)
n,k

where the factor 2 in front arises from the sum over spins. Sometimes it is also usefuld to define
the density of states for a single band,

N (e) =2 / 6(e — emp) @n)?

kcl.BZ

The integral over the density of states of a single band is 2 electrons per unit-cell or

/./\/m(s) de = 2

Vunit—cell

In some cases one also uses the density of states per spin, omitting the prefactor 2 in the
equations above. The density of states counts the number of states per volume and per energy
and has the corresponding units. With these definitions, we can easily compute the density of
electrons

n=2e= / f(e — WN(E) de,

To compute the density of states, Eq. (3.11) (and similar k integrals), it is useful to split the k
integral into an integral over energy and a contribution along surfaces of constant energy (the
most important of such surfaces is the Fermi surface)

1
k..= | dk... — i) de = .
/d /d /5(5 Emic)de /de /dS Ve
——

integral over surface
of constant energy

Here Vienme = vme is the group velocity of electrons, evaluated at the energy e. For the
density of states of band m, we obtain

2 de dS

Non(w) = 2m) )] [V iemp]

O(w—¢)

2 1
= d 12
= Vet (3.12)

The density of states is therefore an integral of the inverse velocity integrated over surfaces in
momentum space where g, = w.
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3.4.2 Van-Hove singularities

The density of states is not a smooth function of w but is characterized by a set of so-called
van-Hove singularities. According to Eq. (3.12) we might obtain something singular when
the velocity Vgemke vanishes somewhere on the surface with energy w. Let us assume that we
have identified such a point k¢ with v,,k, = 0. Then we can Taylor-exand the energy around
that point and obtain

1 0%

€mk%€mko+§mk (k—ko)i-(k—ko)j+...

=ko

Such points arise at minima, maxima or - most interesting - at saddle points of €,,%. To analyze
what is happing in a d-dimensional system, we start with a simple variable transformation:
k = ko + /(¢ — €mk,)x. Taking only small & into account, we obtain a contribution to the
density of states which reads

N(e) = 2/ mdé [(5 — Emko) (1 + ;azzangmzmﬂ (Qd:)d

q_ 1 9% dex d_
= (6= Emko)? 12/6 {1 + 23:1:-895-%%} (2m)d o (€ = Emiy) T
i0T;

Depending on the spatial dimension d, we obtain different results.

1
d = 1: Both at the minima and maxima of bands, there is a 7 divergence.
€

N(E)

Figure 3.8: van-Hove singularity in d = 1 with % divergence in DoS.
€

d = 2: Here there is a jump to a constant value at the band edge. In d = 2 the bands have not
only maxima and minima but also at least one saddle point. Closer inspection of the equation
above reveals that there is a jump at logarithmic singularity (—In |e — €g|) at the saddle point.
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€€,

B

———

Figure 3.9: van-Hove singularity in d = 2 with —In |¢ — g¢| divergence in DoS.

d = 3: Here there are /¢ non-analyticity both at minima, maxima and saddle points.

5@&&[6 Po(nB

Figure 3.10: van-Hove singularity in d = 3 displays /¢ non-analytic behavior in DoS.

The fact that €,,x is periodic in k enforces that each band has to have at least one maximum,
at least one minimum and in d > 1 several saddle points.

A modern interpretation of van-Hove singularities is that they are associated to a special type
of “topological quantum phase transitions”. Here, at T' = 0 as function of the chemical potential
p (or, equivalently, as function of the Fermi energy) the topology of the Fermi surface
changes. For example, upon crossing the band minimum a new Fermi surfaces emerges, at
a maximum it vanishes. Most interesting are saddle point where typically two Fermi surfaces
merge. This can, e.g., be seen in a 2d example, with &, ~ k2 — k;, where for 4 = 0 two Fermi
surfaces touch at the origin.

J LN
] £ [

Figure 3.11: van-Hove singularity in d = 2 — an example of a topological phase transition.
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3.4.3 Thermodynamics of non-interacting electrons and Sommerfeld
expansion

We finish this paragraph with a few results on the thermodynamic properties of non-interacting

electron. We start with the observation that - as discussed above - both the density of electrons
n and the energy per volume u can be written as simple integrals over the density of states:

n=3 [ Nnle)fe~ p) de

u= Z/Nm(s)sf(e — ) de
From the energy, one can, for example compute the specific heat, which measures how much

energy per Kelvin is needed to heat a sample:

_Tof
- Vor

_ou

~ar
v

Cv

|4

To compute the integrals, we can use that for typical metals the bandwidth and the Fermi
energy are gigantic compared to the temperature, 1-10eV=10,000 -100, 000K, T < u. We are
therefore always in the low-temperature limit and can calculate the integrals above using a
Taylor-expansion trick called Sommerfeld expansion. These are rules to perform integrals
over Fermi functions in the low-temperature limit which read

/ fe - wynle) ~ / n<e>+n'<u>%2<kBT>2+0<T4> (3.13)

— 00

where n(e) is some arbitrary well-behaved function which varies only smoothly on the energy
scale set by the temperature 7.

g
For a proof it is useful to introduce the integral H(e) = / n(e") de’ which allows to rewrite

— 00
by partial integration

/ fe — pyn(e) = / H(E) (e — )

Be
Now we use that —f'(e) = (eB€e+ I = e coshfﬁe/2))2 is a sharply peaked function of
width T which is even in e. It can be viewed as a broadened version of a d-function. As

we assume that h(e) is smooth on the scale T, we can use a Taylor expansion of H(e) =

o _ ndqr g
H(u)+ Z% o The remaining task is to evaluate integrals of the typ
n=1 '
[ere-mEt e = gwry [ LT dr= (1)
n! c=E=h n! 4 cosh?(x/2) "
B — 0o
72 o
S2n+1 - 07 SQ = S4 = -
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Using Sa, we recover (3.13), with Sywe can easily calculate also the next-order correction
proportional to T4.

As a useful example, let us consider the electron density for a system with a single band crossing
th eFermi energy (for simplicity we set kg = 1, measuring temperatures in units of energy).
More precisely, we will need below to calculate how the chemical potential changes as function
of T for low T'. Using

e 2

n~ /N(e)+N’(u)7;T2

we keep n fixed and use the equation to determine p(7T). At low T we define, u(T) — (T =
0) = u(T) — ep = Ap and Taylor exand in Ay and T to obtain

2 2 A/
ApN (er) +N/(EF)%T2 ~0 = Ap =~ —7;%((;:)) T?

This result we use for the Sommerfeld expansion of the energy per volume

um)~ [ o)+ T W) + A )T

— 00

Here we have to set u = ex + Ap and Taylor expand in 7. From the first term we obtain a
correction pN (pu)Ap which cancels the last term and we obtain

w(T) = u(T =0)+ 7:N(EF)T2

From this we can obtain the important specific heat formula

71-2

iy 5 3/\/ (ep)kET (3.14)

2
Consider, for example, a quadratic band, e = o (setting i = 1) which gives rise to the
m

2-4
density of state density of state N(e) = #m\/ 2me. As T = 0 we can easily compute the
s
. . 1 2 3 . . .
electron density and obtain n = —m+v2mzeg. This allows to express the Fermi energy in

7
terms of the electron density. To be able to compare the classical and quantum result for the

3
specific heat, it is convenient to express N (ep) = 2771 Thus we find
EF
2 (kgT
o~ (B) ke
2 ER

3
Classically, the specific heat of particles with quadratic dispersion is given by C,, = §an' We

kT
see that this value is reduced by a factor proportional to B This is a consequence of the
€F

Pauli principle, only states in a window of width T around the Fermi energy contribute to
thermodynamics.
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3.5 Almost localized electrons: tight binding model

3.5.1 Linear combination of atomic orbitals - LCAO

We come back to the problem of calculating band structures. We will start by discussing the
tunneling of almost localized electrons. The main reason why we are interested in this limit is
that it does not only provide a simple approximation but turns out to be extremely useful to
obtain an intuition of how electrons move in a lattice.

Our starting point is, however, a crystal where the atoms are placed in a considerable distance
from each other. Therefore we can - in first approximation - neglect any tunneling and consider
simply the atomic orbitals. In this case choosing just a linear combination of atomic orbitals
(LCAO=Linear Combination of Atomic Orbitals) which all have the same energy will be a
good approximation to the wavefunction of the crystal.

We start with a single atom (e.g., hydrogen) assuming that we know all single particle eigen-
states and energies
Hy®, =E, o, m=1,...,N

Here we use two quantum numbers: n for the energy and an extra quantum number m assuming
that we have N degenerate states which all have the same energy. In the following we will
suppress the index n, just focussing on the degenerte states. Now we consider a crystal of
those atoms located at positions R, (for simplicity we assume that the atoms form a simple
Bravais lattice and discuss generalizations later) and assume that the wave function will be a
linear combination of the atomic orbitals ®,,(r — R,,). To guess the form of the wave function
at a fixed momentum k, we use the constraint of Bloch’s theorem. This implies that the
wavefunction has to take the form

Pr(r) =Y e*FN"b, & (r — Ry)
R, m

We can easily check that the wavefunction fulfills the necessary condition g(r + R;) =
et Biypr(r). As a next step, we would like to evaluate Ht, with the goal to obtain eigen-
functions of the Hamiltonian

Hpp(r) = Eptp(r)

To obtain such an equation, we use two tricks. We focus on the atom at the origin, R,, = 0,write

H = Hyom +AU(r) and project the equation onto orbital m of the atom at the origin.
——
at the origin
This gives

/ O (1) (Hagom + AU(r) )t (r) dr — Ex / ®* (r)n(r) dr = 0

We have to evaluate 3 terms here. Let us start by combining the first and the last term. Using
that @ (7)Hatom = En®}, (), we obtain

(En — Ek)/®;(r)¢k(r) dr = (E, — Ex) | by + me, Z /‘I’?n(r)q)m' (r — R,,) ei* B

m/ R,#0

small, only relevant for close
neighbors =M*

mm

= (Ex — Ep) (Ommr + M) by (3.15)

’
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The remaining term reads

/ By () AU (r)bg (r) dr

= bwEy /@fn(r)AU(r)@m,(r)jL > /‘Dfn(T)AU(T)¢m,(r ~R,)e*Rn

R, #0

relatively small for small »
small, only relevant for close

neighbors

=> M, by (3.16)

In total, we therefore obtain the following k-dependent equation for the N unknowns b,,

M2, (K)by = (Ex — Ep) (Smms + MY,00) by

N eigenvalues of matrix (I + M*(k))~'M?(k) determine N bands ,,(k)  (3.17)

Here the matrix M! is a correction term which arises because the atomic orbitals at different
sites are not orthogonal to each other.

Let us consider the most important example, N = 1, relevant for non-degenerate s-electrons.
In this case, there is no need to diagonalize any matrix but we can read off

B+ R, )er R
Ey=E, — — 2=
1+ Za(Rn)eik'Rn
R,
where 8 = — [®*(r)AU(r)®(r) is the local change of of the potential due to neighboring

atoms, while ¢(R,) = —/ *(r)AU(r)®(r — R,) is interpreted as the rate with which one

can hop from one atom to a neighboring atom. Finally, «(R,) = —/ " (r)®(r — R,) is

a correction factor due to non-orthognality of atoms. As ¢(r) is real, we have t(R,) =
t(—R,),a(R,) = a(—R,).
Often we have the situation that the dominant contribution comes only from nearest neighbors

contribute. Furthermore, the overlap of nearest neighbors is small, o < 1, and we can also
ignore the term fa < t. In this case the dispersion is given by

Ey,~E,— 38— thos(k ‘R,)

n.n.

where n.n. indicates that the sum is only over vectors R, which connect the origin to nearest
neighbors. For example, for an fcc lattice, one has 12 nearest neighbors located atR, =

%(il, +1,0), g(o, +1,41), g(ﬂ,o, +1) and one finds

ks k
FEj, = const — 4t (cos (;) cos <;a> + cyclic>
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Figure 3.12: Tight-binding dispersion for an FCC lattice leading to two different kinds of fermi
surfaces.

The approach discussed above can easily be generalized to more complex situation. Consider,
for example, a case where one has M atoms per unit cell located at R, +b;, i =1,..., M. In
this case one includes those in the ansatz

M N;
Un(r) = D3 30 Bl (7= (R + b)) - b, - e (Ret0)

n i=1m;=1

In total one uses here N = N7 + Ns + ... N, variables. Proceeding as above, one then has to
solve for each momentum k an N x N eigenvalue problem from which one calculates N bands.

3.5.2 Phenomenology with tight-binding approaches

One of the most important aspect of the tight-binding description of electron motion is that it
provides an intuitive picture for electron motion in a crystal. Electrons hop from orbital
to orbital. Nearest orbital give the dominant contribution but one can easily also include
next-nearest or next-next nearest orbitals. Most frequently, the corresponding hopping matrix

elements are not calculated from /(Ian(r)AU(r)@m/ (r — R,) = tymm (Ry) in the way we have

described it above but used as phenomenological fitting parameters which can either be
fitted to some experiment or to some full-fledged band-structure calculation using the methods
outlined in the previous chapter. Also features like spin-orbit coupling arising from relativistic
corrections in heavy elements (where electrons move faster due to the higher ion charge) can
easily be included in a tight-binding approach. With the proper generalization of orbitals
(discussed below) this fitting-parameter approach is frequently used even in situations where a
tight-binding approximation cannot not justified. When using this approach, one also ‘ignores’
the non-orthogonality of orbitals at different sites (which can always be avoided by using
Wannier functions introduced below). In this case, equation (3.17) simplifies

Mkb = €kb (318)

with N x N matrix Mp,m = Ztmm/(Rn)eik'R"
R,

How can we limit the number of fitting parameters ¢,,,,' (R,,) ? First, we can use that ¢,/ (Ry,)
is only sizable for small R,,. Second, one has to perform a proper symmetry analysis to find out
which hopping parameters are allowed by symmetry. To give an example, the hopping between



3.5. Almost localized electrons: tight binding model 39

an s-orbital and a pg orbital will vanish, if the two orbitals are connected by, e.g., by rotation
axis with a 180 degree rotation symmetry. In formulas, the following integral will vanish

/@;(T)AU(T)% (r+(a,0,0)) =0 = t,, ((a,0,0)) =0

if a symmetry exist which maps y to —y which changes the sign of ®, but not of the other
terms in the integral. In contrast, the integral [ ®%(r)AU(r)®,, (r+ (0,a,0)) will be finite,
see Fig. 3.13.

hopping no hopping

Figure 3.13: Between an s and a p orbital, the relative orientation determines whether hopping is
possible or not.

3.5.3 Graphene
Let us do perhaps the - by now - most famous example of a band-structure calculation. We

consider graphene, a two-dimensional sheet of carbon forming a honeycomb lattice with 2
atoms/unit-cell.

Figure 3.14: Honeycomb lattice structure of Graphene.

The (triangular) Bravais lattice is spanned by the two vectors

1
a1 = a(1,0), as =a (cosg,sin g) =a (- ﬁ)

There are two atoms per unit cell located at

1
R, = nja; +nsa and R, + A, WithA:a<0,—>
101 202 VAl

The reciprocal lattice vectors are spanned by

2 2 27 1
G =—|[0,—&—),Gyo=—1[1,——
=2 0g)e=T(-5)

: : 4r 27 27
and the 1.BZ is a hexagon with edges located at (F5%,0) , (:Izg, if—g).



40 Chapter 3. Electrons in a Periodic Potential

The bands close to the Fermi energy are formed by p, orbitals sticking out of the graphene
plane. We want to use the tight-binding ansatz in its phenomenological version (3.18) (ignoring
issues related to the non-orthogonality of bare atomic orbitals). The tight-binding ansatz reads

k= (ak®(r = Ry) + Bre™ B0 (r — (R, + A)))
R,

To set up the matrix, we need the vectors connecting nearest neighbors. Each carbon atom
has three nearest neighbors located at at

n a<0 1) n Ra2=n ( 1 1 ) n Rai=n a(l 1 )
= sy T =] = 2 =a\|\ =5, ~=)> = 4m - PN~
1 /3 2 = 1 2 93 3 i 18] 2 203

relative to the Carbon position.

n
lel 3

Figure 3.15: Position vectors of nearest neighbors relative to a site in the honeycomb lattice.

These vector connect the A sublattice parameterized by o and the B sublattice parameterized
by Bk and thus the hopping matrix elements show up in the off-diagonal elements of the matrix

equation (see Eq. (3.18)})
3
0 —tZeik'"i
i= Ok
-l . i (bk) (3.19)
LS ek g
i=1

The eigenvalues are given by + |tZeik‘ni |2 but most of the interesting physics occurs at the

i=1

edges of 1.BZ, e.g. ko = (3Z,0).

3a?

Figure 3.16: Bandstructure of Graphene in the tight-binding approximation.
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3
At this momentum we have Zeiko'”i = 1+ e " +¢F = 0 and therefore e, = 0. Let
i=1
us do a Taylor expansion around this point by evaluating the Hamilton matrix (3.19) at the
3

momentum ko + k for small k. Using —tZei(kOJrk)'"i ~ t@a(kzw — iky) we obtain a new
i=1

k-dependent Hamiltonian for the Schrodinger equation e+ <Zk> = Hpytk <Zk> with
k k

0 ke —ik,

Hyyip = v <kx + ik, 0

> = v(kgoy + kyoy)

where v = t@a/ h is an effective velocity of the order of 10m/s. The energy close to the K
and K’ points is therefore linear in momentum, eg,+x = j:t@ k2 + kg . As there are two

electron per unit cell, i.e., one per orbital, the states with negative energy are filled while the
ones with positive energy are empty. The chemical potential therefore vanishes, yu = 0.

A bit of care is required when counting the number of Fermi points: the energy vanishes at the
6 edges of the hexagonal 1. BZ, see Fig. 3.16. However, one edge is connected by reciprocal
lattice vectors to 2 other edges. Due to the perodicity of the 1. BZ it thus describes the same
point. Therefore there are just 2 non-equivalent Fermi points, which we can denote, e.g., by
ko and —kg (also refered to as the K and K’ points) the with

H_pyir ~ hw(—kyop + kyoy)

The effective low-energy Schrodinger equation takes both at the K and K’ points the form of
a two-dimensional massless Dirac equation. If we include the spin-index (which we omitted
above), we end up with 4 copies of a Dirac equation, which can be described by four two-
component fields ¥y, 4/, (r), where the two components reflect the A and B sublattice as
introduced above. The real-space Hamiltonian for ¢y, 1, 1(r) reads, for example,

H = v(ih0y0, + thOyoy).

The special linear dispersion and the physics of the Dirac equation governs many of the prop-
erties of graphene. Let me just give one example: In 1929 Klein made a surprising observation.
Massless fermions described by the Dirac equation can tunnel through a potential without
getting reflected. This has not only been observed for graphene but also is of technological
importance as it makes it much harder to make transistors out of graphene.

3.5.4 Wannier functions

The concept of hopping between localized orbitals can be made precise even in cases when
atoms are not far apart from each other. Here one has, however, to replace the concept of
atomic orbitals by a more general one, the so-called Wannier functions.

The starting point for the construction of Wannier functions are exact eigenstates of a periodic
Hamiltonian for fixed momentum k, the the Bloch functions ., k(r) with ¢, k(r + R,) =
etk fn Ym k(7). Let us try to construct a wave function localized around the site R; by using a
formula motivated from the inverse-Fourier transform. We define the Wannier functions

Z e Rz k(r)

kel.BZ

1
¢mR¢ (’I") = ﬁ Z wm,k("' - Rz) =

kecl.BZ

ol
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As usually, N is the number of unit-cells, or equivalently, the number of k vectors and we
assume that ¢, () is normalized to 1.

Let us start by calculating

1 kR —ik' R,
O lonr) = [ Gum ()6, (1) = 5 ™ B8 [ i = b,
K,k —
5k‘,,k’6n1,m,’
(3.20)
The Wannier functions are by construction orthonormal. Furthermore, assuming that the

tm k(1) are smooth function of k, one finds that

¢mr, (1) is localized around R;

which follows from the construction as a Fourier transfrom. A remarkable exception are so-
called topological insulators (discussed below). For those it is impossible to find for a single
band m eigenstates 1y, k(r) which are smooth functions of k.

Some other properties of Wannier functions follow from their definition

PmR; (T) = Om,R=(0,0,0)(T — Ry)

Yo (1) = \/%ZeikARl e R
k

If you compare this with the tight-binding ansatz, you will recognize that we used exactly the
same formulas. Using Wannier functions instead of atomic orbitals makes these equations,
however, exact. Another difference is that atomic orbitals at different sites are not orthogonal
to each other. Wannier functions instead have this property, see Eq. (3.20).

Starting from a band structure calculation based, e.g., on LDA, one can now construct Wannier

functions. Furthermore, using &,,, = Ztm(Rn)eik'R
R,

one Wannier orbital to the next. This allows for an intuitive interpretation of Wannier functions

- at least as long as they are nicely localized objects.

n one can obtain the hopping rate from

If one encounters the situation that a Wannier function as defined above is not local but spreads
over many lattice sites (as is always the case for topological insulators), one can obtain more
local (and thus better to interpret) objects by choosing suitable linear combinations of wave
functions from different bands. With a rather straightforward optimization code one can obtain
maximally localized Wannier functions for a given set of bands. This program works even for
topological insulators.

3.6 Symmetries and degeneracies in the band-structure

The symmetries of a Hamiltonian have also important consequences for their band structure.
For example, they can enforce degeneracies of bands. A good example is graphene, where we
found that two bands cross at a Dirac point and the question arises whether this is an artifact
of an approximation or an exact statement.
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3.6.1 Time reversal invariance
Time reversal invariance is arguably the 'most tricky’ symmetry and some care is required for
its discussion.

First, we will ignore the electronic spin and switch off any magnetic field. In this case the
Hamilitonian is obviously real and we find by complex conjugation

ihopp(t) = Hy(t) = —ihdy™(t) = By (t) = ihdp*(—t) = Hy"(~1)

Apparently, we can find a (new) solution of the Schrédinger equation by setting ¢ to —t if
we simultaneously perform a complex conjugation operation. Thus, we definethe time-reversal
transformation T by

TY(x,t) = Y™ (x, —t) for spinless fermions
Let us also define a complex conjugation operator C' by
Cyp =y~

With Ty (x,t) = Cy(x, —t). Please note that C' and T are not linear operatosr, i.e., C(a)) =
a*C () # aC(vy), Operators with this property are called antilinear. The fact that time-
reversal is implemented via antilinear operators makes it different from other symmetry trans-
formations which are described by linear (and unitary) operators.

We can now easily check what happens to various operators and physical quantities upon
time-reversal

thOy — ihdy,, FEF—FE, p—-p, L=rxp——L

From the transformation properties of the angular momentum, it is clear that we should demand
that for a particle with spin that S — —S under time reversal. This requires some extra thought
as the Pauli matrix o, is purely imaginary while o, and o, have real entries. This issue is
solved by setting

T = io,C (3.21)

This defines how time-reversal acts on a two-component spinor describing spin-up and spin-

down electrons
() - (Y

Note that the spin-components are exchanged and there is an extra minus sign for the lower
component. An important consequence of the definitions (3.20) is that

7% =io,Cio,C = ioyic, = —1 for a spin 1/2 particle (3.22)
while T1T = C(—i)o,io,C = 1. We can now check the transformation properties of the Pauli

matrices to check whether we achieve that S — —8S:

Tlo, T = Coyo,0,C = —Co,C = —0,

TTUyT =Coy0y0,C = Coy,C = —0y



44 Chapter 3. Electrons in a Periodic Potential

Tlo, T = Coy0.0,C = —-Co.C = —o0,

We will now consider a solution 1 of the stationary Schrédinger equation, Hy = E. Assuming
a time-reversal invariant Hamiltonian THTT = H we obtain

H Ty = E T

T4 therefore has the same energy as 1. From T? = —1, Eq. (3.22), we can furthermore
conclude that T and v are linearly independent from each other

(assume: T = ayp = T2y = a*T = |a|?3) in contradiction to Ty = —1p).

From this follows the famous Kramers degeneracy: bound states of time-reversal symmetric
Hamiltonians for spin-1/2 particles are always doubly degenerate.

What consequence does time-reveral symmetry have on band structures? Are there also
Kramers degeneracies? Up to now we have mainly considered systems without any spin-orbit
coupling where the band-structure was completely independent of spin. In reality, however,
the spin couples to the motion of electrons via spin-orbit coupling, e.g., by terms proportional
to p - o. In this case, single particle Hamiltonians are promoted to 2 X 2 matrices and the
bandstructure does depend on the spin-index. From time-reversal symmetry, it follows that

€kt = €kl

Here I use a sloppy notation, where 1, | denote 2 opposite spin directions which may, however,
not point in the z direction. For the momentum k = (0, 0,0), this leads to a Kramers degen-
eracy. The same applies also to vectors where —k = k + G,,, e.g., k = (7/a,0,0) in a cubic
lattice with reciprocal lattice vector (27/a,0,0).

Without further symmetries and for a generic momentum k, we do, however, not obtain any
degeneracies. In the presence of spin-orbit coupling bands do generically split.

A very important exception are materials which are not only time-reversal symmetric but also
possess an inversion symmetry I which maps k to —k. In this case we find

T I
€kt = E—k| = €kl

Therefore all bands are doubly degenerate (as in the case without spin-orbit interactions).
Indeed, as a rule of thumb spin-orbit interactions can change the physics qualitatively in ma-
terials without inversion symmetry but have often only minor implications in the presence of
this symmetry.

With and without spin-orbit interactions, external magnetic fields break time-reversal symme-
try and lift the spin-degeneracy of the bands.

3.6.2 Band degeneracies due to symmetries

Above, we have shown that the combination of time-reversal and inversion symmetry leads
to degenerate bands for arbitary momenta. Ignoring this type of degeneracy, we can ask are
there further points where bands cross? Such points are of interest for many reasons. A good
example are the special properties of graphene associated to its Dirac points describing the
crossing of two bands. But one can also think about cases, where, e.g., an extra quantum
number is used to build novel types of transistors.

Generically, bands do not cross easily. The reason is called level repulsion: as we discuss in
more detail below, one has to fine-tune 3 parameters to have two coinciding eigenvalues in a
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Hermition 2 x 2 matrix. Thus band crossings are always special. We will first discuss band
degeneracies related to symmetries and then ’accidential’ band degeneracies unrelated to any
symmetries.

Let us first investigate how an arbitrary symmetry operation acts on a solid. Let us denote the
group of symmetries of a crystal by G where we denote groupelements by 4; = ( S ,a) € G,

where ? is an element of point group (rotation, reflection, inversion), and a is a translation
vector with

Air:?r—ka

Anp(r) = (A7 'r)

The use of the inverse in the equation above is a bit counterintuitive but one can easily check
that it is correct (e.g., translating a wave packet by a achieved by ¥(x) — T, (x) = p(x—a)).
In case of a symmetry, we can directly conclude

[AZ,H] =0 = g, and Aﬂ/)k,n have the same energy  Vi. (3.23)

Let us first discuss translations by lattice vectors. Here nothing interesting happens as v, g (7 —
R,) = e’ik'Rnwn’k(r) , the translated wave function is proportional to the original wa