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Chapter 1

Scattering theory

The chapter begins with a phenomenological introduction to the concept of ’scattering’ in quantum theory. Specifically,

we will define different paradigms of scattering techniques and introduce the concept of a scattering cross section. We

then proceeds to develop the theory of elastic quantum scattering, i.e. scattering without energy exchange. (A few

words will be said about the generalization to inelastic scattering.) We will solve for wave functions describing scattering

setups, first in formal, then in more concrete terms. Emphasis will be put on the theory of scattering targets possessing

rotational symmetry. Specifically, we will study how the scattering properties of such systems can be encoded in a

small set of numbers, the so called scattering phase shifts. We will discuss the significane of the phase shifts, notably

the information they carry about bound sates supported by attractive scattering potentials. We conclude the chapter

with the discussion of a number of general concepts of scattering theory, including the so called scattering operator

(’S-matrix’) and the physics of time reversal.

Scattering techniques represent one of the most powerful and direct ways to obtain infor-
mation on the microscopic structure of quantum systems. The importance of the concept to
fields such as atomic, nuclear, high energy, or condensed matter physics cannot be exagger-
ated. We start the chapter with a brief introduction to the setups underlying most scattering
experiments.

1.1 Introduction to quantum scattering

1.1.1 Basic concepts

The paradigmatic architecture of a scattering experiment is shown in Fig. 1.1, left: a beam
of particles p – either massive (electrons, neutrons, muons, atoms, etc.), or the quanta of
electromagnetic radiation – is generated at a source, S, and then directed onto a target. The
kinematic information about the source beam is stored in a set of quantum numbers k. For
example, k ≡ (p, σ) may comprise the information on the incoming particle’s momentum p,
and their spin, σ. However, more fancy data sets are conceivable, too. In much of the following,
we will put an emphasis on the case where k is just a momentum. The particles carry energy

1



2 CHAPTER 1. SCATTERING THEORY

Figure 1.1: Basic setup of scattering experiments. Target scattering (left): a beam of elec-
tromagnetic radiation (or massive particles) characterized by a set of quantum numbers k
and energy ε(k) is emitted by a source (S) and directed onto a target sample. The sample
responds by emitting radiation according to some distribution P (k′, ε′(k′)′), which is, in turn,
recorded by a detector (D). Notice that the emitted radiation can, but need not, contain
the same type of particles as the source radiation. For example, light quanta may trigger the
emission of electrons (photoemission spectroscopy). Collider scattering (right): two particle
beams generated by sources S and S ′, respectively, collide in a scattering region. The detector,
placed outside the beam axes, samples the products (particles and/or radiation) generated in
the scattering process.

according to some ’dispersion relation’ ε(k).
1

The source beam then hits the constituents
X of the target to generate a secondary beam of scattered particles p′ and modified target
particles X ′. As with the incoming particles, the target is characterized by quantum numbers
K and a dispersion E(K). Symbolically, we thus have a reaction scheme

p + X −→ p′ + X ′

l l l l
k, ε(k) K, E(K) k′, ε(k′) K′, E ′(K′).

Notice that the particles p′ leaving the sample need not be identical to those incident on the
sample. (For example, in photoemission spectroscopy, X-ray quanta displace electrons from
the core levels of atoms in a solid. Here p represent the light quanta, and p′ electrons.)
In such cases, the dispersion ε′ of the outgoing particles differs from that of the incomings.
Further, the dominant scattering process may be elastic (e.g. X-rays scattering off the static
lattice structure) or inelastic (e.g. neutrons scattering off phononic excitations). In either case,
the accessible information about the scattering process is stored in the frequency–momentum
distribution P (ε(k′),k′) of the scattered particles, as monitored by a detector.

From these data, one would like to restore properties (e.g., the dispersion E(K)) of the
states inside the target. This is where the detective work of spectroscopy begins. What we
know is that the dispersions of the scattered particles and of the sample constituents, (k, ε(k))

1

For some sources, e.g. a laser, the preparation of a near-monochromatic source beam of definite k is (by
now) standard. For others, such as neutrons, it requires enormous experimental skills (and a lot of money!).



1.1. INTRODUCTION TO QUANTUM SCATTERING 3

and (K, E(K)), respectively, are related through an energy–momentum conservation law, i.e.

k + K = k′ + K′,

ε(k) + E(K) = ε′(k′) + E(K′).

According to this relation, a “resonant” peak in the recorded distribution P (k, ε(k)) signals
the existence of an internal structure (for example, an excitation, or a lattice structure) of
momentum ∆K ≡ K′ − K = k − k′ and frequency ∆E ≡ E ′ − E = ε − ε′. However,
what sounds like a straightforward recipe in principle may be quite involved in practice: solid
state components interact almost exclusively through electromagnetic forces. When charged
particles are used as scattering probes, these interactions may actually turn out to be too
strong. For example, a beam of electrons may interact strongly with the surface states of
a solid (rather than probing its bulk), or the scattering amplitude may be the result of a
complicated process of large order in the interaction parameters, and therefore difficult to
interpret. The obvious alternative – scattering of neutral particles – is met with its own
problems (see below).

Notwithstanding these difficulties, scattering experiments represent one of the most pow-
erful probes of the static and dynamical features of quantum systems. Below, we summarize
a number of important sub-categories of scattering setups.

1.1.2 Types of scattering experiments

The following is an incomplete list of the most important families of scattering experiments.

. Elastic scattering off immobile targets: here, the target is effectively so heavy that
its mass can be considered infinite. In such cases, scattering is dominantly elastic, ∆E =
−∆ε = 0. The scattering target can be modelled by some potential distribution, fixed
in real space, and arbitrary momentum exchange ∆k is possible. Scattering processes of
this type form the basis of, e.g., crystallography. This is the simplest type of scattering,
and we will explore its theory first.

. Elastic scattering off general targets: still no energy exchange, ∆E = −∆ε = 0,
but we abandon the condition of infinite target mass. Rutherford scattering, i.e. the
elastic scattering of α-particles off atoms and molecules is an important example.

. Inelastic scattering: when the energies carried by the incident particles become com-
parable to the energies of excitations of the target, energy exchange becomes an option.
The information carried by inelastic scattering data is particularly rich. For example,
the existence of quarks in hadronic particles was detected ’indirectly’ through the un-
conventional energy absorption characteristics of the latter in ’deep inelastic’ scattering
experiments.

. Rearrangement scattering: scattering processes involving an actual ’reaction’ of the
participating targets. For example, in the collision of two beams of nucleons N1 and N2

(Fig. 1.1 right) may be elastic, N1 +N2 → N1 +N2, or lead to particle production such
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as N1 +N2 → N1 +N2 + π (pion production), or N1 +N2 → N1 +N2 +K + K̄ (kaon
production).

. Resonance scattering: scattering leads to the formation and subsequent decay of an
unstable yet long lived particle. Resonance scattering plays an important role in, e.g.,
nuclear physics where the scattering of nucleons off heavy nuclei may generate long lived
transient states.

Scattering experimentation plays a role in the majority of sub-branches of physics, notably
atomic, condensed matter, molecular, nuclear and particle physics. The differences are in the
involved energy scales and, relatedly, the cost of scattering experiments. Condensed matter
scattering techniques such as Raman or photo emission spectroscopy (meV scales) can be
realized in a room sized laboratory and accordingly there are many labs running such types of
experiments. By contrast, the few large accelerators of particle physics (TeV scales) cost a
fortune. The list of the most renown particle colliders includes:

. Fermilab Chicago, Tevatron: 2 TeV, 6km circumference, 1983. p + p collider, top
quark discovery.

. Stanford linear accelerator: 3km, 1966. Electron beam collider, discovery of charm
quark, and τ -meson.

. Brookhaven, RHIC: 3.8 km circumference, 2000. Relativistic heavy ion collider, real-
ization of quark gluon plasma.

. DESY Hamburg: ca. 300 GeV, 6.3 km circumference, 1959. e+p and e++p+ collider,
discovery of gluon.

. Large Hadron Collider, LHC: 27 TeV, 27 km circumference, 2009. World’s biggest
hadron collider, expect exciting discoveries!

1.1.3 Differential cross section (definition)

One of the most important observables in scatter-
ing experiments is called ’differential cross section’.
It can be motivated as follows: what a detector
will usually record is the number of particles scat-
tered from the target into a certain solid angle.
We can characterize this quantity by an angular
current density j such that the integration over a
portion Ω of the unit sphere,

∫
Ω

sin θdθdφ j(θ, φ)
gives the current (i.e. the number of particles per
unit time) of scattered particles through the angu-

lar cone defined by Ω. Also notice that for scattering particles moving radially away from the



1.1. INTRODUCTION TO QUANTUM SCATTERING 5

target, this quantity does not depend on the radius of the monitoring sphere put around the
target. Notice that the physical dimension of the angular current density is given by

[j] =
number of particles

angle× time
.

To give this quantity some meaning, we need to relate it to the incoming current. The latter can
be characterized by a current density, i, where we assume the current to be incident along the z-
axis. This quantity is defined to give the current (the number of particles per unit time) coming
in through an area A in the xy-plane when integrated over A, i.e.

∫
A
dxdy i(x, y) =(current

through A). For properly prepared particle beams, i(x, y) ≡ i will not depend on the transverse
coordinates (x, y). Notice that

[i] =
number of particles

area× time
.

The differential cross section, (dσ/dΩ) simply is the ratio between these two quantities:

dσ

dΩ
≡ j

i
. (1.1)

Here, the notation dσ/dΩ is symbolic and does not refer to an actual derivative. Notice that
the differential cross section (dσ/dΩ)(θ, φ) = j(θ, φ)/i depends on angular coordinates. Also
notice that

[(dσ/dΩ)] = area.

The actual units of area met in a calculation of differential cross sections depend on the
physical context. A few typical values are listed in table 1.1.

Let us try to understand the characteristic ’areas’ appearing in the
table. To this end, we define the total cross section

σ =

∫
dΩ

dσ

dΩ
, (1.2)

where we used the abbreviation

dΩ ≡ sin θdθdφ

for the canonical measure on the sphere. The total cross section relates the current (i.e. the
number of scattered particles per unit time) emanating from an individual scattering center
to the incoming current density. Now, suppose we might attribute a certain geometric area
∆S to our scattering target. Thinking classically, we suspect that incident particles hitting
that area will be scattered, i.e. they will contribute to the scattering current sampled by the
cross section. Let the total number of particles incident upon an area A in time t be N .
The incident current density is then given by i = N

At
. Of these, a fraction N∆S/A will be

scattered, i.e. the scattering current is given by Is = N
t

∆S
A

. This means that the total cross
section is σ = Is

i
= ∆S. We conclude that
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Context characteristic value of dσ/dΩ
scattering of visible light 1cm2 = 10−4m2

X-ray scattering 1Å2 = 10−20m2

neutron scattering off nuclei 1b2 = 10−28m2

Table 1.1: Characteristic values of differential cross sections. The unit ’b’ alludes to the phrase
’as big as a barn’ (German: ’so groß wie ein Scheunentor’.)

Roughly speaking, the total cross section equals the ’geometric’ area
of individual scattering centers.

Of course, this simplistic interpretation must be taken with a (major) grain of salt. We
certainly have to expect that quantum mechanics will lead to significant modifications to the
rigid geometric picture constructed above. However, by order of magnitude, we are doing o.k.
Now, as we are going to show below the scattering of particles is the most effective if the
wavelength of incident particles is of the order of the extension of the target. This explains,
again by order of magnitude, the characteristic values appearing in table 1.1. For example, the
wavelength of X-rays is of O(1nm), which corresponds to areas of O(1nm2) = O(10−18m2).

1.2 General theory of potential scattering

We now turn to the theoretical description of scattering processes. In this section, we will
develop the theory of elastic scattering of immobile targets, i.e. the most basic, yet absolutely
important setting.

2
In this case, the target may be modeled by a potential distribution V in real

space, wherefore one often speaks of potential scattering. The basic problem of potential
scattering theory is to a) obtain the wave functions describing the scattering particle/target
system in such a way that b) boundary conditions corresponding to an incoming particle beam
are imposed. We begin by constructing the solution of the Schrödinger equation meeting these
two criteria in formal terms.

1.2.1 Lippmann-Schwinger equation: derivation

2

The condition of immobility of the target can, in fact, be dropped if one formulates the theory in the
instantaneous rest frame of the target. However, we will not elaborate on this point in explicit terms.
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We start out from an Hamilton operator

Ĥ = Ĥ0 + V̂ , (1.3)

where the operator Ĥ0 describes the dynamics of the incom-
ing particle beam and V̂ represents the scattering potential.
Without much loss of generality, we may chose

Ĥ0 ≡
p̂2

2m
, (1.4)

i.e. a Hamiltonian describing the free propagation of particles of mass m. However, much of
our present introductory discussion below will not depend on this specific choice.

INFO Beware of one point that may cause confusion: the ’natural’ eigenstates of the Hamiltonian
Ĥ0 are momentum states |p〉 whose real space representation

3

〈x|p〉 =
1

(2π)3/2
exp(ix · p) (1.5)

is infinitely extended in space. This does not sit comfortably with the intuitive picture of localized
’particles’ scattering off a target. Formally, a particle is described by a quantum mechanical wave
packet, i.e. a spatially localized superposition of momentum eigenstates. Once the scattering
theory of individual plane wave eigenstates of Ĥ0 has been developed the scattering of wave packets
may, hence, be constructed by superposition principles (cf. M.L. Goldberger and K.M. Watson,
Collision Theory, Chapter 3 (New York: John Wiley, 1964); R.G. Newton, Scattering Theory of
Waves and Particles, Chapter 6 (New York: McGraw-Hill, 1966).) However, the complications
that come with this after-step can be avoided as long as we restrict ourselves to the consideration
of wave packets of (near) definite momentum p and spatial extension R much larger than the
characteristic extension RV of the scattering region.

The heuristic argument behind this statement goes as follows (cf. Fig. 1.2): as we will see below,

the ’interesting’ momenta at which actual scattering processes occur are of magnitude |p| ∼ R−1
V .

To obtain sharply resolved results, we thus need to work with near monochromatic states, whose

momentum expectation value is well defined up to some uncertainty ∆p� R−1
V . The Heisenberg

uncertainty relation ∆p∆x ≥ 1 then implies a minimum spatial uncertainty of our ’wave packet

states’ ∆x� RV . As long as we tolerate incoming wave packets much larger than the extension

of the scattering center, this degree of uncertainty can be tolerated, i.e. in spite of a tolerance

∆x a spatial profile of a wave packet of extension R � ∆x � RV can still be defined. For all

practical purposes relating to the description of the scattering of this near monochromatic wave

packet of the scattering center it suffices to work with momentum eigenstates |p〉.

Our goal is to find a solution |ψ〉 of the Schrödinger equation

Ĥ|ψ〉 = E|ψ〉 (1.6)

3

If nothing other is mentioned, we will work in three-dimensional space and set Planck’s constant ~ to
unity throughout.
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Figure 1.2: On the length scales relevant to a wave package scattering process. Discussion,
see text.

such that upon removal of the scattering potential V̂ → 0 it smoothly reduces to a solution
of the ’unperturbed’ equation Ĥ0|φ〉 = E|φ〉 of the same energy.

4
To understand the rational

behind this agenda, imagine the scattering process from the perspective of the incoming parti-
cles (states). Upon approaching the scattering region, the latter effectively see the emergence
(switching on) of a scattering potential, and energy conservation requires that they smoothly
evolve into scattering states, i.e. solutions of the full equation at the same energy.

A formal solution to this problem may be proposed as follows:

|ψ〉 =
1

E − Ĥ0

V̂ |ψ〉+ |φ〉, (1.7)

where (E−Ĥ0)−1 is the formal ’inverse’ of the operator (E−Ĥ0). Acting with E−Ĥ0 on both
sides of the equation, we indeed conclude that (1.7) implies the solution of the Schrödinger
equation. Nonetheless, Eq. (1.7) has two serious problems. The first is that both, the left and
the right hand side contain the desired solution |ψ〉, i.e. Eq. (1.7) has the status of an implicit
equation which has to be processed, e.g., by recursive means. However, before coming to this
complication (which we will be able to get under control) we have to face up to the second
problem: the inverse (E − Ĥ0)−1 does not exist in general. Specifically, if E is an eigenvalue
of Ĥ0 — which clearly is a case of physical interest — this operator is not defined.

Now, we may try to be smart and circumvent the above problem as follows: in the orig-
inal Schrödinger equation (1.6), replace E → E+, where E+ ≡ E + iδ, and δ > 0 is an
’infinitesimally small’ positive offset. It is tempting to argue that, as long as δ is infinitesimal,
this modification is so small, that the solution |ψ〉 will not be affected. The ansatz (1.7) now

4

Although it would be natural to designate the eigenstates of the free Hamiltonian (1.4) by |p〉, other
eigenstates will play a role later on, so we stay with the un-specific designation |p〉.
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assumes to form of a so-called Lippmann-Schwinger equation

|ψ+〉 = Ĝ+
0 (E)V̂ |ψ〉+ |φ〉, (1.8)

where the so called retarded Green function (operator) or resolvent operator is defined
as

Ĝ+
0 (E) =

1

E+ − Ĥ0

. (1.9)

Thanks to the reality of the spectrum of Ĥ0, the existence of Ĝ0 is guaranteed.

EXERCISE Construct an explicit representation of the Green function operator. Hint: employ

a formal spectral decomposition of Ĥ0 in terms of its eigenfunctions.

However, the ad hoc manipulation of the Schrödinger equation should leave one with a sense
of uneasiness. Specifically, what made us to shift the energy argument into the positive half
of the complex plane, E + iδ. A negative shift E − iδ would have worked just as well, but
obviously it is not possible to interpolate from one choice to the other once the decision is
met, lest the ’dangerous’ real axis be crossed.

Before exploring the solution of the Lippmann-Schwinger equation it is well to address
these questions.

1.2.2 Retardation

INFO In this text, we will use the Fourier transform convention

f(E) =

∫
dt eiEtf(t),

f(t) =

∫
dE

2π
e−iEtf(E). (1.10)

it will sometimes be important to recall that the Fourier transforms of many functions of physical
interest — e.g. oscillatory functions — only exist upon inclusion of an infinitesimal convergence
generating factor. For instance, the ’proper’ interpretation of the first of the Fourier identities in
(1.10) reads

f(E) = lim
δ→0

∫
dt ei(E+iδsgn(t))f(t).

Although the presence of the convergence generating factor is usually not spelled out explicitly, it

will be of importance in our discussion below.

Obviously, the sign ambiguity identified above cannot be solved entirely on formal grounds;
we need to inject a bit of physical reasoning here. Reassuringly, this will get us to a solution
that is satisfactory both from a formal and a conceptual point of view.
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The key is to recall the imagined dynamics of a scattering process: in the distant past,
incoming states were ’free’, i.e. they evolved under the influence of Ĥ0. We may then imagine
the scattering potential to be gradually switched on. As a rule, any interaction with the
scattering potential causes an effect only after the interaction has taken place. The problem,
thus, comes with a sense of retardation.

To translate this picture to formal structures, we temporarily turn from an energy to a
time representation, i.e. we consider the problem of solving the Schrödinger equation (1.6)
afresh, this time in a temporal representation: i∂t|ψ(t)〉 = Ĥ|ψ(t)〉, which we rewrite as

(i∂t − Ĥ0)|ψ(t)〉 = V̂ |ψ(t)〉.

Now, interpret this equation as an inhomogeneous linear differential equation in time,

(i∂t − Ĥ0)|ψ(t)〉 = |χ(t)〉, (1.11)

where the inhomogeneity |χ(t)〉 = V̂ |ψ(t)〉 is a time dependent element of Hilbert space.
(However, the Hilbert space structure will be of secondary importance for the moment, we
focus on time dependence.)

EXERCISE Recall what you remember from the method of Green functions in electrodynamics

and compare the following construction to that theory.

We may now solve this equation by a procedure similar to the Green function method (!) of the
theory of linear differential equations. That is, we first seek for a solution of the differential
equation with a particularly simple inhomogeneity, viz. a temporal δ-function, and a unit
operator I in Hilbert space:

5

(i∂t − Ĥ0)Ĝ0(t, t′) = Iδ(t− t′), (1.12)

Notice that Ĝ0 is an operator in Hilbert space, i.e. an object that can be applied to Hilbert
states to generate other states. We now claim that the solution of the equation (1.11), is
given by

|ψ(t)〉 =

∫
dt′ Ĝ0(t, t′)|χ(t′)〉+ |φ(t)〉,

where |φ(t)〉 solves the homogeneous equation (i∂t − Ĥ0)|φ(t)〉 = 0. All we have to do
to check this assertion is apply the operator (i∂t − Ĥ0) to the left and the right hand side
of the equation and use (1.12). Notice that the real space representation of the solution
ψ(x, t) ≡ 〈x|ψ(t)〉 is obtained as

〈x|ψ(t)〉 =

∫
dt′
∫
d3x′ 〈x|Ĝ0|x′〉(t, t′)〈x′|χ(t′)〉,

where 〈x|Ĝ0|x′〉(t − t′) ≡ G0(x,x′; t, t′) defines the matrix elements of the Green function
operator.

5

In a real space representation, I(x,x′) = δ(x− x′).
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Thus, all we need to do now to get the inhomogeneous equation under control is to obtain
a solution of (1.12) for the Green function. Indeed, it is straightforward to check that the
so-called retarded Green function

Ĝ+
0 (t, t′) ≡ −iΘ(t− t′)e−iĤ0(t−t′) (1.13)

solves the equation. To see this, just note that for t 6= t′ the relation i∂t exp(−iX̂t) =
X̂ exp(−iX̂t), where X̂ may be any operator, ensures the solution property. For t approaching
t′, the identity ∂tΘ(t) = δ(t) generates the δ-distribution on the r.h.s. of the equation.
(Exercise: think more about these points!)

Now, Ĝ+
0 is not the only solution of the differential equation. Any function differing from

Ĝ+
0 by the addition of a constant multiple of the homogeneous solution exp(−iĤ0(t− t′)) is

another solution. For example, the operator function

Ĝ−0 (t, t′) ≡ +iΘ(t′ − t)e−iĤ0(t−t′),

the so-called advanced Green function solves the equation as well.
The question then is, which solution is the ’right one’ and it is here where physics enters

the stage. Consider the solution, adapted to the ’real’ inhomogeneity |χ〉 = V̂ |ψ〉,

|ψ(t)〉 =

∫
dt′ Ĝ0(t, t′)V̂ |ψ(t′)〉+ |φ(t)〉.

Apparently, the Green function ’kernel’ mediates the impact of scattering events at time t′

onto the wave function at times t. In the light of our discussion above, this response must
be retarded, i.e. the time of the cause, t′ must precede that of the effect, t. Denoting the
retarded scattering solution by |ψ+(t)〉6 we thus have

|ψ+(t)〉 ≡
∫
dt′ Ĝ+

0 (t, t′)V̂ |ψ−(t′)〉+ |φ(t)〉. (1.15)

The fact that Ĝ+
0 (t, t′) = Ĝ+

0 (t− t′) depends only on the difference of its arguments implies
that (1.15) has the status of a convolution. This suggests that now is a good time to pass
back to the Fourier inverse language of the energy representation. To this end, imagine that
the scattering states carry an oscillatory time dependence,

|ψ+(t)〉 = eiEt|ψ+(E)〉,
6

The notation distinguishes |ψ+〉 from an advanced scattering state

|ψ−(t)〉 ≡
∫
dt′ Ĝ−0 (t, t′)V̂ |ψ−(t′)〉+ |φ(t)〉 (1.14)

describing an anti-causal effect of the scattering potential. Although unphysical, the advanced states play a
formal role in the construction of elements of scattering theory.
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i.e. are eigenstates at some definite energy E. The Fourier convolution theorem (or a short
explicit check) then leads equation

|ψ+(E)〉 = G+
0 (E)V̂ |ψ+(E)〉+ |φ(E)〉, (1.16)

in which we rediscover the Lippmann-Schwinger equation (1.8). Here, the Fourier representa-
tion of the Green function is defined as

Ĝ+
0 (E) =

∫ ∞
−∞

dt eit(E+iδsgn(t))Ĝ+
0 (t) = −i

∫ ∞
0

dt ei(E
+−Ĥ0)t =

1

E+ − Ĥ0

. (1.17)

These final equation contain the solution to the problems raised in the end of the previous
section. Our main conclusions are:

. The operator Ĝ+
0 ’naturally’ appears upon application of Green function methodology to

the Schrödinger equation, the latter understood as an inhomogeneous linear differential
equation.

. Once we use a qualified (means, existing) variant of the Fourier transform, infinitesimally
shifted energy arguments as in (1.9) are generated automatically, where

. the sign of the shift follows from causality, i.e. the condition that the scattering potential
affect the scattering states, after the scattering process has taken place.

EXERCISE Readers familiar with the theory of complex functions may find it instructive to

compute G+(t) by inverse Fourier transform of Ĝ+(E). It then becomes very apparent how the

infinitesimal shift iδ causes a large effect, viz. by determining the retardation condition Θ(t).

1.2.3 Lippmann-Schwinger equation: formal solution

Let us try to construct a ’perturbative’ solution of the Lippmann-Schwinger equation (1.7).
For a weak scattering potential, |ψ+〉 = |φ〉 +O(V ). Ignoring contributions of order V 2, we
may substitute |ψ+〉 ' |φ〉 on the r.h.s. of the equation to obtain the approximate solution

|ψ+〉(1) ≡ Ĝ+
0 V̂ |φ〉+ |φ〉, (1.18)

where we omitted the energy argument in G0 for notational clarity. This procedure may be
iterated. A solution accurate to O(V 2) is obtained by substitution of |ψ+〉(1) on the r.h.s.:

|ψ+〉(2) ≡ Ĝ+
0 V̂
(
Ĝ+

0 V̂ |φ〉+ |φ〉
)

+ |φ〉 =
(
Ĝ+

0 V̂ Ĝ
+
0 V̂ + Ĝ+

0 V̂ + I
)
|φ〉.

What we observe here is a (geometric) series emerging. Iteration of the program evidently
obtains the solution

|ψ+〉 =
∞∑
n=0

(
Ĝ+

0 V̂
)n
|φ〉 =

1

I− Ĝ+
0 V̂
|φ〉. (1.19)
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INFO Notice that this relation relies on two non-trivial presumptions at once: the existence of

the series, and its re-summability in terms of a geometric series. These conditions have a status

far beyond that of mathematical subtleties: many ’real life’ scattering problems, can’t be solved

in terms of infinite series in the scattering potential. The best we can formulate are so-called

asymptotic series, i.e. series approximating the actual solution of the Schrödinger equation by a

finite number of terms (where the accuracy of the approximation is inversely correlated with the

strength of the scattering potential.) Likewise, the re-summability of the series has to be critically

checked in each problem anew.

Eq. (1.19) may also be formulated as

|ψ+〉 =
1

(Ĝ+
0 )−1 − V̂

(Ĝ+
0 )−1|φ〉 =

iδ

E+ − Ĥ
|φ〉 ≡ iδĜ+|φ〉, (1.20)

where we defined the full Green function of the problem as

Ĝ+(E) ≡ 1

E+ − Ĥ
.

Their formal nature notwithstanding, the identities above shed
some light on both, the physics of the scattering process and
the physical meaning of Green functions (cf. the figure.) Eq.
(1.19) expresses the retarded solution of the scattering problem
in terms of a coherent superposition of terms of ascending
order in the number of scattering potential ’interactions’. Each
term V̂ is accompanied by an operator Ĝ+

0 . This suggests
an interpretation, where V̂ assumes the role of the scattering
interaction (naturally), while Ĝ+

0 ’propagates’ the wave function in-between scattering events.
The superposition of all these processes then adds to the full scattering state.

The interpretation of Ĝ+
0 as a carrier of the free quantum dynamics in-between scattering

events can ba made more rigorous: imagine you had prepared a quantum state to sit at position
x at time t = 0. (Think of x as the coordinate of a scattering event at time t = 0.) According
to the laws of quantum mechanics, the amplitude for this state evolving to a coordinate |x′〉
in time t is given by

Ax→x′(t) = 〈x′|eiĤ0t|x〉Θ(t),

where the Θ-function has been added to underpin that the propagation has to be in positive
time. It is straightforward to verify that this amplitude obeys the differential equation (1.12),
i.e.

Ax→x′(t) = 〈x′|Ĝ+
0 (t)|x〉 = G+

0 (x′,x; t).

Alluding to this interpretation the Green function Ĝ+
0 is often called the (retarded) propa-

gator of the theory.
We finally note that it is sometimes useful to condense the multiple scattering processes

introduced above into a compact notation. We simply declare that the ’complicated object’
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V̂ |ψ+ appearing in the right hand side of the Lippmann-Schwinger equation be identical to
an operator T̂ acting on the zeroth order state |φ〉:

V̂ |ψ+〉 ≡ T̂ |φ〉, (1.21)

which is the definition of the so-called transition operator, T̂ . Comparison with Eq. (1.19)
then leads to the series representation

T̂ = V̂ + V̂ Ĝ+
0 V̂ + V̂ Ĝ+

0 V̂ Ĝ
+
0 V̂ + . . . ,

which can be ’resummed’ in different ways. For example,

T̂ = V̂ + V̂ Ĝ+V̂ , (1.22)

where Ĝ+ is the full Green function, or the implicit representation

T̂ = V̂ + V̂ Ĝ+
0 T̂ . (1.23)

1.2.4 Differential cross section (computation)

EXERCISE Recapitulate the concept of electromagnetic radiation, notably the notion of ’radiation

in the far zone’.

We next aim to go beyond the level of formal solutions, and to this end we need explicit
representations of the Green function. In view of the fact that the scattering potential will
usually be given in terms of a real space function, it is preferable to work in real space
representations.

There are different ways (see the info block below) to conclude that the real space
representation of the retarded Green function is given by

G+
0 (x,x′) ≡ 〈x|Ĝ+

0 |x′〉 = −m
2π

eik|x−x
′|

|x− x′| , (1.24)

where
k ≡
√

2mE

and we have once more omitted the energy argument for notational brevity.

INFO The most cost-efficient way to verify (1.24) is to observe that the real space representation

of the defining equation (1.12), Ĝ+
0 = (E+ − Ĥ0)−1 ⇔ (E+ − Ĥ0)Ĝ+

0 = I is given by(
E+ +

1

2m
∂2
x

)
G+

0 (x,x′) = δ(x− x′),

which we identify as 1
2m× the Helmholtz equation of electrodynamics. Copying from that theory,

we readily get to (1.24). Readers preferring not to leave the realm of quantum mechanics may
insert a resolution of unity ∫

d3p |p〉〈p| = I
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in terms of Ĥ0’s eigenfunctions into the definition of (1.24) G+
0 (x,x′) and use (1.5) to obtain

G+
0 (x,x′) =

∫
d3p

(2π)3
〈x|p〉〈p|x′〉 1

E+ − εp
=

∫
d3p

(2π)3

ei(x−x
′)·p

E+ − εp
,

where εp = p2

2m . Switching to polar coordinates with z-axis aligned with x− x′, this becomes

G+
0 (x,x′) =

1

(2π)2

∫ ∞
0

p2dp

∫ 1

−1
d cos θ

ei|x−x
′|p cos θ

E+ − εp
=

=
1

(2π)2i|x− x′|

∫ ∞
0

pdp
ei|x−x

′|p − e−i|x−x′|p
E+ − εp

=
1

(2π)2i|x− x′|

∫ ∞
−∞

pdp
ei|x−x

′|p

E+ − p2

2m

.

The final one-dimensional integral is tabulated and the result readily gets us to (1.24). (Readers

familiar with the theory of complex functions may find it instructive to compute the integral by

the theorem of residues.)

Scattering amplitude

Let us, then, consider the Lippmann-Schwinger equation for the retarded scattering state, Eq.
(1.7), in a real space representation:

ψ(x) =

∫
d3x′G+

0 (x,x′)V (x′)ψ(x′) + φ(x) =

= −m
2π

∫
d3x′

eik|x−x
′|

|x− x′|V (x′)ψ(x′) + φ(x), (1.25)

where we wrote ψ(x) ≡ ψ+(x) = 〈x|φ+〉 for notational
simplicity. Now, in general the observation point x at
which we wish to read out the scattering amplitude ψ(x)
will in general be far from the scattering region, |x| �
Rv (cf. the figure.) Choosing coordinates where x′ = 0
defines the center of the target, we thus have |x| � |x′|,
and this justifies the expansion

|x− x′| ' r − x · x′
r

, r ≡ |x|.

Defining

k′ ≡ k
x

r
,

i.e. a momentum vector equal in magnitude to the incoming momentum but directed towards
the observation point, we may thus approximate

ψ(x) =
1

(2π)3/2

(
eik·r − (2π)1/2m

eikr

r

∫
d3x′ e−ik

′·r′V (x′)ψ(x′)

)
≡

≡ 1

(2π)3/2

(
eik·r +

eikr

r
f(k,k′)

)
, (1.26)
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(think what justifies the approximation 1/|x − x′| ' 1/r in the pre-exponential term of the
integral in (1.25)) where we defined the scattering amplitude

f(k,k′) ≡ −(2π)1/2m

∫
d3x′ e−ik

′·r′V (x′)ψ(x′) = −(2π)2m〈k′|V̂ |ψ+〉, (1.27)

an object of physical dimension [f ]=length. The designation ’scattering amplitude’ is easy
enough to understand: Eq. (1.25) states that the wave function assumes the form of a
superposition of a planar incoming wave (the first term) and a scattered spherical wave (the
second term), i.e. a wave whose amplitude decays as ∼ r−1 away from the scattering center.
The quantity f(k,k′) weighs the scattered contribution as a complex ’scattering amplitude’.
Don’t be fooled by the seeming simplicity of these expressions: the scattering amplitude may
contain complex angular dependence, encoded in its dependence on (the angle between) k
and k′. Finally, keep in mind that the scattering amplitude contains the sought for solution
|ψ〉 as an argument, i.e. Eq. (1.25) remains an implicit equation. We may conceal this fact
by writing V̂ |ψ̂+〉 = T̂ |k〉, where T̂ is the transition operator defined in (1.21). This leads to
the compact representation

f(k,k′) = −(2π)2m〈k′|T̂ |k〉, (1.28)

which expresses the scattering amplitude as a matrix element of the transition operator between
the bare incoming and the outgoing state. The series representation of the transition operator
makes the multiple-scattering process underlying the formation of the scattering amplitude
manifest.

The scattering amplitude really does carry the essential information about the scattering
process. To make this observation more apparent, let us relate the scattering amplitude to
the differential cross section introduced in section 1.1.3.

To this end, recall the definition of the current density carried by a state ψ,

j(x) =
1

2mi

(
ψ̄(x)(∇ψ)(x)− (∇ψ̄)(x)ψ(x)

)
. (1.29)

In our present context, the incoming current density jin = iez is carried by the plane wave
contribution to ψ. Application of the formula above readily gives

i =
k

(2π)3m
.

The radial component of the scattered current density is given by er · jout = (j/r2), where we
noted that the quantity j introduced in (1.1) is the current per angular element dΩ = sin θdθdφ
which differs from the surface element r2dΩ to which er · jout relates by a factor r2 (a point
to think about!). Noting that er · ∇ = ∂r, we thus obtain

j =
r2

2mi(2π)3
|f(k,k′)|2

[
e−ikr

r
∂r
eikr

r
− c.c.

]
=
|f(k,k′)|2
(2π)3m

k(1 +O(1/rk)).
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Anticipating that k ∼ R−1
V will typically of the order of the inverse extension of the scattering

region, we neglect the correction of O(RV /r) and obtain the important formula

dσ

dΩ
' |f(k,k′)|2. (1.30)

This shows that, truly, the scattering amplitude is our central object of interest.

Optical theorem

EXERCISE Recall the mathematics of the Dirac identity

lim
δ↘0

1

r + iδ
= P

(
1

r

)
− iπδ(r), (1.31)

where r is real and P (. . . ) stands for the principal value.

Intuitively, we expect a scattering target to diminish the intensity of the incoming stream of
particles. The flux removed from the ’forward direction’ will be scattered into other directions.
The unitarity (flux conservation) of quantum mechanics requires that the attenuation of the
incoming flux must balance against the total flux scattered. The mathematical formulation of
this statement is the subject of the ’optical theorem’.

7
The optical theorem states that

Imf(k,k) =
kσ

4π
, (1.32)

where σ is the total cross section defined in Eq. (1.2). The l.h.s. of the optical theorem
contains the scattering amplitude in forward direction, while the r.h.s. makes a statement
about the integrated scattering current, in line with the intuition formulated above.

INFO The optical theorem belongs to a class of formulae generally known as sum rules. A sum

rule relates the total integral (’sum’) of some quantity to another expression, often involving the

same quantity. For example, the celebrated Kramers-Kronig relations of electrodynamics are sum

rules, too. Sum rules are usually derived in rigorous terms (see below) and hold at the full level of

generality of a theory. While they do not have much predictive power by themselves, they play an

important role as consistency checks. E.g. an experimentor may measure the forward scattering

amplitude, and compare to the total cross sections. The two quantities have to be equal and

rigorously (no approximation involved) so. If they turn out to be different, the experiment was

faulty – a consistency check.

To prove the prove the optical theorem, we use the definition (1.27) and the conjugate
of the Lippmann-Schwinger equation 〈k| = 〈ψ+| − 〈ψ+|V̂ Ĝ−0 to obtain

Imf(k,k) = −(2π)2m Im 〈ψ+|V̂ Ĝ−0 V̂ |ψ+〉,
7

E. Feenberg, The Scattering of Slow Electrons by Neutral Atoms, Phys. Rev. 40, 40 (1932).
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where the noted that Im 〈ψ+|V̂ |ψ+〉 = 0 (why?). We now insert a resolution of unity I =∫
d3k′ |k′〉〈k′| into this expression and use Ĝ−0 |k′〉 = (E− − εk′)−1|k′〉, where εk′ = k′2/2m.

Using a polar measure d3k′ = k′2dk′dΩ′ for the k′-integration, we arrive at

Imf(k,k) = (2π)2m

∫
k′2dk′

∫
dΩ′ 〈ψ+|V̂ |k′〉〈k′V̂ |ψ+〉 Im

1

E− − εk′
=

= (2π)2πm2k

∫
dΩ′ 〈ψ+|V̂ |k′〉〈k′V̂ |ψ+〉 =

=
k

4π

∫
dΩ′ |f(k,k′)|2 =

k

4π

∫
dΩ

dσ

dΩ
,

where in getting from the first to the second line we used Im (E− − εk′)−1 = πδ(E − εk′) =
πδ(k − k′)/|∂k′εk′| = (m/k)δ(k − k′).�

1.2.5 Born approximation

Imagine the scattering of particles weakly interacting with their target. In this case, we might
multiple scattering is of lesser importance, and an approximation of the scattering states to
first order in the scattering potential might be accurate enough. Formally, this approximation
is obtained by setting |ψ〉 ' |φ〉 in the integral defining the scattering amplitude (1.27). We
thus obtain the approximate expression

f(k,k′) ' −m
2π

∫
d3x e−i(k−k

′)·xV (x). (1.33)

Eq. (1.33) is known as the Born approximation. Inspection of the formula shows that

The Born approximation of the scattering amplitude is given by the
Fourier transform of the scattering potential.

Contrary to the implicit results above, this is an explicit, if approximate, expression for the
scattering amplitude. In many applications, a first order Born approximation will be the first
thing to try. Only if it fails will one move on to more accurate schemes.

INFO For the important class of centro-symmetric scattering potentials, V (x) = V (r), where
r = |x|, the Born scattering amplitude can be simplified as

f(k,k′) = −m
2π

∫ ∞
0

r2dr

∫ 2π

0
dφ

∫ 1

−1
d(cos θ) e−iqr cos θV (r) =

= −2m

q

∫ ∞
0

rdr sin(qr)V (r), (1.34)

where we introduced the momentum transfer

q ≡ k− k′, q ≡ |q|.
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The goal of any scattering experiment is to learn as much as is possible about strength and
spatial structure of its scattering target. The latter is encoded in the dependence of the
scattering amplitude on the angle between incident and scattered momentum, k and k′, resp.
Having this principle in mind, let us explore the behavior of the Born scattering amplitude
in different physical limits. Specifically, tet us now try to find out, what scattering probes
(incident particles) are optimally suited to reveal a maximum of information on the scattering
potential. Our scattering setup comes with two intrinsic length scales, viz. the extension of
the scattering potential RV and the wavelength of the incoming particles λ ≡ 2π/k.

In the scattering of long wavelength particles, λ/VR � 1, we may approximate
e−i(k−k

′)·x ' 1 under the integral. The scattering amplitude then collapses to

f(k,k′) ' −m
2π

∫
d3xV (x),

which contains information about the integrated strength, but not the spatial structure of the
target.

In the scattering of short wavelength particles, λ/VR � 1, the oscillatory phase in
the Born integral tends to oscillate to zero (at least, if the variation of the scattering potential
over the support VR is smooth.) Roughly, we may approximate

|f(k,k′)| ∼ mV0λ
3 ∼ λ(V0/Ek),

where Ek = k2/2m is the kinetic energy of the incoming particles, and V0 is the typical am-
plitude of the scattering potential. In the limit of asymptotically large energies, the scattering
region becomes ’invisible’ to the incident particles, they just have too high energy to care
about the scattering potential. For finite, yet small λ� VR, we expect the scattering process
to become dominantly classical. In the parlor of optics, this is the limit of ’geometric optics’
where the wave lengths are small in comparison to the spatial variation of the scattering region,
and incident waves may be treated as straight ’rays’. The wave nature becomes irrelevant and
quantum mechanics is expected to collapse to its classical limit.

An optimal compromise between the above two scenarios is, thus, reached at λ ∼ RV . To
resolve the quantum nature of a scattering process, we should, thus,

choose the wavelength of the incoming particles so as to be comparable with the
scales of variation of the scattering target.

In this case, we may estimate

|f(k,k′)| ∼ mV0R
3
V ∼ RV (V0/E0),

where E0 = (2π/RV )2/2m is the minimum energy of a particle confined to regions of extension
∼ RV due to quantum uncertainty. The scattering cross section |dσ/dΩ| ∼ R2

V (V0/E0)2 is
then roughly given by the geometric area of the target, ∼ R2

V times the dimensionless ratio
of the two scales ’scattering strength’, RV over ’reference energy’, E0.
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1.2.6 Examples

Let us illustrate the concepts introduced above on a few elementary examples. The simplest
choice of a scattering potential, surely is a
δ-function potential. Consider the potential V (x) = γδ(x). Notice that a potential of
infinitely sharp concentration in space would not be ’seen’ by impinging classical point particles.
However, quantum mechanics is notorious for its smearing of spatial structures and does
generate a cross section whose scattering amplitude we calculate in Born approximation as

f(k,k′) = −m
2π

∫
d3x e−i(k−k

′)·xγδ(x) = −mγ
2π

.

Thus

dσ

dΩ
=
(mγ

2π

)2

turns out to be independent of angles, i.e. the scattering off a δ-potential is purely isotropic.

Yukawa potential. Let us now consider the some-
what more rewarding example of the Yukawa po-
tential

V (x) = V0
e−µr

µr
, r = |x|. (1.35)

The Yukawa potential enjoys appears in many phys-
ical applications. At distance scales smaller than

µ−1, V (x)
µr<1' V0/(µr) it asymptotes to the cel-

ebrated Coulomb potential. However, unlike with
the Coulomb potential it is not spatially long ranged,

rather it decays exponentially V (x)
µr>1∼ exp(−µr). In this respect, it resembles many ’real’

scattering potentials whose extent is cut off by instances of screening.
Using (1.34), the Born scattering amplitude of the Yukawa potential is calculated as

f(k,k′) = −2mV0

qµ

∫ ∞
0

dr sin(qr)e−µr = − 2mV0

µ(µ2 + q2)
.

This formula exemplifies the general principles discussed in the end of the foregoing section.
For q � µ ∼ R−1

V , the scattering amplitude f ' −2mV0/µ
3 becomes isotropic, for q � µ it

asymptotes to zero, f ∼ q−2. For fixed q � µ, we have

f(k,k′)
q�µ' −2mV0

µq2
.

Noting that q2 = |k− k′|2 = 2k2(1− cos θ) = 4k2 sin2(θ/2), this leads to

dσ

dΩ
'
(

V0

4µEk

)2
1

sin4(θ/2)
.

This equals the celebrated Rutherford scattering formula for the scattering of charged par-
ticle — at high frequencies, quantum mechanics is gone, in line with our general expectations.
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Yukawa scattering provides a testbed for the limitations of the
Born approximation. Recall that the latter was based on an ap-
proximation |ψ〉 ' |φ〉 under the integral of the Lippmann-Schwinger
equation. In other words, we must require that, for coordinates com-
parable to the extension of the scattering potential, the scattering
state be roughly equal to the incident state. Using Eq. (1.18) and
the formula for the Green function (1.24), we find for the first or-
der approximation to the scattering state right in the center of the
scattering potential, x = 0,

ψ(1)(0) =
1

(2π)3/2

(
1− mV0

2πµ

∫
d3x′

eikx
′

x′
e−µx

′

x′

)
=

=
1

(2π)3/2

(
1− 2mV0

µ

∫ ∞
0

dre(ik−µ)r

)
=

=
1

(2π)3/2

(
1− 2mV0

µ(µ− ik)

)
.

At k ∼ µ, we are thus led to the criterion

mV0

µ2
� 1

for the applicability of the first order Born approximation. To make
some sense out of this expression, let us estimate the value of V0

at which the Yukawa potential becomes strong enough to support a
quantum bound state. (For the Schrödinger equation of a potential
strong enough to create a bound state, can surely not be processed
in low order perturbation theory.) The energy balance of a ficti-
tious bound state — i.e. an eigenstate of the Schrödinger equation
confined to the support of the scattering potential — will contain
the competition of a kinetic energy term (positive) and the Yukawa
potential energy (negative for V0 < 0). By Heisenberg uncertainty,
the minimal kinetic energy of a particle confined to the extension of
the potential well is given by Ekin ' 1

2mµ2
. The potential energy

gain in the center of the well can be estimated as Epot ' −V0.
The two terms balance at |Epot|/Ekin ' 1, or 2mV0

µ2
' 1. We thus

conclude that, as expected, the criterion for the applicability of the
Born approximation coalesces with the bound state criterion.

Finally, notice how the Yukawa scattering amplitude illustrates the general principles on
scattering wavelength 2π/k vs. potential extension RV ∼ µ−1 discussed above. The first
panel in the figure above shows a plot of the Yukawa potential in the xz plane, in arbitrary
units, where z is the direction of the incident beam. The second, third, and fourth panel,
resp., then show the intensity of the scattered wave amplitude, 1

(2π)3r2
|f(k,k′)|2 (again in

arbitrary units.) Values r < k−1 are blocked out, as the asymptotic spherical wave form of the
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scattering amplitude, (1.26) is limited to kr > 1. Notice how for k � µ−1 (second panel) the
scattering is diffuse and isotropic, for resonant values k ∼ µ−1 (third panel) resolves angular
structures at a strong overall scattering signal while for k � µ−1 (fourth panel) the scattered
signal becomes weak.

1.3 Centro symmetric scattering

EXERCISE Recall the solution of the Poisson equation in spherical coordinates from electrody-

namics. In particular, recall the definition of spherical harmonics and Legendre polynomials. In

what sense are these functions ’complete’ and ’orthonormal’?

Above, we have seen how the Born scattering amplitude acquired the simplified form of a
one-dimensional integral if the scattering potential is symmetric. This, however, has been just
the tip of an iceberg; at this point, we have nowhere nearly exploited the full consequences of
angular momentum conservation in spherically symmetric scattering problems. In this section
we will adjust the general theory of scattering to radially symmetric problems. This will bring
us into the position to solve even complex problems at relative ease.

1.3.1 Partial wave decomposition of plane waves

The first idea that comes to mind when thinking about a spherically symmetric problem is a
representation in terms of angular momentum eigenstates. However, the actual implementation
of that representation is not so obvious, the point being that the starting point of the theory
— the incoming plane wave states — are in no manifest way related to angular momentum
eigenstates.

8

Choosing k = kez, the plane wave exp(ikz)/(2π)3/2 is an eigenfunction of the Laplace
operator, expressed in cartesian coordinates. As you may recall from electrodynamics (or
the theory of the hydrogen atom), the Laplacian affords an explicit diagonalization in terms
of eigenfunctions expressed in spherical coordinates, cf. the info block below. Further, the
set of eigenfunctions of a symmetric linear operator is complete, i.e. it must be possible to
represent the plane wave in terms of an expansion in spherical eigenfunctions. We are after
this expansion.

INFO Let us recall the representation of the Schrödinger equation(
− 1

2m
∆ + V − E

)
ψ = 0,

in spherical coordinates. Here, V = V (r) is assumed to be a spherically symmetric potential (for
otherwise the usage of spherical coordinates would not make much sense.) Note that for V = 0,

8

Of course one might decide to build the theory on more ’angular momentum like’ incoming states. However,
such states can hardly be realized in an accelerator. By contrast, the plane wave is closely tailored to
applications and should remain the base point of the theory.
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the solution of the equation amounts to a diagonalization of the Laplace operator. We now use
the infamous representation of the Laplacian in spherical coordinates,

∆ = ∆r +
1

r2
∆Ω,

∆r =
1

r2
∂rr

2∂r,

∆Ω =
1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2
φ. (1.36)

Recall (from electrodynamics) that the angular part of the Laplacian, ∆Ω is diagonalized as,

∆ΩYl,m = −l(l + 1)Yl,m, (1.37)

where Yl,m = Yl,m(θ, φ) are the spherical harmonics. For the sake of completeness, we mention
that the spherical harmonics are given by

Yl,m(θ, φ) = Nl,meimφPml (cos θ), (1.38)

where Pml are the so-called associated Legendre functions and the normalization factor Nl,m is
chosen so as to produce the normalization

∫
S2 dΩY ∗l,mYl′,m′ = δll′δmm′ , where the integral is over

the unit sphere with its canonical measure.
Substituting the ansatz ψ(r, θ, φ) = Rl(r)Ylm(θ, φ) into the Schrödinger equation above, we obtain(

1

r2
∂rr

2∂r −
l(l + 1)

r2
+ 2m(E − V (r))

)
Rl(r) = 0

as an effective equation for the radial component of the wave functions. Notice the (2l + 1)-fold
m-degeneracy inherent to the problem. The eigenvalues E may depend on the magnitude, l, of
the angular momentum but not on its z-component. We may substitute the ansatz R = χ/r to

transform the radial equation into the more convenient representation
9

(
∂2
r + 2m

(
E − V (r)− l(l + 1)

2mr2

))
χl(r) = 0. (1.39)

Notice that the normalization condition on the three dimensional wave functions,
∫
d3x |ψ(x)|2 = 1

requires
∫∞

0 dr |χl(r)|2 = 1. Also notice that the combination V +l(l+1)/(2mr2) is the ’effective’

radial potential, i.e. the native potential corrected for by an angular momentum contribution,

familiar from classical mechanics.

9

How does on ’guess’ such an ansatz? Consider the differential equation (O − V )ψ = 0, where O is
some second order differential operator, and V = V (r) a ’function’, i.e. an operator that assumes a diagonal
form in the representation where O is a differential operator. In a more abstract Hilbert space notation, this
assumes the form (Ô + V̂ )|ψ〉 = 0. We may now subject this equation to a similarity transformation, i.e.
Ŝ(Ô + V̂ )Ŝ−1(Ŝ|ψ〉) = 0. Choosing Ŝ to be a linear operator diagonal in the representation where V̂ is
diagonal (i.e. an operator that is r-diagonal in our problem above, such that the diagonal elements S(r)
define a function), and defining |χ〉 ≡ Ŝ|ψ), we obtain the equivalent problem (ŜÔŜ−1 + V̂ )|χ〉 = 0. We
may now work out the explicit form of the transformed operator ŜÔŜ−1, which in practice amounts to letting
the derivatives contained in O act on the function S(r). It can be shown that it is always possible to find a
representation SOS−1 = f(r)∂2r + g(r), i.e. a representation void of first derivatives. In our problem above,
it is easy to verify that with the choice S = r we get r

(
1
r2 ∂rr

2∂r
)
r−1 = ∂2r .
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Diagonalization of the Laplacian in spherical coordinates

We now aim to get the complete set of eigenfunctions of the Laplacian in spherical coordinates
under control. Once we have these functions, we can use them to represent the plane wave
by linear superposition. Mathematically, the problem of diagonalizing the Laplace operator is
tantamount to the solution of the free Schrödinger equation (− 1

2m
∆− E)ψ = 0.

10
We start

from an ansatz

ψk,l,m(r, θ, φ) = Yl,m(θ, φ)Rl,k(r), (1.40)

where k = (2mE)1/2, and a normalization∫ ∞
0

r2dr

∫
dΩ ψ̄k′,l′,m′ψk,l,m = δll′δmm′2πδ(k − k′) (1.41)

is implied. Eq. (1.39) for the l = 0 radial wave function χ0 = rR0 is solved by χ0,k = 2 sin(kr),
which gets us to

R0,k =
2 sin(kr)

r
.

For general l, the radial equation may be solved by recursive methods
11

or by noting that
the radial equation assumes the form of a Bessel differential equation

12
. The solution

(compatible with the normalization (1.41) and non-singular at the origin) is given by

Rk,l(r) = 2kjl(kr),

jl(x) =

√
π

2x
Jl+ 1

2
(x), (1.42)

where jl are the so-called spherical Bessel functions, and Jl+ 1
2

Bessel functions of half
integer order. These functions are tabulated, however, for practical purposes it is more useful
to consider the recursion relation

Rk,l(r) = 2
(
− r
k

)l(1

r
∂r

)l
sin(kr)

r
. (1.43)

In the above, we have normalized the radial functions as∫ ∞
0

r2drRk′,l′Rk,l = 2πδll′δ(k − k′),

Which conforms with the normalization (1.41) above.

10

Upon multiplication by −2m, the Schrödinger equation assumes the form of an eigenvalue equation
∆ψ = λψ, where λ = −2mE, i.e. the solution of the eigenvalue equation is equivalent to the solution of the
free Schrödinger equation.

11

Cf. LL, §33.
12

Cf., e.g., http://mathworld.wolfram.com/BesselDifferentialEquation.html
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Finally, let us discuss two important forms of asymptotic behavior of the radial func-
tions: For large r, the derivatives in (1.43) dominantly act on the kr combination (why?).
We then obtain

Rk,l(r)
r�k−1

' 2
sin
(
kr − lπ

2

)
r

. (1.44)

For small r, the smallest r-power in the Taylor expansion of the sin-function surviving the
action of the l derivatives gives the dominant contribution. Counting powers, we conclude
that this is the term of (2l + 1)th order, i.e. (−)l(kr)2l+1/(2l + 1)!. Working out the effect
of the subsequent derivatives, we readily find

Rk,l(r)
r�k−1

' 2
kl+1

(2l + 1)!!
rl, (1.45)

i.e. the expansion of the lth radial function starts at lth order in l.

Plane wave expansion

We chose a reference frame where the z-axis of the spherical coordinate system is aligned with
the incoming momentum. The plane wave then assumes the form

ψ =
1

(2π)3/2
eikz =

1

(2π)3/2
eikr cos θ,

independent of the azimuthal angle φ. This means that only spherical harmonics Yl,m=0 of

zero azimuthal variation contribute to the expansion. Noting that Yl,0 = il
√

2l+1
4π
Pl(cos θ),

where Pl are the Legendre polynomials, we thus start out from the ansatz,

eikr cos θ

(2π)3/2
=
∑
l

ClPl(cos θ)Rk,l(r),

where constant numerical factors multiplying the spherical harmonics and the radial wave
functions have been absorbed in the expansion coefficients Cl.

The values of these coefficients can be fixed by Taylor expansion in the combination
r cos θ. On the l.h.s. the term of mth order appears as 1

(2π)3/2
(ik)m

m!
(r cos θ)m. Turning to the

r.h.s., crucially, the combination (r cos θ)m can only be produced by the contribution l = m.
For l < m, the Legendre polynomials contain only powers of cos θ of O(≤ l < m) and
for l > m, the radial functions start out at order rl>m (cf. Eq. (1.45).) Turning to the
contribution l = m, we need to pick the term of maximal order from the Legendre polynomial
Pm(x) = (2l)!

2mm!2
xm+O(xl<m). The term of mth order contributed by the radial function Rk,m

is given in (1.45). Combining terms, we are led to the condition

1

(2π)3/2

(ik)m

m!
(r cos θ)m

!
= Cm

(2m)!

2mm!2
(cos θ)m2

km+1

(2m+ 1)!!
rm ⇔

⇔ Cm =
1

(2π)3/2

1

2k
(2i)m

m!(2m+ 1)!!

(2m)!
= (2m+ 1)

im

2k
.
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We thus arrive at the final result for the plane wave expansion

eikr cos θ

(2π)3/2
=

1

(2π)3/2

1

2k

∑
l

(2l + 1)ilPl(cos θ)Rk,l(r), (1.46)

where the radial functionsRk,l are given by (1.43). For later reference, we spell out the form
of the expansion far from the coordinate center,

eik·r

(2π)3/2

kr�1' 1

(2π)3/2

1

2k

∑
l

(2l + 1)il+1Pl(cos θ)

(
e−(ikr− lπ

2
)

r
− ei(kr−

lπ
2

)

r

)
, (1.47)

where we used (1.44). This result expresses the plane wave as a superposition of incoming
(first term) and outgoing (second term) spherical waves.

1.3.2 Scattering phase shift

Turning back to the full scattering state, |ψ+〉, we seek for a representation analogous to (1.47),
i.e. an expansion in contributions of definite angular momenta, valid at large separation from
the scattering center. As with the incoming state, we start out from an expansion

ψ+(x) =
∑
l

C ′lPl(cos θ)Rk,l(r),

independent of the azimuthal angle φ. Now, far away from the center, the radial Schrödinger
equation (1.39) for χ = Rr collapses to (what is the parameter controlling the approximation
below?) (

∂2
r + 2m

(
E − V (r)− l(l + 1)

2mr2

))
χl '

(
∂2
r + 2mE

)
χl = 0, (1.48)

and the general solution of this equation is given by linear superposition of radial plane waves
exp(±ikr). We thus conclude that the general form of the expansion reads

ψ+(x) =
∑
l

Pl(cos θ)Rk,l(r)

(
Cl,in

e−ikr

r
+ Cl,out

eikr

r

)
,

with expansion coefficients Cl,in/out yet to be determined. Now, by causality the presence of the
scattering potential must not affect the incoming plane waves contributing to this expansion
(think about this point!). Comparison with the expansion of the free state, (1.47) thus leads

to the identification Cl,in = 1
(2π)3/2

2k+1
2k

il+1ei
lπ
2 and to

ψ+(r, θ)' 1

(2π)3/2

1

2k

∑
l

(2l + 1)il+1Pl(cos θ)

(
e−i(kr−

lπ
2

)

r
− ηl

ei(kr−
lπ
2

)

r

)
, (1.49)
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with as yet undetermined complex coefficients ηl. Notice that the full complexity of the
scattering process is now encoded in the set of numbers {ηl}. An important constraint on the
values of these coefficients follows from current conservation, i.e. the fact that all particles
incident upon the scattering center must eventually leave it. This means that the total current
density carried by the state ψ, integrated over a large surface enclosing the target must be
zero.

To be specific, consider a sphere of radius S � RV centered around the target. The
current flow through that sphere is calculated as

I =

∫
S

dS · j = R2

∫
S2

dΩ jr(R, θ),

where

jr =
1

2mi

(
ψ̄+∂rψ

+ − (∂rψ̄
+)ψ+

)
Using the orthonormality relation of Legendre polynomials,∫

S2

dΩPl(cos θ)Pl′(cos θ) =
4π

2l + 1
δl,l′ , (1.50)

we then readily obtain
13

I =
1

(2π)3

π

mk

∑
l

(2l + 1)(1− |ηl|2), (1.51)

where we may think of the ’1’ as the contribution of the incoming current, and the ’|ηl|2’ as
the outgoing contribution. This shows that the vanishing of the current (separately, for each
angular momentum channel) requires |ηl| = 1. In recognition of this fact, it is customary to
write

ηl = exp(2iδl), (1.52)

where the real parameters δl are known as scattering phase shifts.

We aim to give the scattering phase shifts a physical interpretation. To this end, let us
add and subtract to |ψ+〉 the incoming state, |ψ+〉 = |φ〉+ (|ψ+〉− |φ〉) and use the spherical
wave decomposition (1.47). As a result we obtain

ψ+(x) =
1

(2π)3/2

(
eik·x +

[
1

2k

∑
l

(2l + 1)il+1Pl(cos θ)(1− ηl)
]
e−i

lπ
2
eikr

r

)
. (1.53)

13

The unconventional unit [I] = Volume/time has to do with the fact that our wave functions carry unit
dimension [ψ] = 1, i.e. |ψ|2 is not a density, rather it has dimension volume × density.
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Figure 1.3: On the heuristic interpretation of the partial wave decomposition of the total cross
section.

Comparison with the definition of the scattering amplitude, Eq. (1.26) then leads to the
identification

f(k,k′) =
1

2k

∑
l

(2l + 1)il+1Pl(cos θ)(1− ηl)e−i
lπ
2 . (1.54)

We have managed to encode the information about the scattering amplitude — a function
on the two sphere — in a set of numbers, {ηl}. The practical importance of this formula lies
in the fact that, usually, the first few values η0, η1, η2, . . . suffice to describe the properties
of a scattering target with sufficient precision. Indeed, we have argued in section 1.2.5 that
for incident wavelengths λ > RV , the scattering amplitudes are nearly isotropic. In this case,
only the l = 0 channel — the so called s-wave scattering channel — will have a scattering
parameter η0 significantly different from unity. Model calculations on exactly solvable problems,
e.g. the scattering off an infinitely strong potential of radius RV (a ’hard ball’), indeed show
that scattering phase shifts tend to scale as δl ∼ (RV /λ)αl , where αl is a power increasing in
l. In the next section we will discuss an example of s-wave scattering at a level beyond the
Born approximation.

INFO To better understand the physical meaning of the scattering phase shifts, it is instructive
to consider the total cross section, σ =

∫
dΩ |f(k,k′|2. Using the orthonormality relation (1.50),

we readily obtain

σ =
∑
l

σl, σl ≡
π

k2
(2l + 1)|1− ηl|2. (1.55)

This formula affords a simple semiclassical interpretation (cf. Fig. 1.3): consider a state of angular

momentum component ~l in a plane perpendicular to the incident beam axis.
14

Using the classical
relation ~l = |k|r, where r is the distance to the beam axis, we conclude that this state corresponds
to particles incident in a cylindrical shell of radius r around the axis. Now, angular momentum
is quantized, meaning that to particles corresponding to ~l we should attribute a ’ring’ of radius
~(l + 1)/k and thickness ~/p. The geometric area corresponding to the particles incident in that

angular momentum sector is given by π
k2

((l + 1)2 − l2) = π(2l+1)
k2

≡ σl,cl, where we dropped the
constant ~ again. Here, we introduced σl,cl as an abbreviation for a ’maximally efficient’ classical
cross section, which scatters all the particles incoming in the angular momentum sector l.

14

Accounting for the semiclassical nature of the argument, we reinstall ~ here.



1.3. CENTRO SYMMETRIC SCATTERING 29

On this basis, let’s take a look at the cross section 1.55.
Apparently, the scattering is the most effective for ηl =
−1, in which case σl = 4σl,cl is four times more effective
than the perfect classical scattering center. The origin of
the multiplicative enhancement 4 = 22 is quantum inter-
ference: the incoming and the scattered amplitude may
constructively interfere, 2 = 1 + 1, to an amplitude squar-
ing to a factor 4 enhancement in the intensity. By contrast,
for ηl = 1, we have perfect destructive interference and a
vanishing cross section σl = 0.
Let us briefly explore what happens if inelastic scattering
is an option. Here, we define the term inelastic scattering
as all types of scattering where the condition |ηl| = 1 need
no longer hold. In this case, if |ηl| < 1, there will be net
current flow into the target region (cf. Eq. (1.51).) We
write this reaction current as

I = jin
∑
l

σr,l, σr,l =
π

k2
(2l + 1)(1− |ηl|2),

where jin = 1
(2π)3

k
m is the incoming current density, and

σr,l the reaction cross section in channel l. The reaction
current reaches its maximum at ηl = 0, when σr,l coincides with the full geometric extension of the
angular momentum sector. At this value, all incoming current is swallowed by the target, according
to its geometric extension. The process is ’inelastic’, i.e. no interference corrections here.

The cross section, σl and the reaction cross section σr,l are shown in the figure as a function of

the complex parameter ηl.

1.3.3 Example: scattering off a potential well

In this section, we will consider the scattering of low energy particles, λ� RV , off a spherically
symmetric potential well of depth V0. Thanks to the condition λ/RV � 1, scattering in the
s-wave channel will be dominant, i.e. we wish to compute the scattering phase shift δ0. In
this section, no weakness assumptions on the scattering potential will be made, and we will
go beyond the level of the first order Born approximation.

INFO The situation outlined above is relevant to, e.g., the scattering of low energy neutrons

in nuclear physics. Due to the short-rangedness of nuclear forces, the potential describing a large

nucleus can to a reasonable approximation be modeled by a rectangular potential well. As we will

see, the scattering of low energetic particles subject to short range interaction with the nucleus

— slow neutrons — reveals telling information on effective extension and depths of the nuclear

potential.
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The energy and length scales relevant to the problem are shown
in the well. Denoting the extension of the well by RV = R for
simplicity, our task is to solve the radial Schrödinger equation
(1.39) for a potential V (r) = −V0Θ(R − r), where Θ is the
Heaviside step function. For l = 0, the equation assumes the
form (

∂2
r + 2m(E + V0Θ(R− r))

)
χ = 0,

where we wrote χ0 ≡ χ for simplicity. Introducing the abbreviation

ki ≡ 2m
√
E + V0,

this equation has the general solution

χ(r) = c+,ie
ikir + c−,ie

−ikir, r < R,

χ(r) = c+,oe
ikr + c−,oe

−ikr, r > R.

Without loss of generality, we may choose coefficients c±,o such that the wave function in
outer space, r > R, equals the radial component of the l = 0 contribution to the scattering
state (1.49). A straightforward comparison then leads to the alternative representation

χ(r) =
i

(2π)3/22k

(
e−ikr − η0e

ikr
)

=

=
eiδ0

(2π)3/2k
sin(kr + δ0), r > R. (1.56)

Turning to the ’inner contribution’, the ratio between the coefficients c±,i is determined by the
condition that the radial wave function R(r) = χ(r)/r be finite at the origin. This requires
c+,i = −c−,i ≡ a/2i, or

χ(r) = a sin(kir), r < R.

The remaining two coefficients a and η0 are now fixed by the requirement of continuity of the
wave function and of its derivative at r = R. A short calculation shows that this is equivalent
to the conditions:

eiδ0

(2π)3/2k
sin(kR + δ0) = a sin(kiR),

eiδ0

(2π)3/2ki
cos(kR + δ0) = a cos(kiR).

Division of these equations leads to

δ0 = arctan

(
k

ki
tan(kiR)

)
− kR. (1.57)

The differential cross section corresponding to this phase shift is given by (1.55), or

σ ' σ0 =
4π

k2
sin2(δ0).

EXERCISE Check that this result conforms with the optical theorem Eq. (1.32).
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The conceptual meaning of the phase scattering
phase shift is shown in the figure. Within the
potential well, the wave function oscillates at a
faster rate than in the outside region. As a result,
the wave function gets ’dragged’ towards the inner
region, and this manifests itself in a phase shift
relative to the wave function of the potential-less
problem. An optimal contact between the inner
and the outer wave function is established if the
inner wave function approaches the boundary at a
vanishing derivative (bottom right). In this case,
the inner amplitude assumes its maximum possible
value. The phase shift corresponding to this resonance scattering condition is given by

δ0 = kR + π
2

kR�1' π
2

. At resonance, the cross section assumes its maximal value

σmax =
4π

k2
.

Conversely, if the wave functions match close to a zero crossing (bottom left), one speaks
of potential scattering. The difference in phase shift to the resonant value is π/2, i.e.
δ0 ' πmod(2π), and the scattering cross section approaches 0. In this limit, the target is
next to ’invisible’ to the incoming beam. Starting from a resonant configuration, somewhat
paradoxically, a potential scattering configuration may be reached by increasing the scattering
potential, i.e. an

An increase in the scattering potential may lead to a reduced, or even
vanishing scattering cross section.

A manifestation of this phenomenon is known as
the Ramsauer-Townsend effect. It occurs, e.g.
in the scattering of electrons off rare gas targets
such as argon, krypton or xenon. The Ramsauer-
Townsend effect was first observed in 1923, before
the advent of wave mechanics, and represented a
mystery at the time.

1.3.4 Scattering at ultra-low energies: scattering length and bound
states

In the previous section, we have explored what happens if the energy of the incoming particles
is low, and s-wave scattering dominates. We next consider the regime of the lowest conceivable
energies, where the wavelength 2π/k represents the largest length scale in the problem (barring
the detector distance, of course.) Perhaps surprisingly, we will find that this limit contains a
wealth of information on the microscopic structure of the target.
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In the limit of vanishingly small energies, the Schrödinger equation (1.48) is solved by

χ0(r) = const.× (r − a),

where a is a constant. We can think of this as a sin-profile (1.56) in the limit of infinitely
large wave length. Indeed, for small k the sin function in (1.56) can be expanded as

χ0 = const.×
(
r +

δ0

k

)
+O(k),

where we anticipated that the scattering phase shift will be proportional to k, i.e. δ0/k =
O(k0). For the rectangular potential well, our result (1.57) makes this proportionality manifest
— just expand the formula in small k to reach this conclusion — however, for the time being
we do not wish to make assumptions on the details of the scattering potential.

Comparison of these expressions leads to the identification

lim
k→0

δ0

k
= −a. (1.58)

Eq. (1.54) for the scattering amplitude further implies

f0 =
1

k
eiδ0 sin(δ0)

k→0−→ δ0

k
= −a,

i.e. the s-wave cross section becomes

σ0
k→0
= 4πa2. (1.59)

The length scale a is known as the scattering length.
Eq. (1.59) tells us that in the limit of ultra-low energies,
the target scatters as if it were a scattering center of
geometric area (four times) a disk of radius a. Indeed, a
sets the length scale at which the scattering wave func-
tion vanishes. In very loose terms, we may compare this
to the vanishing of a wave function at a hard potential
barrier. I.e. in a sense, a plays the role of the effective ge-
ometric extension of the scattering target, as seen from
the perspective of very low energetic scattering particles.

However, as we will see momentarily, this interpreta-
tion must be taken with a grain of salt: the scattering
length, can become infinitely large, or even assume negative values! Let us explore this phe-
nomenon on the paradigmatic example of the rectangular well. (The essentials of the discussion
generalize to other types of potentials.) Substitution of (1.57) into (1.58) gives

a = − lim
k→0

1

k

(
arctan

(
k

ki
tan(kiR)

)
− kR

)
= −tan(kiR)

ki
+R.
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Apparently, the scattering length shows strong dependence on ki =
√

2m(−V0), whenever
kiR = π

2
mod π. To understand the origin of this observation, consider the schematic form

of the wave function shown in the upper pannel of the figure above. Here, kiR . π
2

is
just a little smaller than π/2, which means that the wave function ∼ sin(kir) describing the
inner of the potential well connects to the outside wave function at slightly positive derivative
∼ cos(kiR) > 0. The linear extrapolation of the outside wave function has its zero at a
negative value a, and this explains the appearance of a negative scattering length. Increasing
kiR↗ π

2
leads to a divergence of a towards large negative values. As we cross the critical value

π/2, the derivative turns to small negative values (the lower panel), meaning that the crossing
point jumps to large positive values. This is the mathematical origin of the singular behavior
of the formula above. It obviously repeats itself whenever kiR = π

2
mod π. However, from a

physical point of view, the divergence of the scattering length signals an important qualitative
phenomenon. In general, an attractive target potential will support bound state solutions, i.e.
wave functions of finite spatial support. The bound state spectrum is discrete, i.e. bound state
solutions exist only for discrete energy values εi. Now, imagine the situation where one of the
values εi ↗ 0 approaches zero from below. In the outside region, the bound state must connect
to an exponentially decaying profile, ∼ exp(−κr), where κ =

√
2m|εi|. For vanishingly small

|εi|, the decaying wave function ∼ exp(−κr) ' 1−κr is locally indistinguishable from a linear
downturn of very gentle slope. At εi = 0, the bound state of negative infinitesimal energy
must smoothly connect to a scattering state of positive infinitesimal energy, and the spatial
profile of that state is just the one shown in the lower panel of the figure above. In other
words,

A singularity a→∞ of the scattering length signals the appearance
of a zero energy bound state.

This interpretation nicely connects with the divergence σ ∼ a2 of the cross section. In a
way, the target supporting a zero energy bound state has the capacity to ’capture’ zero energy
wave functions. For the particular example of the rectangular well, new bound states always
appear when the condition kiR = π

2
mod π is met. However, the qualitative phenomenon

discussion above is of general nature and will show for other types of attractive scattering
potentials as well.

EXERCISE Generalize the discussion above to repulsive scattering potentials. Consider a rect-

angular potential V (r) = V0Θ(R− r) with V0 > 0 as an example.

1.4 Dynamics of scattering

We conclude this chapter with an introduction of a number of general concepts relevant to
quantum scattering. Specifically, we will introduce the concept of the so-called S-matrix, and
discuss the role of time reversal in scattering. Both topics relate to the dynamics of scattering
processes, hence the title of this section.
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1.4.1 Scattering matrix

In scattering theory we aim to connect between ’incoming’ states evolving according to some
’free’ kinematics and equally free ’outgoing’ states via non-trivial scattering processes. In
quantum mechanics ’connecting states’ means acting with a suitably defined operator. It
is then a natural question to ask whether there exists an operator that incorporates all the
relevant information on quantum scattering in any conceivable setup. This operator, let’s call
it Ŝ, should meet a number of criteria, summarized in the following wishlist:

. The operator Ŝ should contain the full information on all aspects of the scattering
dynamics.

. In the absence of a scattering target, the operator Ŝ = I should reduce to the unit
operator. I.e. we aim to define Ŝ in such a way that the information on the free
propagation of states is split off.

. The operator Ŝ should be definable for any scattering scenario (including inelastic scat-
tering.) However, in the cases discussed before, it should relate in simple ways to the
carriers of scattering information introduced above, e.g. to scattering phase shifts.

. The operator Ŝ ought to be useful even in situations where one won’t restrict oneself to
a single incoming state (as we did so far.) For example, in the angle resolved scattering
off non-spherically symmetric targets, one would like to probe the scattering properties
of particles coming in from arbitrary directions. In such cases, Ŝ should carry the infor-
mation on the scattering amplitude from arbitrary incoming states to arbitrary outgoing
states.

Let us, then, consider some ’incoming’ state |φi〉. In practice, |φi〉 might be a momentum
eigenstate, at a characteristic momentum directed towards the target. We may also think of
a superposition of momentum states to wave packets approaching the target, or something
altogether different. We aim to connect this state to |φo〉, where |φo〉 is taken from a set of
states spanning the ’outgoing’ sector of Hilbert space.

15

By way of a first guess, might define the scattering operator Ŝ through

Ŝ
?≡ e−iĤ∆t,

where ∆t is chosen to be a ’very large time’. Here, the operator Ŝ is identified with the full
time evolution operator of the theory and this means that the first criterion above is met.
However, the definition has its problems: even for Ĥ = Ĥ0, it describes non-empty dynamical
evolution which, for ∆t → ∞, will generally ’transport’ incoming states to spatial infinity.
Relatedly, the definition depends in an ad hoc way on the choice of the reference time ∆t.

15

Strictly speaking, the scattering states considered so far are not normalizable (their normalizing integrals
involve δ-functions), whence they do not lie in a proper Hilbert space. However, in practice this complication
does not play much of a role — just put the system into a giant box, and all states do become normalizable —
whence we will pretend the existence of a state ’Hilbert’ space possessing all properties required by quantum
mechanics, scalar product, normalizability, etc. For a mathematically sound discussion of the state spaces of
scattering theory, we refer to the expert literature.
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A smarter choice of Ŝ is defined in the cartoon in
the figure to the right. Think of the state |ψi〉 as
a wave package approaching the scattering target.
We first ask where this wave package came from,
assuming that it had not yet been influenced by
the scattering target. The answer is, of course,
e−i(−∆t)Ĥ0|ψi〉 (cf the upper straight line in the
figure which represents free propagation to large
negative times.) The initial reference state thus

obtained we expose to the full dynamics, i.e. we build a state e−iĤ∆te−iĤ0(−∆t)|ψi〉, where in
the figure the evolution under Ĥ is represented by a curved line. We now send ∆t to infinity
to build a state Ω̂−|ψi〉, where

Ω̂+ ≡ lim
∆t→∞

e−iĤ∆teiĤ0∆t,

is the so-called incoming Møller operator. In an analogous way we construct a state Ω̂0|ψo〉,

Ω̂− ≡ lim
∆t→∞

eiĤ∆te−iĤ0∆t, (1.60)

i.e. a state first evolved to the infinite future under the free dynamics, and then evolved back
under the full dynamics. We now claim that the physical information on the scattering process
is encoded in the matrix element

〈ψo|Ω̂†−Ω̂+|ψi〉 ≡ 〈ψo|Ŝ|ψi〉, (1.61)

where

Ŝ ≡ lim
∆t→∞

eiĤ0∆te−2iĤ∆teiĤ0∆t (1.62)

is the scattering operator. The scattering operator arguably meets the criteria formulated
above: the presence of the time evolution operator, exp(−2iĤt), suggests that it contains
the full information on the scattering dynamics. For Ĥ0 → Ĥ it reduces to the unit operator,
and it is defined in full generality.

16
Also notice that

Ŝ is a unitary operator, Ŝ†Ŝ = I.

To connect the scattering operator to concepts introduced earlier in this text, we use the
auxiliary formula

lim
t→∞

f(t) = δ

∫ ∞
0

dt e−δtf(t),

16

A more thorough discussion of the scattering operator would need to address the existence of the temporal
limits above, the nontrivial issue of the domain of definition of the Møller operators, and more. We do not do
this here, so our treatment remains heuristic.
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according to which the limit of a function can be expressed as an integral, provided the limit
exists. (Convince yourself of the validity of this expression.) Let us now apply this formula to
the action of a Møller operator on an eigenstate of the free Hamiltonian. With |ψi〉 ≡ |φα〉,
where Ĥ0|φα〉 = Eα|φα〉 and {α} is a set of quantum numbers, we have

Ω̂+|φα〉 = lim
∆t→∞

e−iĤ∆teiĤ0∆t|φα〉 =

= lim
∆t→∞

e−i(Ĥ−Eα)∆t|φα〉 =

= lim
δ→0

δ

∫ ∞
0

dte−i(Ĥ−Eα−iδ)∆t|φα〉 =

=
iδ

Eα + iδ − Ĥ
|φα〉 = iδĜ+(Eα)|φα〉 = |ψ+

α 〉,

where |ψ+
α 〉 is the scattering state corresponding to |φα〉 according to Eq. (1.20). In an

analogous way we obtain 〈φα|Ω̂†− = 〈ψ−α |, where

|ψ−α 〉 = −iδĜ−(Eα)|φα〉,

and Ĝ−(E) = (E − iδ − Ĥ)−1 is the advanced Green function. According to these results,
the S-matrix element

Sαα′ = 〈φα|Ŝ|φα′〉 = 〈ψ−α |ψ+
α′〉 (1.63)

is given by the overlap of two scattering states corresponding to the reference states |φα/α′〉.
The overlap is built between an outgoing scattering state, and an — admittedly less easy to
imagine — fictitious anti-causal scattering state |ψ−α 〉. One may think of the latter as a state
whose time evolution is obtained by time reversal (like in a movie played in reverse direction)
of the time evolution of the outgoing state. Eq. (1.62) underpins the fact that the scattering
matrix carries the full information of the scattering process, i.e. knowing all matrix elements
of Ŝ is equivalent to knowledge of the scattering states.

It is instructive to formulate this statement in an alternative way. We first manipulate Eq.
(1.20) to obtain an alternative representation of the Lippmann-Schwinger equation (indices α
temporarily suppressed):

|ψ+〉 = Ĝ+(iδ)|φ〉 =

= Ĝ+(E + iδ − Ĥ︸ ︷︷ ︸
(Ĝ+)−1

−(E − Ĥ0︸ ︷︷ ︸
→0

) + V̂ )|φ〉 = Ĝ+V̂ |φ〉+ |φ〉.

Subtracting the plus and the minus variant of this equation,

|ψ±α 〉 = Ĝ±(Eα)V̂ |φα〉+ |φα〉,
we obtain

|ψ−α 〉 = |ψ+
α 〉+ (Ĝ−(Eα)− Ĝ+(Eα))V̂ |φα〉 ⇔

〈ψ−α | = 〈ψ+
α |+ 〈φα|V̂ (Ĝ+(Eα)− Ĝ−(Eα)).
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Using this result, and the identity (Ĝ+(Eα) − Ĝ−(Eα))|ψ+
α′〉 = |ψ+

α′〉
(

1
E+
α−Eα′

− 1
E−α−Eα′

)
=

|ψ+
α′〉(−2πi)δ(Eα − Eα′), we express the scattering matrix as

Sαα′ = 〈ψ+
α |ψ+

α′〉 − 2πiδ(Eα − Eα′)〈φα|V̂ |ψ+
α′〉.

Finally, using 〈ψ+
α |ψ+

α′〉 = 〈φα|φα′〉 = δ(α−α′) (why?) and remembering the definition of the
transition operator (1.21) we arrive at the important formula

Sαα′ = δ(α− α′)− 2πiδ(Eα − Eα′)〈φα|T̂ |φα′〉 . (1.64)

The first term in this expression is kind of trivial. It expresses the reduction of the S-matrix to
a ’unit matrix’ in the absence of scattering. The second term makes the conservation of energy
in elastic scattering manifest. The residual expression 〈φα|T̂ |φα′〉, sometimes designated on-
shell S-matrix describes the essential scattering processes.

Notice that the frist term δ(α−α′) implies Eα−E ′α. In other words, the scattering matrix
is ’diagonal’ in energy space (overall proportional to Eα − Eα′ .) We can trace this fact back
to an important feature of the scattering operator, and of the constituting Møller operators.
The representation (1.60) implies (prove it!) ĤΩ± = −Ω̂±Ĥ0. Using these identities in the
representation Ŝ = Ω̂†−Ω̂+, we readily obtain

[Ĥ0, Ŝ] = 0. (1.65)

This means that the scattering operator can be diagonalized in the space of eigenfunctions of
Ĥ0. In practice, it will thus be advantageous to represent the scattering matrix in a basis of
eigenfunctions of the unperturbed problem.

An advantage of the expression (1.64) above is that it can readily be adjusted to different
physical contexts. For example, in the scattering of plane wave states, α = k, the on-shell
scattering matrix reduces the scattering amplitudes (cf. Eq. (1.28))

〈k|T̂ |k′〉 = − 1

(2π)2m
f(k′,k).

EXERCISE Prove the unitarity of the S-matrix on the basis of Eq. (1.64). (This is a tricky one,

and all the more instructive. Apply tricks similar to those used in the proof of the optical theorem

above.)

1.4.2 Time reversal in scattering theory

Much in this chapter has had to do with the chronology of scattering processes, states incoming
and outgoing, causal Green functions etc. In this section, we will explore how the theory
behaves under one of the most important discrete symmetry operations of physics, ’time
reversal symmetry ’. The name suggests that we are to think about the consequences of an
operation that ’reverses the direction of time’. Unfortunately, this allusion can be a source
of serious confusion. A symmetry operation is meaningful if we can implement it in practical
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terms, or at least as a matter of principle. No problem with translations, rotation, even parity
(space reflection) is a conceivable operation. But time reversal? From a philosophical point
of view it may be desirable to emphasize the unity of space and time, and to treat space and
time inversion on equal footings. In practice, however, we have no means to invert the flow
of time, and hence shouldn’t think of a fictitious t → −t operation in terms of a symmetry,
at least not literally.

Yet there is a symmetry that comes close to ’time reversal’ in that it expresses the absence
of an intrinsic ’arrow of time’ in classical or quantum mechanics. What this means is that
a movie showing some mechanical motion (think of a ball thrown, or similar) makes sense
no matter in which direction you play it.

17
Better than calling it ’time reversal’, we might

refer to this as ’symmetry under reversal of motion’, a term introduced by Wigner in the early
thirties. However, the shorter designation ’time reversal’ has stuck, whence we will omit the
quotation marks henceforth.

Time reversal: classical

Consider a phase space trajectory x(t) ≡ (q(t),p(t)),
i.e. a solution of the Hamilton equations of mo-
tion dtx(t) = −{H(x(t)),x(t)}, where {f, g} ≡
∂qf∂pg − ∂pf∂qg are the Poisson brackets, and

H = H(x) = p2

2m
+V (q) is a Hamilton function.

18

Associated to this trajectory, we may formulate a
time reversed partner

(Tx)(t) ≡ (q(−t),−p(−t)).

Within our ’thrown ball’ analogy, the (−t) means
that we play the movie backwards in time, and the
−p means that we invert the direction of motion, cf. the picture, where the time reversal
tf → ti of a trajectory segment ti → tf is shown. We may express the observation above by
saying that classical mechanics is invariant under the time reversal symmetry operation,

t → −t,
q → +q,
p → −p.

(1.66)

Notice that the transformation above changes the sign of the Poisson brackets invariant,
{q, (−p)} = −{q,p}, i.e. it violates the otherwise sacrosanct principle of invariance of
Poisson brackets under symmetry transformations (reflect on this point.)

17

To this statement we have to add the important disclaimer that it applies to Newtonian mechanics in
the absence of irreversible forces such as friction. A rolling ball coming to a halt on a sticky surface makes
sense, the reverse does not. How to reconcile irreversibility with the apparent absence of a time arrow in the
laws of mechanical motion is a deep and philosophical question (literally) which we dare not touch.

18

To be precise, the notation above is defined as {H(x(t)),x(t)} ≡ {H(x),x}
∣∣
x=x(t)

.
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Also notice that there are situations where the time reversal, or reversal of motion symmetry
gets lost. For example, a charged particle injected into a region of transverse magnetic field
will have its motion bended according to a ’right hand rule’. The reverse motion — bending
according to a left hand rule — is not physical.

EXERCISE Stop reading and think how to reconcile this observation with the absence of a time

arrow in mechanics.

There is no conflict between this observation and what has been said above. If we extended
the time reversal operation to the circulating electric currents causing the magnetic field, time
reversal would change the sign of the latter, too, and the reverse motion would be physical.
However, it is often useful to consider the physics of time reversal in a restricted setting where
’external’ magnetic fields are left untouched. One then addresses a scenario where ’time
reversal symmetry is broken by an external field’.

Time reversal: quantum

How do we generalized the notion of time reversal to the quantum world. We first observe that
a unitary transformation, Û , acting in Hilbert space, Q̂→ Û †Q̂Û will preserve the commutator
between operators. Specifically, [q̂, p̂]→ [(Û q̂Û †), (Û p̂Û †)] = [q̂, p̂]. In view of the quantum–
to–classical correspondence [ , ] ↔ i~{ , } between commutators and Poisson brackets, and
the inversion of the Poisson bracket under time reversal, we anticipate that the time reversal
operation will not be describable in terms of a unitary operator.

To get an idea of what the time reversal operation in quantum mechanics will look like,
consider the time dependent Schrödinger equation corresponding to the a generic potential
Hamilton operator

i∂tψ(x, t) =

(
1

2m
(i∂x)2 + V (x)

)
ψ(x, t). (1.67)

Taking the complex conjugate of both sides, and mapping t→ −t, we obtain another solution:

i∂tψ(x,−t) =

(
1

2m
(−i∂x)2 + V (x)

)
ψ(x,−t). (1.68)

Thus, if the mapping (x, t)→ ψ(x, t) defines a solution of the Schrödinger equation, then so
does (x, t)→ ψ(x,−t). We thus conclude that

In the time dependent quantum theory of spinless particles and in a real space
coordinate representation, the operation of time reversal is described by Eq. (1.69).

{
ψ(x, t) → ψ(x,−t)
t → −t. (1.69)
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As we will see momentarily, the disclaimers ’time dependent’, ’spinless’, and ’coordinate rep-
resentation’ in the statement above all have to be taken seriously. We first note that in an
energy representation time reversal acts just by complex conjugation ψ(x, E)→ ψ(x, E), for
in the Fourier transform ψ(x, E) → ψ(x, t) the complex conjugation automatically accounts
for the inversion of sign ψ(x, E)→ ψ(x,−t). Second, notice that the real space Schrödinger
equation above nicely transforms in accord with our classical understanding of time reversal:
the real function V (x) remains unaffected, in particular x→ x, while the momentum operator
(p̂↔ −i∂x)→ (−(−i∂x)↔ −p) changes sign. All these features would be messed up, had
we subjected the Schrödinger equation in the conjugate momentum representation to a com-
plex conjugation operation. In this representation, (p̂↔ p) is described by a real vector, which
would remain unaffected. Also, by the definition of Fourier transforms ψ(x, E) → ψ(x, E)
corresponds to the transformation ψ(p, E) → ψ(−p, E), different from an ordinary complex
conjugation of ψ(p, E) by a sign inversion of the argument. These statements show that the
identification of complex conjugation holds only in the coordinate representation of the theory.

It is possible to formulate the action of complex conjugation in terms of an operator K̂
acting in Hilbert space. The action of K̂ is defined as follows. First declare the coordinate
basis {|x〉} as a basis which remains invariant under K̂:

∀x : K̂|x〉 = |x〉. (1.70)

Next declare that K, unlike conventional operators, acts non-trivially on complex numbers,
viz. by complex conjugation K̂c = c̄K̂, for c ∈ C. Since all states in Hilbert space can be
represented by linear combination of coordinate basis states — the definition of a basis — the
statements above define the action of K̂. For example

K̂|p〉 =

∫
d3xK̂〈x|p〉|x〉 =

∫
d3x〈x|p〉K̂|x〉 =

∫
d3x〈x| − p〉|x〉 = | − p〉.

where we used 〈x|p〉 = (2π)−3/2exp(ix · p) = (2π)−3/2 exp(−ix ·p) = 〈x| −p〉. Also notice
that for a general state |ψ〉,

K̂|ψ〉 =

∫
d3x K̂ψ(x)|x〉 = ψ(x)|x〉,

i.e. the expansion coefficients of the complex conjugated state simply obtain by complex
conjugation of the ’coefficients’ ψ(x), in accord with our discussion above.

The definitions above imply that K̂ preserves the scalar product of states

〈ψ|φ〉 =

∫
d3xψ(x)φ(x)

up to complex conjugation:

〈K̂ψ|K̂φ〉 =

∫
d3xψ(x) φ(x) =

∫
d3xφ(x)ψ(x) = 〈φ|ψ〉 = 〈ψ|φ〉. (1.71)
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An operator with the property (1.71) is called an anti-unitary operator. We may, thus,
summarize our so far findings by saying that for a solution |ψ〉 of the Schrödinger equation (of
spinless particles) we can construct another solution K̂|ψ〉 by application of the anti-unitary
operator K̂=(complex conjugation). This operator acts on the basis states in accord with our
classical understanding of time reversal. If we are working in a time dependent representation,
the action of K̂ has to be augmented with an explicit inversion of time, t → −t, and this,
too, conforms with classical intuition. Have we, then, got the quantum description of time
reversal under control? The answer is almost, but not quite.

The discussion above applies to spinless particles. Now, spin is a quantum analog of classi-
cal angular momentum, and the latter we expect to change sign under time reversal! We thus
anticipate that spin will behave non-trivially under time reversal operations, and the question
is how. We next aim to generalize the operation of time reversal so as to encompasses spin.
To this end, we postulate that the general time reversal operation in quantum mechanics is
mediated by an anti-unitary operator, Θ̂ (for the proof, see section 4.4 of S.) We second
observe that the product of two anti-unitary operators is unitary, an easy consequence of the
definition (1.71). Now, the action of |ψ〉 → Θ̂|ψ〉 on states implies that operators transform
as Â → Θ̂ÂΘ̂−1. We require that a two-fold time reversal, mediated by Θ̂2 must bring any

operator back to its original form
19

Θ̂2ÂΘ̂−2 !
= Â. Now, this condition requires Θ̂2 = zI and,

since Θ̂2 is unitary, z = exp(iφ) with a real phase φ. Above, we have seen that for spinless
quantum states (as described by the conventional Schödinger equation), Θ̂ = K̂ does the job.
Here, Θ̂2 = K̂2 = I and the issue of a phase does not arise.

From here on, optional reading. Readers not familiar with the quantum theory of angular
momentum may skip the rest of the section.

The situation gets more interesting if we consider particles with spin. For simplicity,
consider a spin 1/2 state, as represented by a spinor

ψ =

(
ψ↑,
ψ↓

)
Spin is a variant of angular momentum, and angular momentum is to change direction under
time reversal. We thus expect (Θ̂ψ↑/↓) = η↓/↑ψ↓/↑, where η↓/↑ are phases. Or, in a matrix
representation

Θ̂ψ =

(
η↓

η↑

)(
ψ↑,

ψ↓

)
,

where the anti-unitarity of time reversal requires the η-matrix to be unitary. We verify that this
enforces |η↑,↓|2 = 1. The above condition Θ̂2 = eiφI translates to a second condition (check!)

19

While the self-involutary action of time reversal on operators is based on solid physical reasoning (e.g. on
the requirement that the phase space functions corresponding to operators in the classical limit do not change
under double inversion of motion), with wave functions we can be not so sure. We always have to account for
the appearance of an (unobservable) global phase different from unity, i.e. Θ̂2|ψ〉 = (phase)× |ψ〉 remains an
option. We will soon see that this option is, in fact, realized in nature.
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η↓η↑ = η↓η↑ = eiφ, which in turn requires φ = 0, like in the spinless case, or φ = π. In chapter
3 below, we will see that the latter option is realized in nature. The above conditions are then
met by the choice η↓ = 1, η↑ = −1, or

Θ̂ψ = ÛK̂ψ, Û = iσ2, (1.72)

where σ2 = ( −i
i ) is a Pauli matrix acting in spin space. Notice that this matrix can be

represented as Û = exp(iπĴy), where Ĵy = 1
2
σ2 is the rotation generator around the y-axis.

Thus, time reversal amounts to complex conjugation followed by a π-rotation around the y-
axis, which is a way to flip the spin. It can be shown (cf. S section 4.4) that this statement
generalizes to higher angular momentum states:

The time reversal operation of quantum states carrying angular
momentum j is mediated by Θ̂ = ÛK̂, where Û = exp(iπĴy).

Now irrespective of the magnitude of j, the operators Ĵy are represented in terms of matrices

with purely imaginary entries, i.e. K̂Û = K̂ exp(iπĴy) = exp(−iπ(−Ĵy))K̂ = ÛK̂ and this

means Θ̂2 = ÛK̂ÛK̂ = Û2 = exp(2πiĴy) = ±I for j =integer (+) or j =half-integer (-),

respectively. (Verify the final equality: consider Ĵy in its eigenbasis, use that the eigenvalues

of Ĵy are integer or half-integer valued, and you are almost there.)

Time reversal in scattering

We are now in a position to discuss the ramifications of time reversal in scattering. Heuristically,
one expects time reversal to revert a scattering process, and in the following we will give this
expectation a quantitative basis. We call a Hamilton operator time reversal invariant, if

Θ̂ĤΘ̂−1 = Ĥ. (1.73)

Notice that this equation implies (i∂t− Ĥ)ψ = 0⇒ Θ̂(i∂t− Ĥ)ψ = Θ̂(i∂t− Ĥ)Θ̂−1(Θ̂ψ) =
(−i∂t − Ĥ)(Θ̂ψ) = 0. In other words, the time reversed state obeys a Schrödinger equation
governed by the same Hamilton operator, but evolving backwards in time. Also notice that in
a real space representation, where Θ̂ = K̂ acts by complex conjugation, time reversal implies

Ĥ = Ĥ = ĤT , i.e. the ’matrix’ Ĥx,x′ ≡ 〈x|Ĥ|x′〉 becomes real symmetric.

EXERCISE Consider a Hamilton operator in the presence of an external magnetic field and explore

how time reversal invariance goes lost.

It is now an easy matter to describe the impact of time reversal on the scattering operator.
From the representation (1.62), we obtain

Θ̂ŜΘ̂ = lim
∆t→∞

Θ̂
(
eiĤ0∆te−2iĤ∆teiĤ0∆t

)
Θ̂−1 = e−i(Θ̂Ĥ0Θ̂−1)∆te2i(Θ̂ĤΘ̂−1)∆te−i(Θ̂Ĥ0Θ̂−1)∆t.
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For a time reversal invariant Hamilton operator, this implies

Θ̂ŜΘ̂−1 = Ŝ−1. (1.74)

This conforms with the intuition that time reversal should ’invert’ the scattering process.
It’s appealing form notwithstanding, the result (1.74) must be processed with caution. In

practical applications, one will mostly work with the transition operator (cf. Eq. (1.64)) rather
than with the abstract scattering operator. The action of time reversal on the underlying basis
states must then be taken into account.

EXERCISE Show that for a time reversal invariant Hamilton operator, and in a basis of plane
wave states {|k〉},

〈k|Θ̂|k′〉 = 〈−k′|Θ̂| − k〉.

(Hint: this is again a tricky one. Use the anti-unitarity relation (1.71), and the representation

(1.22).)

1.5 Summary & outlook

This concludes our survey of quantum scattering. We have introduced the conceptual foun-
dations of scattering methods in general, to then develop the basic theory of elastic scattering
in general. Key concepts such as scattering –cross sections, –amplitudes, –phase shifts, and
–length have been introduced. Of course, there is much more that could be said about elastic
scattering theory, but the most severe omission of the present chapter is the theory of inelastic
scattering. Inelastic scattering represents the most important approach to probing the physics
of sub-atomic particles. While our discussion above assumed the scattering target to be de-
scribed by a static potential, ’realistic’ targets usually contain internal degrees of freedom —
think of a hadron comprising quarks as fundamental constituents. In a scattering process,
these constituents may be excited, and the corresponding exchange of energy contains telling
information on the structure of the target. Or, the scattering process may trigger a reaction
such as the breakup of a nucleus, or the creation of emergent particles in the high energy
collision of fundamental scattering targets. While the theory of such processes goes beyond
what has been discussed in this chapter, the basic concepts above retain their usefulness. For
further information, interested readers are referred to the particle physics literature.
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Chapter 2

Second quantization

The purpose of this chapter is to introduce and apply the method of second quantization, a technique that underpins

the formulation of quantum many-particle theories. The first part of the chapter focuses on methodology and notation,

while the remainder is devoted to the development of applications designed to engender familiarity with and fluency

in the technique. Specifically, we will investigate the physics of the interacting electron gas, charge density wave

propagation in one-dimensional quantum wires, and spin waves in a quantum Heisenberg (anti)ferromagnet. Indeed,

many of these examples and their descendants will reappear as applications in our discussion of methods of quantum

field theory in subsequent chapters.

Recapitulate the basic theory of many particle quantum systems

In introductory courses we learn that the quantum mechanics of many particle systems is
formulated in ’tensor products’

1
of single particle Hilbert spaces. Wave functions representing

n > 1 indistinguishable bosons and fermions are then represented in terms of symmetrized
or anti-symmetrized sums over products of compound single particle wave amplitudes. The
ensuing expressions arguably have a certain formal appeal to them. However, the moment you
actually turn to bread–and–butter computations of quantum mechanics — matrix elements
of operators, or between states, traces of operators, etc. — it becomes painfully clear that
working with many particle wave functions is cumbersome. This is true for few-body wave
functions, and the more so for the macroscopically populated wave functions of quantum
statistical mechanics and solid state theory. The framework of second quantization provides a
language whereby these technical hardships can be reduced to a minimum.

We introduce the basic ideas underlying second quantization on an example which may
seem barely related to the points alluded to above – the single particle harmonic oscillator.
Only then will we turn to the actual framework of many particle quantum mechanics.

1

For a revision of these concepts, see below.

45
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Prelude: revision of the quantum harmonic oscillator

Consider a standard harmonic oscillator (HO) Hamiltonian

Ĥ =
p̂2

2m
+
mω2

2
x̂2.

ω

The first few energy levels εn = ω
(
n+ 1

2

)
and the asso-

ciated Hermite polynomial eigenfunctions are displayed
schematically in the figure.

The HO has, of course, the status of a single-particle
problem. However, the equidistance of its energy levels
suggests an alternative interpretation. One can think of a given energy state εn as an accumu-
lation of n elementary entities, or quasi-particles, each having energy ω. What can be said
about the features of these new objects? First, they are structureless, i.e. the only “quantum
number” identifying the quasi-particles is their energy ω (otherwise n-particle states formed
of the quasi-particles would not be equidistant). This implies that the quasi-particles must be
bosons. (The same state ω can be occupied by more than one particle, cf. the figure.)

This idea can be formulated in quantitative terms by employing the formalism of ladder
operators in which the operators p̂ and x̂ are traded for the pair of Hermitian adjoint operators
â ≡√mω

2
(x̂+ i

mω
p̂), â† ≡√mω

2
(x̂− i

mω
p̂). Up to a factor of i, the transformation (x̂, p̂)→

(â, â†) is canonical, i.e. the new operators obey the canonical commutation relation

[â, â†] = 1. (2.1)

More importantly, the a-representation of the Hamiltonian is very simple, namely

Ĥ = ω

(
â†â+

1

2

)
, (2.2)

as can be checked by direct substitution. Suppose, now, we had been given a zero eigenvalue
state |0〉 of the operator â: â|0〉 = 0. As a direct consequence, Ĥ|0〉 = (ω/2)|0〉, i.e. |0〉
is identified as the ground state of the oscillator.

2
The complete hierarchy of higher energy

states can now be generated by setting |n〉 ≡ (n!)−1/2 (â†)n|0〉.

EXERCISE Using the canonical commutation relation, verify that Ĥ|n〉 = ω(n + 1/2)|n〉 and

〈n|n〉 = 1.

Formally, the construction above represents yet another way of constructing eigenstates of
the quantum HO. However, its “real” advantage is that it naturally affords a many-particle
interpretation. To this end, let us declare |0〉 to represent a “vacuum” state, i.e. a state with
zero particles present. Next, imagine that â†|0〉 is a state with a single featureless particle

2

This can be verified by explicit construction. Switching to a real-space representation, the solution of the
equation [x+∂x/(mω)]〈x|0〉 = 0 obtains the familiar ground state wavefunction 〈x|0〉 =

√
mω/2πe−mωx

2/2.
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(the operator â† does not carry any quantum number labels) of energy ω. Similarly, (â†)n|0〉
is considered as a many-body state with n particles, i.e. within the new picture, â† is an
operator that creates particles. The total energy of these states is given by ω × (occupation
number). Indeed, it is straightforward to verify (see exercise above) that â†â|n〉 = n|n〉,
i.e. the Hamiltonian basically counts the number of particles. While, at first sight, this may
look unfamiliar, the new interpretation is internally consistent. Moreover, it achieves what we
had asked for above, i.e. it allows an interpretation of the HO states as a superposition of
independent structureless entities.

INFO The representation above illustrates the capacity to think about individual quantum prob-

lems in complementary pictures. This principle finds innumerable applications in modern physics.

The existence of different interpretations of a given system is by no means heretical but, rather,

reflects a principle of quantum mechanics: there is no “absolute” system that underpins the phe-

nomenology. The only thing that matters is observable phenomena. For example, we will see later

that the “fictitious” quasi-particle states of oscillator systems behave as “real” particles, i.e. they

have dynamics, can interact, be detected experimentally, etc. From a quantum point of view these

object are, then, real particles.

2.1 Introduction to second quantization

Apart from a certain aesthetic appeal, the above discussion would not be of much relevance
if it were not for the fact that it can be developed to a comprehensive and highly efficient
formulation of many-body quantum mechanics in general — the apparatus of second quanti-
zation

3
. In fact, second quantization can be considered the first major cornerstone on which

the theoretical framework of quantum field theory was built. This being so, extensive intro-
ductions to the concept can be found throughout the literature. We will therefore not develop
the formalism in full mathematical rigor but rather proceed pragmatically by first motivating
and introducing its basic elements, followed by a discussion of the “second quantized” version
of standard operations of quantum mechanics (taking matrix elements, changing bases, repre-
senting operators, etc.). The second part of the chapter is concerned with developing fluency
in the method by addressing a few applications.

Motivation

3

The term “second quantization” is unfortunate. Historically, this terminology was motivated by the
observation that the ladder operator algebra fosters an interpretation of quantum excitations as discrete
“quantized” units. Fundamentally, however, there is nothing like “two” superimposed quantization steps in
single- or many-particle quantum mechanics. Rather, one is dealing with a particular representation of the
“first and only quantized” theory tailored to the particular problem at hand.
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nλ

ε4

ελ

ε3
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ε2

ε1

1

1

1

1

1

1

ε0

0

nλ

0

5

bosons fermions

We begin our discussion by recapitulating some fun-
damental notions of many-body quantum mechanics, as
formulated in the traditional language of symmetrized
or anti-symmetrized wavefunctions. Consider the (nor-
malized) set of wavefunctions |λ〉 of some single-particle
Hamiltonian Ĥ : Ĥ|λ〉 = ελ|λ〉, where ελ are the eigen-
values. With this definition, the normalized two-particle
wavefunction ψF(ψB) of two fermions (bosons) populat-
ing levels λ1 and λ2 is given by the anti-symmetrized (symmetrized) product

ψF(x1, x2) =
1√
2

(〈x1|λ1〉〈x2|λ2〉 − 〈x1|λ2〉〈x2|λ1〉) ,

ψB(x1, x2) =
1√
2

(〈x1|λ1〉〈x2|λ2〉+ 〈x1|λ2〉〈x2|λ1〉) .

In the Dirac bracket representation, the two-body states |λ1, λ2〉F(B) corresponding to the wave
functions ψF(B)(x1, x2) = (〈x1| ⊗ 〈x2|) |λ1, λ2〉F(B) above can be presented as

|λ1, λ2〉F(B) ≡
1√
2

(|λ1〉 ⊗ |λ2〉+ ζ|λ2〉 ⊗ |λ1〉) ,

where ζ = −1 for fermions while ζ = 1 for bosons.
Note that the explicit symmetrization of the wavefunctions is necessitated by quantum

mechanical indistinguishability: for fermions (bosons) the wave function has to be anti-
symmetric (symmetric) under particle exchange.

4
More generally, an appropriately sym-

metrized N -particle wavefunction can be expressed in the form

|λ1, λ2, . . . , λN〉 ≡
1√

N !
∏∞

λ=0(nλ!)

∑
P

ζ(1−sgnP)/2|λP1〉 ⊗ |λP2〉 ⊗ · · · ⊗ |λPN〉, (2.3)

where nλ represents the total number of particles in state λ (for fermions, Pauli exclusion
enforces the constraint nλ ≤ 1) – see the schematic figure above. The summation runs over
all N ! permutations of the set of quantum numbers {λ1, . . . , λN}, and sgnP denotes the sign
of the permutation P . (sgnP = 1 [−1] if the number of transpositions of two elements which
brings the permutation (P1,P2, . . . ,PN) back to its original form (1, 2, . . . , N) is even [odd].)
The prefactor 1/

√
N !
∏

λ(nλ!) normalizes the many-body wavefunction. In the fermionic case,
wave functions corresponding to the states above are known as Slater determinants.

Finally, notice that it will be useful to assume that the quantum numbers {λi} defining the
state |λ1, λ2, . . . , λN〉 are ordered according to some convention. (For example, for λi = xi a
one-dimensional coordinate representation, we might order according to the rule x1 ≤ x2 ≤
· · · ≤ xN .) Once an ordered sequence of states has been fixed we may – for notational

4

Notice, however, that in two-dimensional systems the standard doctrine of fully symmetric/anti-symmetric
many particle wave functions is too narrow and more general types of exchange statistics can be realized, cf.
our discussion on page 49.
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convenience – label our quantum states by integers, λi = 1, 2, . . .. Any initially non-ordered
state (e.g. |2, 1, 3〉) can be brought into an ordered form (|1, 2, 3〉) at the cost of, at most, a
change of sign.

INFO For the sake of completeness, let us spell out the connection between the permutation
group and many-body quantum mechanics in a more mathematical language. The basic arena
wherein N -body quantum mechanics takes place is the product space,

HN ≡ H⊗ · · · ⊗ H︸ ︷︷ ︸
N copies

,

of N single-particle Hilbert spaces. In this space, we have a linear representation of the permutation
group, SN ,

5
assigning to each P ∈ SN the permutation (no ordering of the λs implied at this

stage),

P : HN → HN , |λ1〉 ⊗ · · · ⊗ |λN 〉 7→ |λP1〉 ⊗ · · · ⊗ |λPN 〉.

The identification of all irreducible subspaces of this representation is a formidable task that,
thanks to a fundamental axiom of quantum mechanics, we need not address in full. All we need
to know is that SN has two particularly simple one-dimensional irreducible representations: one
wherein each P ∈ SN acts as the identity transform P(Ψ) ≡ Ψ and, another, the alternating
representation P(Ψ) = sgnP ·Ψ. According to a basic postulate of quantum mechanics, the state
vectors Ψ ∈ HN describing bosons/fermions must transform according to the identity/alternating
representation. The subset FN ⊂ HN of all states showing this transformation behavior defines the
physical N -body Hilbert space. To construct a basis of FN , one may apply the symmetrization
operator P s ≡ ∑P P (anti-symmetrization operator P a ≡ ∑P(sgnP)P) to the basis vectors
|λ1〉 ⊗ · · · ⊗ |λN 〉 of HN . Up to normalization, this operation obtains the states (2.3).
Some readers may wonder why we mention these representation-theoretic aspects. Being prag-
matic, all we really need to know is the symmetrization/anti-symmetrization postulate, and its
implementation through Eq. (2.3). Notice, however, that one may justly question what we ac-
tually mean when we talk about the permutation exchange of quantum numbers. For example,
when we compare wavefunctions that differ by an exchange of coordinates, we should, at least in
principle, be able to tell by what physical operation we effect this exchange (for, otherwise, we
cannot really compare them other than in a formal and, in fact, in an ambiguous sense).

Oddly enough, decades passed before this crucial issue in quantum mechanics was critically ad-

dressed. In a now seminal work by Leinaas and Myrheim
6

it was shown that the standard paradigm

of permutation exchange is far from innocent. In particular, it turned out that its applicability is

5

Recall that a linear representation of a group G is a mapping that assigns to each g ∈ G a linear
mapping ρg : V → V of some vector space V . For notational convenience one usually writes g : V → V
instead of ρg : V → V . Conceptually, however, it is often important to carefully discriminate between the
abstract group elements g and the matrices (also g) assigned to them by a given representation. (Consider,
for example the symmetry group G = SU(2) of quantum mechanical spin. SU(2) is the two-dimensional
group of unitary matrices with determinant one. However, when acting in the Hilbert space of a quantum spin
S = 5, say, elements of SU(2) are represented by (2S + 1 = 11)-dimensional matrices.) Two representations
ρ and ρ′ that differ only by a unitary transformation, ∀g ∈ G : ρg = Uρ′gU

−1, are called unitary equivalent.
If a transformation U can be found such that all representation matrices ρg assume a block structure, the
representation is called reducible, and otherwise irreducible. Notice that the different sub-blocks of a reducible
representation by themselves form irreducible representation spaces. The identification of all distinct irreducible
representations of a given group is one of the most important objectives of group theory.

6

J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37 (1977), 1–23.
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tied to the dimensionality of space! Specifically, in two-dimensional spaces (in a sense, also in

d = 1) a more elaborate scheme is needed. (Still one may use representation-theoretic concepts

to describe particle exchange. However, the relevant group – the braid group – now differs from

the permutation group.) Physically, these phenomena manifest themselves in the emergence of

quantum particles different from both bosons and fermions.

While representations like Eq. (2.3) can be used to represent the full Hilbert space of many-
body quantum mechanics, a moment’s thought shows that this formulation is not at all
convenient:

. It takes little imagination to anticipate that practical computation in the language of
Eq. (2.3) will be cumbersome. For example, to compute the overlap of two wavefunctions
one needs to form no less than (N !)2 different products.

. The representation is tailor-made for problems with fixed particle number N . However,
we know from statistical mechanics that for N = O(1023) it is much more convenient
to work in a grand canonical formulation where N is allowed to fluctuate.

. Closely related to the above, in applications one will often ask questions such as, “What
is the amplitude for injection of a particle into the system at a certain space-time
coordinate (x1, t1) followed by annihilation at some later time (x2, t2)?” Ideally, one
would work with a representation that supports the intuition afforded by thinking in
terms of such processes: i.e. a representation where the quantum numbers of individual
quasi-particles rather than the entangled set of quantum numbers of all constituents are
fundamental.

The “second quantized” formulation of many-body quantum mechanics, as introduced in the
next subsection, will remove all these difficulties in an elegant and efficient manner.

The apparatus of second quantization

Occupation number representation and Fock space

Some of the disadvantages of the representation (2.3) can be avoided with relatively little
effort. In our present notation, quantum states are represented by “N -letter words” of the
form |1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, . . .〉. Obviously, this notation contains a lot of redundancy.
A more efficient encoding of the state above might read |4, 2, 3, 1, 0, 2, . . .〉, where the ith
number signals how many particles occupy state number i; no more information is needed to
characterize a symmetrized state. (For fermions, these occupation numbers take a value of
either zero or one.) This defines the “occupation number representation.” In the new
representation, the basis states of FN are specified by |n1, n2, . . .〉, where

∑
i ni = N . Any

state |Ψ〉 in FN can be obtained by a linear superposition

|Ψ〉 =
∑

n1,n2,...,∑
ni=N

cn1,n2,...|n1, n2, . . .〉.
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As pointed out above, eventually we will want to emancipate ourselves from the condition
of a fixed particle number N . A Hilbert space large enough to accommodate a state with an
undetermined number of particles is given by

F ≡
∞⊕
N=0

FN . (2.4)

Notice that the direct sum contains a curious contribution F0, the “vacuum space.” This
is a one-dimensional Hilbert space which describes the sector of the theory with no particles
present. Its single normalized basis state, the vacuum state, is denoted by |0〉. We will soon
see why it is convenient to add this strange animal to our family of basis states. The space
F is called Fock space and it defines the principal arena of quantum many-body theory.

To obtain a basis of F , we need only take the totality of our previous basis states
{|n1, n2, . . .〉}, and drop the condition

∑
i ni = N on the occupation numbers. A general

many-body state |Ψ〉 can then be represented by a linear superposition |Ψ〉 =
∑

n1,n2,...
cn1,n2,...|n1, n2, . . .〉.

Notice that states of different particle numbers may contribute to the linear superposition
forming |Ψ〉.

Foundations of second quantization

The occupation number representation introduced above provides a step in the right direc-
tion, but it does not yet solve our main problem, the need for explicit symmetrization/anti-
symmetrization of a large number of states in each quantum operation.

As a first step towards the construction of a more powerful representation, let us recall
an elementary fact of linear algebra: a linear map A : V → V of a vector space into itself is
fully determined by defining the images wi ≡ Avi of the action of A on a basis {vi}. Now
let us use this scheme to introduce a set of linear operators acting in Fock space. For every
i = 1, 2, . . ., we define operators a†i : F → F through

a†i |n1, . . . , ni, . . .〉 ≡ (ni + 1)1/2ζsi |n1, . . . , ni + 1, . . .〉, (2.5)

where si =
∑i−1

j=1 nj. In the fermionic case, the occupation numbers ni have to be understood

mod 2. Specifically, (1 + 1) = 0 mod 2, i.e. the application of a†i to a state with ni = 1
annihilates this state.

Notice that by virtue of this definition we are able to generate every basis state of F
by repeated application of a†i s to the vacuum state. (From a formal point of view, this fact
alone is motivation enough to add the vacuum space to the definition of Fock space.) Indeed,
repeated application of Eq. (2.5) leads to the important relation

|n1, n2, . . .〉 =
∏
i

1

(ni!)1/2
(a†i )

ni|0〉. (2.6)

Notice that Eq. (2.6) presents a strong statement: the complicated permutation “entangle-
ment” implied in the definition (2.3) of the Fock states can be generated by straightforward
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application of a set of linear operators to a single reference state. Physically, N -fold application
of operators a† to the empty vacuum state generates an N -particle state, which is why the a†s
are commonly called creation operators. Of course, the introduction of creation operators
might still turn out to be useless, i.e. consistency with the properties of the Fock states (such
as the fact that, in the fermionic case, the numbers ni = 0, 1 are defined only mod 2), might
invalidate the simple relation (2.5) with its (ni-independent!) operator a†i . However, as we
shall demonstrate below, this is not the case.

Consider two operators a†i and a†j for i 6= j. From the definition (2.5), one may readily

verify that (a†ia
†
j − ζa†ja†i )|n1, n2, . . .〉 = 0. Holding for every basis vector, this relation implies

that [a†i , a
†
j]ζ = 0, where

[Â, B̂]ζ ≡ ÂB̂ − ζB̂Â,
i.e. [ , ]ζ=1 ≡ [ , ] is the commutator and [ , ]ζ=−1 ≡ { , } ≡ [ , ]+ the anti-commutator.

Turning to the case i = j, we note that, for fermions, the two-fold application of a†i to any
state leads to its annihilation. Thus, a†2i = 0 is nilpotent, a fact that can be formulated as
[a†i , a

†
i ]+ = 0. For bosons we have, of course, [a†i , a

†
i ] = 0 (identical operators commute!).

Summarizing, we have found that the creation operators obey the commutation relation

∀i, j :
[
a†i , a

†
j

]
ζ

= 0. (2.7)

Now, quantum mechanics is a unitary theory so, whenever one meets a new operator Â, one
should determine its Hermitian adjoint Â†. To understand the action of the Hermitian adjoints(
a†i
)†

= ai of the creation operators we may take the complex conjugates of all basis matrix
elements of Eq. (2.5):

〈n1, . . . , ni, . . . |a†i |n′1, . . . , n′i, . . .〉 = (n′i + 1)
1/2
ζs
′
iδn1,n′1

. . . δni,n′i+1 . . .

⇒ 〈n′1, . . . , n′i, . . . |ai|n1, . . . , ni, . . .〉∗ = n
1/2
i ζsiδn′1,n1

. . . δn′i,ni−1 . . .

Holding for every bra 〈n′1, . . . , n′i, . . . | , the last line tells us that

ai|n1, . . . , ni, . . .〉 = n
1/2
i ζsi |n1, . . . , ni − 1, . . .〉, (2.8)

a relation that identifies ai as an operator that “annihilates” particles. The action of creation
and annihilation operators in Fock space is illustrated in Fig. 2.1. Creation operators
a† : FN → FN+1 increase the particle number by one, while annihilation operators a :
FN → FN−1 lower it by one; the application of an annihilation operator to the vacuum state,
ai|0〉 = 0, annihilates it. (Do not confuse the vector |0〉 with the number zero.)

Taking the Hermitian adjoint of Eq. (2.7) we obtain [ai, aj]ζ = 0. Further, a straightforward

calculation based on the definitions (2.5) and (2.8) shows that [ai, a
†
j]ζ = δij. Altogether, we

have shown that the creation and annihilation operators satisfy the algebraic closure relation

[ai, a
†
j]ζ = δij, [ai, aj]ζ = 0, [a†i , a

†
j]ζ = 0. (2.9)
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Figure 2.1: Visualization of the generation of the Fock subspaces FN by repeated action of
creation operators on the vacuum space F0.

Given that the full complexity of Fock space is generated by application of a†i s to a single
reference state, the simplicity of the relations obeyed by these operators seems remarkable and
surprising.

INFO Perhaps less surprising is that, behind this phenomenon, there lingers some mathematical

structure. Suppose we are given an abstract algebra A of objects ai, a
†
i satisfying the relation (2.9).

(Recall that an algebra is a vector space whose elements can be multiplied by each other.) Further

suppose that A is irreducibly represented in some vector space V , i.e. that there is a mapping

assigning to each ai ∈ A a linear mapping ai : V → V , such that every vector |v〉 ∈ V can be

reached from any other |w〉 ∈ V by (possibly iterated) application of operators ai and a†i (irre-

ducibility).
7

According to the Stone–von Neumann theorem (a) such a representation is unique

(up to unitary equivalence), and (b) there is a unique state |0〉 ∈ V that is annihilated by every ai.

All other states can then be reached by repeated application of a†i s. The precise formulation of this

theorem, and its proof – a good practical exercise in working with creation/annihilation operators –

are left as a challenging exercise. From the Stone–von Neumann theorem, we can infer that the

Fock space basis could have been constructed in reverse. Not knowing the basis {|n1, n2, . . .〉},
we could have started from a set of operators obeying the commutation relations (2.9) acting in

some a priori unknown space F . Outgoing from the unique state |0〉, the prescription (2.6) would

then have yielded an equally unique basis of the entire space F (up to unitary transformations).

In other words, the algebra (2.9) fully characterizes the operator action and provides information

equivalent to the definitions (2.5) and (2.8).

Practical aspects

Our next task will be to promote the characterization of Fock space bases introduced above to
a full reformulation of many-body quantum mechanics. To this end, we need to find out how
changes from one single-particle basis {|λ〉} to another {|λ̃〉} affect the operator algebra {aλ}.
(In this section we shall no longer use integers to identify different elements of a given single-
particle basis. Rather, we use Greek labels λ, i.e. a†λ creates a particle in state λ.) Equally
important, we need to understand in what way generic operators acting in many-particle Hilbert
spaces can be represented in terms of creation and annihilation operators.

7

To appropriately characterize the representation, we need to be a bit more precise. Within A, ai and a†i
are independent objects, i.e. in general there exists no notion of Hermitian adjointness in A. We require,
though, that the representation assigns to a†i the Hermitian adjoint (in V ) of the image of ai. Also, we have

to require that [ai, a
†
j ] ∈ A be mapped onto [ai, a

†
j ] : V → V where, in the latter expression, the commutator

involves the ordinary product of matrices ai, a
†
j : V → V .
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. Change of basis: Using the resolution of identity id =
∑∞

λ=0 |λ〉〈λ|, the relations |λ̃〉 =∑
λ |λ〉〈λ|λ̃〉, |λ〉 ≡ a†λ|0〉, and |λ̃〉 ≡ a†

λ̃
|0〉 immediately give rise to the transformation

law

a†
λ̃

=
∑
λ

〈λ|λ̃〉a†λ, aλ̃ =
∑
λ

〈λ̃|λ〉aλ. (2.10)

In applications, one is often dealing with continuous sets of quantum numbers (such
as position coordinates). In these cases, the quantum numbers are commonly denoted
by a bracket notation aλ → a(x) =

∑
λ〈x|λ〉aλ and the summations appearing in the

transformation formula above translate to integrals: aλ =
∫
dx〈λ|x〉a(x).

EXAMPLE The transformation from the coordinate to the Fourier momentum representa-
tion in a finite one-dimensional system of length L would read

ak =

∫ L

0
dx 〈k|x〉a(x), a(x) =

∑
k

〈x|k〉ak, (2.11)

where 〈k|x〉 ≡ 〈x|k〉∗ = e−ikx/
√
L. In a three-dimensional extended system, the transfor-

mation assumes the form

a(k) =

∫
d3x 〈k|x〉a(x), a(x) =

∫
d3k 〈x|k〉a(k), (2.12)

where 〈k|x〉 ≡ 〈x|k〉∗ = e−ik·x/(2π)3/2, etc.

. Representation of operators (one-body): Single-particle or one-body operators Ô1

acting in the N -particle Hilbert space FN generally take the form Ô1 =
∑N

n=1 ôn, where
ôn is an ordinary single-particle operator acting on the nth particle. A typical example
is the kinetic energy operator T̂ =

∑
n p̂

2
n/2m, where p̂n is the momentum operator

acting on the nth particle. Other examples include the one-particle potential operator
V̂ =

∑
n V (x̂n), where V (x) is a scalar potential, the total spin operator

∑
n Ŝn, etc.

Since we have seen that, by applying field operators to the vacuum space, we can
generate the Fock space in general and any N -particle Hilbert space in particular, it
must be possible to represent any operator Ô1 in an a-representation.

Now, although the representation of n-body operators is, after all, quite straightforward,
the construction can, at first sight, seem daunting. A convenient way of finding such
a representation is to express the operator in terms of a basis in which it is diagonal,
and only later transform to an arbitrary basis. For this purpose it is useful to define the
occupation number operator

n̂λ = a†λaλ , (2.13)

with the property that, for bosons or fermions (exercise), n̂λ
(
a†λ
)n|0〉 = n

(
a†λ
)n|0〉.

Since n̂λ commutes with all a†λ′ 6=λ, Eq. (2.6) readily implies that n̂λj |nλ1 , nλ2 , . . .〉 =
nλj |nλ1 , nλ2 , . . .〉, i.e., n̂λ simply counts the number of particles in state λ (hence the
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name “occupation number operator”). Let us now consider a one-body operator, Ô1,
which is diagonal in the basis |λ〉, with ô =

∑
i oλi |λi〉〈λi|, oλi = 〈λi|ô|λi〉. With this

definition, one finds that

〈n′λ1 , n′λ2 , . . . |Ô1|nλ1 , nλ2 , . . .〉 =
∑
i

oλinλi〈n′λ1 , n′λ2 , . . . |nλ1 , nλ2 , . . .〉

= 〈n′λ1 , n′λ2 , . . . |
∑
i

oλin̂λi |nλ1 , nλ2 , . . .〉.

Since this equality holds for any set of states, one can infer the second quantized repre-
sentation of the operator Ô1,

Ô1 =
∞∑
λ=0

oλn̂λ =
∞∑
λ=0

〈λ|ô|λ〉a†λaλ.

The result is straightforward: a one-body operator engages a single particle at a time –
the others are just spectators. In the diagonal representation, one simply counts the
number of particles in a state λ and multiplies by the corresponding eigenvalue of the
one-body operator. Finally, by transforming from the diagonal representation to a general
basis, one obtains the general result,

Ô1 =
∑
µν

〈µ|ô|ν〉a†µaν . (2.14)

To cement these ideas, let us consider some specific examples: representing the matrix
elements of the single-particle spin operator as (Si)αα′ = 1

2
(σi)αα′ , where α, α′ is a two-

component spin index and σi are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.15)

the spin operator of a many-body system assumes the form

Ŝ =
∑
λ

a†λα′Sα′αaλα. (2.16)

(Here, λ denotes the set of additional quantum numbers, e.g. a lattice site index.) When sec-
ond quantized in the position representation, one can show that the one-body Hamiltonian
for a free particle is given as a sum of kinetic and potential energy as

Ĥ =

∫
ddr a†(r)

[
p̂2

2m
+ V (r)

]
a(r), (2.17)

where p̂ = −i~∂.
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EXERCISE Starting with momentum representation (in which the kinetic energy is diagonal),

transform to the position representation and thereby establish Eq. (2.17).

The local density operator ρ̂(r), measuring the particle density at a certain coordinate r, is
simply given by

ρ̂(r) = a†(r)a(r). (2.18)

Finally, the total occupation number operator, obtained by integrating over the particle
density, is defined by N̂ =

∫
ddr a†(r)a(r). In a theory with discrete quantum numbers, this

operator assumes the form N̂ =
∑

λ a
†
λaλ.

. Representation of operators (two-body): Two-body operators Ô2 are needed to
describe pairwise interactions between particles. Although pair-interaction potentials
are straightforwardly included in classical many-body theories, their embedding into
conventional many-body quantum mechanics is made cumbersome by particle indistin-
guishability. The formulation of interaction processes within the language of second
quantization is considerably more straightforward:

Initially, let us consider particles subject to the symmetric two-body potential V (rm, rn) ≡
V (rn, rm) between two particles at position rm and rn. Our aim is to find an operator
V̂ in second quantized form whose action on a many-body state gives (presently, it is
more convenient to use the original representation Eq. (2.3) rather than the occupation
number representation)

V̂ |r1, r2, . . . rN〉 =
N∑

n<m

V (rn, rm)|r1, r2, . . . rN〉 =
1

2

N∑
n6=m

V (rn, rm)|r1, r2, . . . rN〉.

When this is compared with the one-point function, one might immediately guess that

V̂ =
1

2

∫
ddr

∫
ddr′a†(r)a†(r′)V (r, r′)a(r′)a(r). (2.19)

That this is the correct answer can be confirmed by applying the operator to a many-body
state:

a†(r)a†(r′)a(r′)a(r)|r1, r2, . . . , rN〉 = a†(r)a†(r′)a(r′)a(r)a†(r1) · · · a†(rN)|0〉

=
N∑
n=1

ζn−1δ(r− rn)a†(rn)

ρ̂(r′)︷ ︸︸ ︷
a†(r′)a(r′) a†(r1) · · · a†(rn−1)a†(rn+1) · · · a†(rN)|0〉

=
N∑
n=1

ζn−1δ(r− rn)
N∑

m(6=n)

δ(r′ − rm)a†(rn)a†(r1) · · · a†(rn−1)a†(rn+1) · · · a†(rN)|0〉

=
N∑

n,m 6=n

δ(r− rn)δ(r′ − rm)|r1, r2, · · · rN〉.
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Multiplying by V (r, r′)/2, and integrating over r and r′, one confirms the validity of the
expression. It is left as an exercise to confirm that the naive expression 1

2

∫
ddr
∫
ddr′V (r, r′)ρ̂(r)ρ̂(r′)

does not reproduce the two-body operator. More generally, turning to a non-diagonal
basis, it is straightforward to confirm that a general two-body operator can be expressed
in the form

Ô2 =
∑
λλ′µµ′

Oµ,µ′,λ,λ′a†µa†µ′aλaλ′ , (2.20)

where Oµ,µ′,λ,λ′ ≡ 〈µ, µ′|Ô2|λ, λ′〉.
As well as the pairwise Coulomb interaction formulated above, another important
interaction, frequently encountered in problems of quantum magnetism, is the spin–
spin interaction. From our discussion of the second-quantized representation of spin
Ŝ above, we can infer that the general spin–spin interaction can be presented in second-
quantized form as

V̂ =
1

2

∫
ddr

∫
ddr′

∑
αα′ββ′

J(r, r′)Sαβ · Sα′β′a†α(r)a†α′(r
′)aβ′(r

′)aβ(r),

where J(r, r′) denotes the exchange interaction.

In principle, one may proceed in the same manner and represent general n-body inter-
actions in terms of second-quantized operators. However, as n > 2 interactions appear
infrequently, we refer to the literature for discussion.

. Interaction representation: second quantization unfolds its true power in problems
with particle interactions (usually described by operators quartic in creation/annihilation
operators.) Formally, one may split an interacting Hamiltonian as Ĥ = Ĥ0 +Ĥint, where
Ĥ0 is a one-body operator. Often, it will be convenient to approach such problems
in the interaction representation, wherein operators dynamically evolve under the free
Hamiltonian Ĥ0:

aµ → eiĤ0taµe
−iĤ0t,

a†µ → eiĤ0ta†µe
−iĤ0t.

The interaction representation assumes a particularly simple form in the eigenbasis of
Ĥ0. Assume, we had diagonalized Ĥ0 as

Ĥ0 =
∑
a

a†aaaεa,

where εa are the single particle energies of the problem. The commutation relation
[a†aaa, ab] = −δab then readily leads to the result (prove it!)

aa → e−iεataa,

a†a → eiεata†a. (2.21)
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This completes our formal introduction to the method of second quantization. To develop
fluency in the operation of the method, we will continue by addressing a few problems chosen
from the realm of condensed matter and quantum optics. In doing so, we will see that second
quantization can lead to considerable simplification of the analysis of many-particle systems.

2.2 Applications of second quantization

Second quantization is the standard approach to tackling problems in many body physics.
However it has to be kept in mind that second quantization is but a reformulation of many
particle quantum mechanics, it doesn’t solve problems by it’s own. Indeed, problems in many
particle physics tend to be notoriously difficult to solve and cases of exact solvability are
previously few.

In view of this general situation, we aim to demonstrate how second quantization can be
applied to bring a number of prototype problems of many body quantum mechanics into a form
that supports intuition and is optimally adjusted to further analytical or numerical processing.
Examples we will mention include plasma Hamiltonians, the Hamiltonian of electrons bound
to atoms, and the quantization of the electromagnetic field.

2.2.1 Second quantized model Hamiltonians: two examples

In this short section we discuss two repre-
sentatives of second quantized Hamiltonians.
At this point, the examples mainly serve illus-
trative purposes. However, later in the text,
we will apply the model Hamiltonians below
in some applications of the formalism.

Fermionic plasma

A (Coulomb) plasma is a system of charged
(and hence Coulomb-interacting) particles in
a gaseous phase. By way of example, we
here consider a plasma of identical and spin-
ful fermions. We assume the fermions to be
embedded into a uniform positively charged substrate, so that electro-neutrality of the total
system is maintained.

Characterizing the state of each fermion in terms of a momentum quantum number k and
a spin variable σ =↑, ↓, the kinetics of the fermion system is described by the Hamiltonian

Ĥ0 =
∑
k,σ

a†σ(k)

(
k2

2m
− µ

)
aσ(k),
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where we have included a chemical potential in the definition of Ĥ0. To this Hamiltonian, we
might now add the interaction term (2.19). However, in view of the fact that the free kinetic
term assumes a diagonal form in the momentum representation, it is favorable to express the
interaction in a momentum representation, too. To this end, notice that

V (r) =

∫
d3k

(2π)3
eiq·xV (q), V (q) =

e2

|q|2

is the Fourier transform of the Coulomb potential V (r) = e2

4π
1
r
. Using this result, an application

of the transform identities (2.12) readily gets us to the representation

V̂ =
1

2

∫
d3kd3k′d3q a†σ(k)a†σ′(k

′)V (q)aσ′(k
′ + q)aσ(k− q). (2.22)

To the plasma Hamiltonian Ĥ = Ĥ0 + V̂ one would need to add an electron-substrate in-
teraction to ensure the overall neutrality of the system (think how you would describe this
contribution in second quantization.) However, this term does significantly affect the dynam-
ics of the system (why?) and is usually kept implicit in the notation.

Multi electron atoms

Consider an atom, either in isolation or embedded into the crystalline matrix of a solid. Assume
you have managed to compute the electronic eigenstates |ψa,σ〉 describing the shell structure
of the system, where a = (n, l,m) comprises principal and angular momentum quantum
numbers, and σ is spin as above. The Hamiltonian describing the system of noninteracting
shell electrons then reads

Ĥ0 =
∑
a,σ

a†a,σ(εa − µ)aa,σ, (2.23)

where we assumed spin-degeneracy of the atomic energy levels εa. To this Hamiltonian, one
might now add an interaction contribution (2.20), where µ = (a, σ) would comprise orbital
and spin quantum numbers, and Oµµ′,λλ′ would be the matrix elements of the electron-electron
interaction in the basis of the orbital wave functions. In general, the diagonalization of the
interacting generalization of the atom Hamiltonian represents a formidable task, which requires
the application of numerical methods. The realistic modeling of an atom would also require
inclusion of a spin-orbit fine structure interaction, and of hyperfine interactions. However, the
discussion of these complications are beyond the scope of the present text. (Readers familiar
with the concept of fine structure interactions may want to think about the modeling of these
interactions in the language of second quantization.)

INFO The Hamiltonians discussed above represent limiting cases of a more general solid state
Hamiltonian. To understand this, consider the one-dimensional cartoon of a solid shown in the
figure. The solid is formed by a crystalline array of atoms, each comprising electrons subject to the
attractive potential of a positively charged ion core. The behavior of individual electrons crucially
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depends on whether we are dealing with a ’core’ electron buried in the inner shells of the atom’s
central potential, or a ’nearly free’ outer shell electron.

Elements of the groups I-IV of the periodic table contain s or p wave electrons outside a closed

noble gas shell. Due to the relatively large separation from the nucleus, and the screening of the

nuclear potential by core electrons, the outer electrons experience only a moderate core potential

– they behave as ’nearly free’ itinerant electrons. In such systems, the residual interaction of

the electrons with lattice potential can be described by representing the former in a basis of

so-called Bloch functions. However, in many cases of interest, Bloch functions effectively behave

similar to momentum eigenstates and the plasma Hamiltonian above makes for a good description.

Conversely, many aspects of the physical properties of inner shell solid state electron (bands) are

captured by atomic model Hamiltonians, where corrections due to the interaction between adjacent

atoms are described by so-called tight-binding Hamiltonians. The discussion of the ensuing physical

phenomena is the subject of solid state theory, where the methods of second quantization are

pervasive.

2.2.2 Quantization of the electromagnetic field

The goal of this section is to ’quantize’ the electromagnetic field. We will see that a canonical
quantization procedure applied to the Hamiltonian of the electromagnetic field gets us to a
representation of the field in terms of a superposition of quantum harmonic oscillators. The
quanta of these oscillators – cf. the discussion of section 2 – will then be identified as photons,
i.e. the quantum constituents of the electromagnetic field.

Rather than addressing the photon field in full generality, we will here consider photons
propagating in a wave guide, a simpler setup that, nonetheless, enjoys great importance in
applications.

Lagrangian of an electromagnetic waveguide

To quantize the electromagnetic field, we need to identify its ’coordinates’ and ’momenta’, i.e.
canonical classical variables for which quantum commutation relations can ge identified. While
the structure of the Hamiltonian action of the field – i.e. a functional comprising coordinates
and momenta – may not be entirely obvious, we may use its ally, the Lagrangian action as a
starting point.

In the absence of currents, the Lagrangian action of the electromagnetic field is given
by

S[A] =
1

4

∫
d4xFµνF

µν ,

where F = {Fµν} with Fµν = ∂µAν −∂νAµ is the field strength tensor, A = {Aµ} = (A0,A)
the electromagnetic potential, and an Einstein summation convention is implied: fµg

µ ≡
f0g0 −

∑3
i=1 figi where µ = 0 and µ = i = 1, 2, 3 are time and space like components, resp.

It would be tempting to think of Aµ(x, t) as the ’coordinates’ and ∂0Aµ(x, t) as generalized
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’velocities’ of the Lagrangian action S[A].
8

However, this view is premature in that it ignores
the presence of gauge constraints to be imposed on the potential A.

Presently, it will be convenient to employ the Coulomb gauge, ∇·A = 0, A0 = 0. (Within
the framework of Lagrangian mechanics, ∇ · A(x, t) = 0 has the status of a holonomic
constraint imposed on the variables A = {Ai}.) It is straightforward to verify that in this
representation the action assumes the form

S[A] =

∫
dt L[A, ∂tA],

L[A, ∂tA] =
1

2

∫
d3x

[
(∂tA)2 + A ·∆A

]
. (2.24)

Progress with this expression can be made, if we expand vector valued functions A in terms
of eigenfunctions of the Laplace operator, ∆, i.e. we consider an ansatz

A(x, t) =
∑
k

αk(t)Rk(x), (2.25)

where
−∆Rk(x) = λkRk(x), ∇ ·Rk(x) = 0. (2.26)

Here, λk ∈ R are the eigenvalues and k is an index. The second equation in the equation above
satisfies the gauge condition ∇ · A = 0. Thanks to the completeness of the eigenfunctions
of the Laplace operator, we may then adopt the time dependent coefficients αk as the new
coordinates of the problem.

9

For general geometries, the solution of Eq. (2.26) is made cumbersome by the presence
of the gauge constraint. We may circumvent these difficulties by considering cases where the
geometry of the system reduces the complexity of the eigenvalue problem. This restriction is
less artificial than it might appear. For example, in anisotropic electromagnetic waveguides,
the solutions of the eigenvalue equation can be formulated as

10
where k = ke, k ∈ R becomes

8

Beware of a possible source of confusion: within the framework of Lagrangian mechanics, we are accus-
tomed to using the symbol ’x’ for the coordinates (of a point particle.) However, the action S[A] defines a
system of continuum Lagrangian mechanics, and here ’x’ plays an altogether different role: the coordinates
of the problem are Aµ(x) and x assumes the role of an index. (Much like the index ’i’ of a multi-dimensional
generalized coordinate q = {qi} Lagrangian mechanics.) There are ’infinitely many’ different values of x,
i.e. we are dealing with an infinite dimensional generalization of finite dimensional Lagrangian mechanics.
It is always possible to stir back towards the more familiar territory of the finite dimensional framework by
introducing a lattice discretization x → xi, i ∈ (some finite index space), whence Aµ(x) → Aµ(xi) ≡ Aµ,i
becomes a finite dimensional object.

9

The rational behind this reasoning: if you have a problem where functions f(x), x ∈ U ⊂ Rn play the role
of coordinates (again, you may find it helpful to think of f(x) in terms of the continuum limit of a coordinate
’vector’ f(xi) ≡ fi obtained by discretization of U), and {gk}, k ∈ X, where X is some index space, is a
complete set of functions in U , you may expand f =

∑
k∈X αkgk. Since any function can be represented in

this way, the set {αk|k ∈ X} carries the same information as the set {f(x)|x ∈ U}. In practice, αk may be
Fourier transform coefficients, the coefficients of angular momentum eigenfunctions, or else.

10

More precisely, one should say that Eq. (2.26) defines the set of eigenfunctions relevant for the low-energy
dynamics of the waveguide. More-complex eigenfunctions of the Laplace operator exist but they carry much
higher energy.
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Figure 2.2: EM waveguide with rectangular cross-section. The structure of the eigenmodes of
the EM field is determined by boundary conditions at the walls of the cavity.

a one-dimensional index and e is a unit vector along the extended axis of the system. The
vector-valued functions Rk can be chosen real and orthonormalized,

∫
Rk ·Rk′ = δkk′ . The

dependence of the eigenvalues λk on k depends on details of the geometry (see Eq. (2.28)
below) and need not be specified for the moment.

INFO An electromagnetic waveguide is a quasi-one-dimensional cavity with metallic boundaries
(see Fig. 2.2). The practical advantage of waveguides is that they are good at confining EM waves.
At large frequencies, where the wavelengths are of order meters or less, radiation loss in conventional
conductors is high. In these frequency domains, hollow conductors provide the only practical way
of transmitting radiation.
EM field propagation inside a waveguide is constrained by boundary conditions. Assuming the
walls of the system to be perfectly conducting,

E‖(xb) = 0, B⊥(xb) = 0, (2.27)

where xb is a point at the system boundary and E‖ (B⊥) is the parallel (perpendicular) component
of the electric (magnetic) field.
For concreteness, returning to the problem of field quantization, let us consider a cavity with
uniform rectangular cross-section Ly×Lz. To conveniently represent the Lagrangian of the system,
we wish to express the vector potential in terms of eigenfunctions Rk that are consistent with the
boundary conditions (2.27). A complete set of functions fulfilling this condition is given by

Rk = Nk

c1 cos(kxx) sin(kyy) sin(kzz)
c2 sin(kxx) cos(kyy) sin(kzz)
c3 sin(kxx) sin(kyy) cos(kzz)

 .

Here, ki = niπ/Li, ni ∈ N, i = x, y, z, Nk is a factor normalizing Rk to unit modulus, and the
coefficients ci are subject to the condition c1kx + c2ky + c3kz = 0. Indeed, it is straightforward
to verify that a general superposition of the type A(x, t) ≡∑k αk(t)Rk(x), αk(t) ∈ R, is diver-
genceless, and generates an EM field compatible with (2.27). Substitution of Rk into Eq. (2.26)
identifies the eigenvalues as λk = k2

x + k2
y + k2

z . In the physics and electronic engineering liter-
ature, eigenfunctions of the Laplace operator in a quasi-one-dimensional geometry are commonly
described as modes. As we will see shortly, the energy of a mode (i.e. the Hamiltonian evaluated
on a specific mode configuration) grows with |λk|. In cases where one is interested in the low-
energy dynamics of the EM field, only configurations with small |λk| are relevant. For example, let
us consider a massively anisotropic waveguide with Lz < Ly � Lx. In this case the modes with
smallest |λk| are those with kz = 0, ky = π/Ly, and kx ≡ k � L−1

z,y. (Why is it not possible to
set both ky and kz to zero?) With this choice,

λk = k2 +

(
π

Ly

)2

, (2.28)
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and a scalar index k suffices to label both eigenvalues and eigenfunctions Rk. A caricature of

the spatial structure of the functions Rk is shown in Fig. 2.2. The dynamical properties of these

configurations will be discussed in the text.

We may now proceed to expand the vector potential in terms of eigenfunctions Rk as A(x, t) =∑
k αk(t)Rk(x), where the sum runs over all allowed values of the index parameter k. (In a

waveguide, k = πn/L, n ∈ N, where L is the length of the guide.) Substituting this expansion
into Eq. (2.24) and using the normalization properties of Rk, we obtain,

L(α, ∂tα) =
1

2

∑
k

(
α̇2
k − λkα2

k

)
i.e. a decoupled representation where the system is described in terms of independent dynam-
ical systems with coordinates αk.

Quantization

From this point on, quantization proceeds along the lines of the standard algorithm. Firstly,
define momenta through the relation πk = ∂α̇kL = α̇k. This produces the Hamiltonian
H(α, π) = 1

2

∑
k (πkπk + λkαkαk). Notice that H is a sum over independent harmonic

oscillators, one for each value of k. Next quantize the theory by promoting fields to operators
αk → α̂k and πk → π̂k, and declaring [π̂k, α̂k′ ] = −iδkk′ . The quantum harmonic oscillator
Hamiltonian then reads

Ĥ =
1

2

∑
k

(
π̂kπ̂k + ω2

kα̂kα̂k
)
,

where ω2
k = λk. Following the same logic as marshaled in Section 2, we then define ladder

operators bk ≡
√

ωk
2

(α̂k+ i
ωk
π̂k), b†k ≡

√
ωk
2

(α̂k− i
ωk
π̂k), whereupon the Hamiltonian assumes

the now familiar form

Ĥ =
∑
k

ωk

(
b†kbk +

1

2

)
. (2.29)

For the specific problem of the first excited mode in a waveguide of width Ly, ωk = [k2 + (π/Ly)
2]

1/2
.

Equation (2.29) represents our final result for the quantum Hamiltonian of the EM waveguide.
Before concluding this section let us make a few comments on the structure of the result:

. That we obtained a simple one-dimensional superposition of oscillators is due to the
boundary conditions specific to a narrow waveguide. For less restrictive geometries,
e.g. free space, a more complex superposition of vectorial degrees of freedom in three-
dimensional space would have been obtained. However, the principal mapping of the
free EM field onto a superposition of oscillators is independent of geometry.

. Physically, the quantum excitations described by Eq. (2.29) are, of course, the photons
of the EM field. The unfamiliar appearance of the dispersion relation ωk is again a
peculiarity of the waveguide. However, in the limit of large longitudinal wave numbers
k � L−1

y , the dispersion approaches ωk ∼ |k|, i.e. the relativistic dispersion of the
photon field.
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. The oscillators described by Eq. (2.29) exhibit zero-point fluctuations. It is a fascinating
aspect of quantum electrodynamics that these oscillations, caused by quantization of
the most relativistic field, surface at various points of non-relativistic physics. Examples
include the Casimir effects, or the physics of van der Waals forces. For the discussion
of these phenomena, we refer to the literature.

2.2.3 Atom-field Hamiltonian

The examples discussed thus far, all have in common that they were described by theories
quadratic in the field operators. Such theories are termed free theories. They are free, in the
sense that their solution is reducible to the solution of a single particle Schrödinger equation.
The situation gets infinitely more complicated, and physically rewarding, the moment terms
of higher order (third and beyond), in field operators appear. Theories of this type are called
interacting theories, or nonlinear theories. There are only preciously few examples of exactly
solvable interacting theories, in most cases one has to resort to approximation strategies.
Primarily to illustrate the efficiency of second quantized formulations, we here discuss a simple
case of two nonlinearly coupled free systems.

In first quantized language, the Hamiltonian describing the interaction between a single
electron and an electromagnetic field is given by

Ĥ =
1

2m
(p̂− Â)2 + V̂ + ĤF,

where we have set the electron charge to unity, V̂ represents a static potential, ĤF is the
Hamiltonian of the electromagnetic field, and we assume a Coulomb gauge, A = (0,A)
for the dynamic parts of the Coulomb field. Hamiltonians of this structure can describe,
e.g., the interaction of atomic shell electrons with an external field (V̂ =core potential), or
the interaction of electrons inside a cavity with a field confined to the cavity (V̂ =boundary
potential). The corresponding many electron system is obtained by upgrading the electronic
Hamiltonian to the second quantized operator (2.17), i.e.

Ĥ =

∫
d3r a†(r)

(
1

2m
(p̂− Â)2 + V̂

)
a(r) + ĤF,

where we consider spinless electrons for simplicity. We now split the Hamiltonian into three
contributions

Ĥ ' Ĥe + ĤI + ĤF, (2.30)

where

Ĥe =

∫
d3r a†(r)

(
1

2m
p̂2 + V̂

)
a(r),

ĤI = − 1

2m

∫
d3r a†(r)(Â · p̂ + p̂ ·A) a(r),
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and we ignored the A2-contribution to the field-electron coupling Hamiltonian ĤI.
Let us now consider the case where He models an atomic Hamiltonian. In this case, it will

be appropriate to expand in a basis of atomic eigenfunctions (cf. Eq. (2.23)),

Ĥe =
∑
a

a†a(εa − µ)aa, (2.31)

where, again, we ignore spin. According to the general transformation rule (2.10),

aa =

∫
d3r ψa(r)a(r), a(r) =

∑
a

ψa(r)aa,

where ψa is the ath atomic eigenfunction. Similarly, we expand the vector potential in a basis
of vector-valued eigenfunctions of the Laplacian (cf. Eq. (2.25)),

Â(x) =
∑
k

α̂kRk(x) =

=
∑
k

1√
2ωk

(bk + b†k)Rk(x),

where in the second line, we denoted the oscillator operators of the electromagnetic field (cf.
Eq. (2.29)) by bk. In this representation

ĤF =
∑
k

ωk

(
b†kbk +

1

2

)
, (2.32)

becomes a sum over oscillator modes.
We next substitute the operator representations of (aa, bk) into the interaction Hamiltonian

to obtain

HI =

∫
d3r

∑
a,b,k

(−i)
2m
√

2ωk

ψa(r)(∂rRk(r) +Rk(r)∂r)ψb(r)) a
†
aab(bk + b†k) '

'
∑
a,b,k

Rk(0)

m
√

2ωk

a†aab(bk + b†k)

∫
d3r ψa(r)(−i∂r)ψb(r) =

=
∑
a,b,k

Rk(0)

m
√

2ωk

a†aab(bk + b†k)〈a|p̂|b〉 =

=
∑
a,b,k

ga,b,k a
†
aab(bk + b†k), (2.33)

where

ga,b,k ≡ −i
(εb − εa)√

2ωk

Rk(0)〈a|x̂|b〉,

is the so-called dipole matrix element. In the crucial second equality above, we used
that for radiation energies resonant with intra-atomic transitions, electromagnetic wavelengths
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λ ∼ 10−7m are about three orders of magnitude larger than the characteristic extension
of atoms ∼ 10−10m. Thus, Rk(r) is approximately constant across the atom and can be
replaced by the amplitude Rk(0) at the atom’s center. In the last equality we used 〈a|p|b〉 =
im〈a|[Ĥ, x̂]|b〉 = im(εa − εb)〈a|x̂|b〉.

2.2.4 Rabi oscillations

The Hamiltonian defined by Eqs. (2.30), (2.31) (2.32), and (2.33) provides the formal basis
for the description of many light/matter interaction phenomena. For example, the quantum
theory of the laser can be formulated in this description. In this section, we will explore
the physics of light/matter interaction on a simple phenomenon: when an atom is excited
by a coherent light field, it will cyclically absorb and emit photons. The ensuing oscillatory
emission profiles are called Rabi oscillations. They play a fundamental role in many phenomena
of quantum optics.

Figure 2.3: On the definition of the James-Cummings Hamiltonian. Discussion, see text.

James-Cummings Hamiltonian

To begin with, let us transform the light/matter Hamiltonian to an interaction representation.
Application of (2.21) readily leads to

HI →
∑
a,b,k

ga,b,k a
†
aab e

iεabt(bke
−iωkt + b†ke

iωkt),

where εab = εa − εb. We expect the light-matter interaction to be strongest, if the energy
of the photon modes ωk ' εab is in resonance with inter-atomic energy differences. For
transitions failing this condition, the Hamiltonian HI is rapidly oscillatory in time, which is
a signature of classically forbidden transitions. Let us, then, assume that the system of
atomic energy levels contains two states |a〉 and |b〉 whose energy difference ε ≡ εab is in
resonance with an incoming photon mode, cf. Fig. 2.3. For notational simplicity, we denote
the upper/lower of the resonant levels by |+〉/|−〉, and we drop the index k of the resonant
mode, cf. Fig. 2.3, right. Neglecting all other states, and keeping only contributions where
the energy consuming transition |−〉 → |+〉 absorbs a photon (b), while the energy releasing
transition |+〉 → |−〉 emits a photon (b†) (what is the formal justification of this, so-called
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rotating wave approximation?), we arrive at the simplified Hamiltonian

Ĥ =
ε

2

∑
s=±

sa†sas + ωb†b+
∑
s

(
gei(ε−ω)t a†+a−b+ g∗e−i(ε−ω)t a†−a+b

†
)
,

where, we have defined the chemical potential µ ≡ (εa + εb)/2 to lie in the middle of the two
resonant levels. We defined g ≡ ga,b,k and g∗ = gb,a,k, and we observed that the intra-state
dipole matrix elements ga,a,k = gb,b,k = 0 (why?).

At this point, we may observe that the fermionic Fock space of the reduced problem
decomposes into a trivial sector F0⊕F2 where the two levels are both empty, or both occupied.
In this sector, no transitions are possible, either because there aren’t any particles (F0), or
because of Pauli blocking (F2).

11
The non-trivial space is F1 with its two single occupied

states |−〉 and |+〉. Rather than using the heavy artillery of second quantized operators,
this ordinary two-dimensional Hilbert space is preferably represented in the language of single
particle quantum mechanics. Specifically, we introduce a ’pseudo-spin’ representation

|+〉 ↔
(

1
0

)
, |−〉 ↔

(
0
1

)
.

Within this representation, the second quantized operators spanning the Hamiltonian corre-
spond to

a†+a+ − a†−a− ↔ σ3,

a†+a− ↔ σ+,

a†−a+ ↔ σ−,

where σi are the Pauli matrices defined in (2.15), σ+ = 1
2
(σ1 + iσ2) = ( 0 1

0 0 ), and σ− = σT+.
Assuming perfect resonance conditions, ω = ε, the effective single-mode/two-level Hamiltonian

Ĥ =
ω

2
σ3 + ωωb†b+ gσ+b+ gσ−b

† (2.34)

is known as the James-Cummings Hamiltonian. Here, we assumed the coupling constant
g to be real.

EXERCISE Show that for complex g a gauge transformation can be employed to turn g into a

real constant.

Rabi oscillations

The Hamiltonian (2.34) acts in the product Hilbert space H2 ⊗ F of the two-state space
H2 and the Fock space of the quantized mode, F . However, a moments thought shows

11

Remember that we ignore the electron spin, i.e. our discussion applies to electrons of a fixed spin
polarization.
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that, for any n ∈ N, the Hamiltonian couples only the two states |+, n〉 ≡ |+〉 ⊗ |n〉 and
|−, n+ 1〉 ≡ |−〉 ⊗ |n+ 1〉.

Suppose, we had prepared an atomic excited state |+, n〉. We may then ask for the
probability that the system remains in the upper state, Pn(t) ≡ |〈+, n| exp(−iĤt)|+, n〉|2.
Splitting the Hamiltonian as Ĥ = Ĥ0 + ĤI, where Ĥ0 = ω

2
σ3 + ωb†b, we note that Ĥ0 =

(n + 1
2
)ωI acts trivially in our Hilbert space; it merely generates a phase which does not

affect the probability, i.e. Pn(t) ≡ |〈+, n| exp(−iĤIt)|+, n〉|2. From (2.5), we infer that
ĤI|+, n〉 = g

√
n|−, n + 1〉, i.e. the coupling Hamiltonian affords the matrix representation

ĤI = g
√
nσ1. The identity exp(icσ1) = cos(c)I + i sin(c)σ1 then readily gets us to the result

Pn(t) = cos2(g
√
nt).

These are the celebrated Rabi oscillations. Contrary to naive expectation, an atom prepared
in an excited state does not just ’decay’ into the lower state. Rather, we are met with an
oscillatory pattern of emission and absorption into the photon field.

Coherent states

Now, one may object that the above result for Pn is academic in that it presumes a precisely
determined number of photons, n. But what would be a ’non-academic’ choice of a photon
field? The platonic ideal of a perfectly coherent light source would be of precisely defined
intensity and phase. However, much as with position and momentum of a quantum particle,
intensity and phase of a quantum photon field cannot be simultaneously fixed. To understand
this, notice that the number operator n̂ ≡ b†b is the quantum operator determining the
photon number (↔ intensity) of our light mode. We now define a phase operator, φ̂
through

b = n̂1/2 exp(iφ̂),

b† = exp(−iφ̂)n̂1/2.

EXERCISE Show that the canonical commutation relation [b, b†] = 1 implies [n̂, φ̂] = i.

(Up to a factor of i), the transformation (b, b†)→ (n̂, φ̂) is canonical, i.e. number and phase
operator fully characterize the electromagnetic field.

EXERCISE Trace back the definition of the field constituents (n̂, ρ̂) → (b, b†) → A → (E,B)

to establish a connection between the phase operator and the electric and magnetic field. Explore

how the phase φ determines the phase and polarization of the electromagnetic wave described by

the vector potential. (In doing so, you may treat (n, φ) as classical variables.)

Much like a gaussian wave package minimized the relative quantum uncertainty of coordinate
and momentum of a point particle, we may define quantum states that minimize the relative
uncertainty of intensity and phase of a quantum light field. These states, the so-called co-
herent states define the closest approximation to an optimally defined light field. Without
proof, we state that the coherent states are given by

|α〉 ≡ e−|α|
2/2 exp(αb†)|0〉, (2.35)
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where α ∈ C is a complex number. It is a good exercise to check that the expectation value
of the field intensity in the coherent state is given by 〈α|n̂|α〉 = |α|2. The computation of the
phase expectation value is more tricky. However, it is not difficult to verify that 〈α|b|α〉 = α.
The above definition of the phase operator then shows that 1

2i
ln(α/ᾱ) ' φ, i.e. modulus and

phase of α determine intensity and phase of the coherent state light field.

EXERCISE Prove the relations

〈α|α〉 = 1,

b|α〉 = α|α〉,
〈α|n̂|α〉 = |α|2,
〈α|(n̂− 〈n〉)2|α〉 = |α|2. (2.36)

Collapse and revival

Let us now explore the probability

Pα(t) = |〈+, α|e−iĤt|+, α〉|2

that a state initially prepared as a product state of the excited atomic level and a coherent
light field stays in the excited state |+, α〉 ≡ |+〉 ⊗ |α〉. Using that

|α〉 = e−|α|
2/2

∞∑
n=0

αn

n!
(b†)n|0〉 = e−|α|

2/2

∞∑
n=0

αn

(n!)1/2
|n〉,

and the result obtained in the previous section, we obtain

Pα(t) = e−|α|
2
∞∑
n=0

|α|2n
n!

Pn(t) =

= e−|α|
2
∞∑
n=0

|α|2n
n!

1

2
(1 + cos(2g

√
nt) =

=
1

2

(
1 + e−|α|

2n
∞∑
n=0

|α|2n
n!

cos(2g
√
nt)

)
.
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Unlike with the fictitious case of a fixed pho-
ton number field, we observe a decay of the
excited state, which is modulated by a rapidly
oscillatory pattern. The reason for this is
that we now superimpose oscillatory cosines
of different frequency ∝ √n, which leads to
destructive interference. Eq. (2.36) shows
that the coherent state contains n̄ = |α|2
photons on average, with fluctuations δn ∼√
〈(n− n̄)2〉 = |α|. We expect decay of

the envelope profile for times t2g(
√
n̄+ δn−√

n̄− δn)
n̄�1∼ 2tg ∼ 2π such that the ’uncertainty’ in oscillation frequencies gives rise to a

phase uncertainty 2π. For large photon numbers, this happens for t ∼ π/g. This is illus-
trated in the figure for g = 0.1. Interestingly, however, this is not the end of the story.
As is shown in the inset of the figure, the ’collapse’ of the initial state is followed by its
’revival’ at larger times. To understand this phenomenon, notice that for modes in the in-
terval [[n̄ − δn, n̄ + δn] , the spacing between consecutive discrete frequencies is given by
δω = 2g(

√
n+ 1 − √n) = g√

n
' g√

n̄
. For times t∆ω = k2π ⇒ t = k2π

√
n̄g, all cosines

are approximately in phase and may add to a finite fraction of the initial value. The revival
phenomenon isn’t perfect, because of the spread in frequency spacings which we neglected
and which causes residual decoherence.

A recent observation
12

of a collapse/revival pattern in a
atom-optics setting is shown in the figure. The take-home
message from of this discussion is that the interaction of mat-
ter states with quantum light sources may lead to a wide spec-
trum of phenomena. For coherent irradiation we do not usually
observe a straightforward decay of excited states. Rather, one may be met with oscillations,
or oscillations superimposed by ’beads’. However, the interaction with ’incoherent’ light, i.e.
an uncorrelated superposition of modes of different frequency generally causes the decay of
excited matter states.

2.3 Summary & Outlook

This concludes our preliminary discussion of applications of the second quantization. In this
chapter, we have introduced second quantization as a tool whereby problems of many-body
quantum mechanics can be addressed more efficiently than by the traditional language of
symmetrized many-body wave functions. We have discussed how the two approaches are
related to each other and how the standard operations of quantum mechanics can be performed
by second quantized methods.

12

S. Will, Time-resolved observation of coherent multi-body interactions in quantum phase revivals, Nature
465, 197 (2010).
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One may note that, beyond qualitative discussions, the list of concrete applications en-
countered in this chapter involved problems that either were non-interacting from the outset,
or could be reduced to a solvable problem with a small number of degrees of freedom (the
James-Cummings system). However, we carefully avoided dealing with interacting problems
where no such reductions are possible – the majority by far of the problems encountered in
many particle physics. What can be done in situations where interactions, i.e. operator contri-
butions of fourth or higher order, are present and no tricks can be played? Obtaining answers
to this question is a key challenge in many areas of modern physics — and one beyond the
scope of the present text. However the machinery introduced above leaves you well equipped
to delve into the quantum physics of many particle systems.
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Chapter 3

Relativistic quantum mechanics

In this chapter we aim to reconcile quantum mechanics with the principles of special relativity. We start with a discussion

of the Klein-Gordon equation, the first historic attempt of a relativistic generalization of the Schrödinger equation. We

will run into a number of conceptual problems which motivate the search for alternative formulations, and ultimately

lead to the Dirac equation. We will present two alternative derivations of the Dirac equation, a short and pragmatic one

(Dirac’s original derivation), and a more extended derivation which highlights its true conceptual status. Specifically,

we will understand that the Dirac equation should not actually be interpreted as a relativistic generalization of the

Schrödinger equation. It is far more natural to think of it as a descriptor of a many particle field, the field of relativistic

fermions, and their anti-particles.

3.1 Synopsis of special relativity

Recapitulate the basics of special relativity, notably the postulates of relativity, the physics
of Lorentz transformations, their formal description in terms of the Lorentz group, and the
principles of relativistic mechanics.

3.1.1 Covariant notation

The relativistic extension of quantum mechanics to be discussed below will be formulated in
the co- and contravariant notation of special relativity. We begin this chapter with a brief
reminder of the (largely standard) ’relativistic notation’.

Space-time events are recorded in the contravariant space time vector v = {vµ} ≡
(v0, vi). Greek indices µ = 0, 1, 2, 3 generally index time (µ = 0) and space (µ = 1, 2, 3),
while latin indices i = 1, 2, 3 refer to space. Important examples of contravariant vectors
include the space-time vector x = (ct,x), and the four-momentum vector p = (E/c,p).
The corresponding covariant vector

1 {xµ} is defined by

xµ = gµνx
ν ,

1

An abuse of language. It would be more appropriate to call {xµ} a covariant tensor of rank 1. However
the general denotation ’vector’ for everything that carries four indices has stuck.

73
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where

g = {gµν} =


1
−1

−1
−1

 ,

g is the Minkovski metric and an Einstein summation convention (x...µy
µ... ≡∑3

µ=0 x...µy
µ...)

is implied. Similarly,

xµ = gµνxν ,

where

g = {gµν} =


1
−1

−1
−1

 ,

is the inverse of {gµν}. (In a Minkovski space-time basis, {gµν} is self-inverse.) Derivatives
w.r.t. co- and contravariant vector indices are defined as

∂µ ≡
∂

∂xµ
= (∂0,∇),

∂µ ≡ ∂

∂xµ
= (∂0,−∇),

in terms of which the d’Alambert operator is defined as

� = ∂µ∂
ν =

1

c2
∂2
t −∆.

To simplify the notation, we will set c = 1 throughout.

3.1.2 Lorentz group essentials

The relativistic extension of quantum mechanics below will heavily rely on the postulated
Lorentz invariance of all relevant equations. For later reference, we here summarize the essen-
tial properties of the Lorentz group relevant to the construction of the theory.

The Lorentz group, L, contains all linear transformations Λ : R4 → R4, x 7→ Λx of
Minkovski space, that leave the scalar product g invariant, ΛTgΛ = g. In components,
this is expressed as x′µy

′µ = xµy
µ for Lorentz transformed four-vectors x′µ = Λ ν

µ xν and
yµ = Λµ

νy
ν where Λ = {Λµ

ν} and indices are raised and lowered by metric multiplication,
Λµ

ν = gµµ
′
Λ ν′

µ′ gν′ν , etc. (Recapitulate why L forms a group and not just a set.)
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In many ways, the Lorentz group is similar to the or-
thogonal group O(4), i.e. the set of all transformations
OT I4O = I4 leaving the trivial metric of R4 invariant.
However, there are important differences: first, it is non-
compact, i.e. unlike with the rotation ’angles’ parame-
terizing a rotation group, it cannot be spanned by a set
of compact parameters (see below.) Second it comes
with a richer topology. To understand the latter point,
notice that the relation ΛTgΛ = g implies det(Λ)2 = 1,
or detΛ = ±1. Second, there is no way to continuously
interpolate between a Lorentz matrix with zero-zero el-
ement Λ00 > 0 and one with Λ00 < 0. To see this,
notice that the zero-zero element of the invariance condition reads 1 = g00 = (ΛTgΛ)00 =
(Λ00)2−∑i(Λ0i)

2. This condition can only be satisfied for non-vanishing Λ00, i.e. Λ00 cannot

be tuned through zero. We thus conclude that L = L↑+∪L↓+∪L↑−∪L↓− decomposes into four
disjoint subsets defined by

L↑+ : det Λ = +1, Λ00 ≥ +1,

L↓+ : det Λ = +1, Λ00 ≤ −1,

L↑− : det Λ = −1, Λ00 > +1,

L↓− : det Λ = −1, Λ00 ≤ −1.

(3.1)

Of these, only L↑+ forms a subgroup (why?), in particular it contains the unit element I4 ∈
L↑+ ⊂ L. The component L↑+ is called the restricted Lorentz group. The remaining three
components accomodate Lorentz transformations which cannot be continuously deformed to
unity. Specifically, the time reversal operation T : (t,x) 7→ (−t,x) belongs to L−↓ , parity,

T : (t,x) 7→ (t,−x) belongs to L−↑ , and the product of the two, PT to L+
↓ .

In the mathematical literature the Lorentz group is commonly denoted O(1, 3), i.e. the
group of ’orthogonal’ transformations leaving a metric of signature (+,−,−,−) invariant, the
unit-determinant sector L+ = L↑+∪L↓+ is called SO(1, 3), and the proper Lorentz group L↑+ is
denoted SO+(1, 3). Let us parameterize proper Lorentz transformations as SO+(1, 3) 3 Λ ≡
exp(T ), where T ∈ so+(1, 3) belongs to the Lie algebra so+(1, 3). It is straightforward to
verify that the condition ΛTgΛ = γ requires T Tg = −gT .

Much like the Lie algebra, so(3), of the three-dimensional rotation group SO(3) is spanned
by three linearly independent generators, Ĵ1,2,3, of rotations around the three coordinate axes
(given explicitly in Eq. (3.11) below), the algebra so(1, 3) has six linearly independent gener-
ators Ĵ1,2,3 and K̂1,2,3. These are given by

Ĵi =

(
0 0

0 Ĵi

)
, K̂i =

(
0 eTi
ei 03

)
. (3.2)
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x3

x3

x2
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K ′

K

Here, Ĵi generate rotations of three dimensional space, a
Lorentz transformation which we again represent by the
symbol Ĵi.

2
The matrices K̂i contain a unit vector ei in

the 3×1 dimensional space-time sector and its transpose
in the 1 × 3 dimensional time-space sector. Physically,
these matrices generate Lorentz boosts along the i-
axis, as can be seen by straightforward exponentiation.
E.g.

Λ = exp(φK̂1) =


cosh(φ) sinh(φ) 0 0
sinh(φ) cosh(φ) 0 0

0 0 1 0
0 0 0 1

 , (3.3)

represents the Lorentz transformation (cf. the top panel
of the figure) x′ = Λx, with

x0′ = γ(x0 + βx1), x1′ = γ(βx0 + x1), x2′ = x2, x3′ = x3,

where β ≡ v/c and

γ =
1√

1− β2
= cosh(φ). (3.4)

Lorentz boosts along arbitrary vectors v = {vi} (bottom panel) are generated by appropriate
linear combinations of generators, viK̂i.

It is a straightforward exercise to work out the so(3, 1)–commutation relations

[Ĵi, Ĵj] = εijkĴk,

[K̂i, K̂j] = εijkĴk,

[Ĵi, K̂j] = −εijkK̂k. (3.5)

Notice that the pure Lorentz transformations (generated by the K̂’s) do not form a group.
This means that sequences of non-colinear Lorentz boosts necessarily involve a rotation of
space, an effect that is at the root of the physical phenomenon of Thomas precession.

Finally, notice that the Lorentz group is non-compact, i.e. unlike with the rotation
group it cannot be spanned by a compact (closed and bounded) set of parameters. For
example, the variable φ used to parameterize the Lorentz boost above runs over the entire
real axis.

2

I.e. the generator Ĵi in (3.2) is a 4× 4 matrix containing the three dimensional rotation generator Ĵi as
its 3× 3 spatial block.
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3.2 Klein-Gordon equation

After this preparation, we now set out to ’quantize’ relativistic mechanics. To this end, let
us recall the algorithm of quantizing the non-relativistic theory: i) write down a ’dispersion
relation’, E−H = 0, where H = p2/(2m) is kinetic energy, ii) upgrade to operators, E → i∂t,
p → −i∂x, iii) define wave functions through (i∂t + 1

2m
∆)ψ = 0. Let us now transfer this

procedure to the relativistic setting. We start from the relativistic dispersion relation

E2 − p2 = m2,

and upgrade to operators as in ii) above. Denoting the relativistic wave function by φ = φ(x),
we are led to the equation (∂2

t −∆ +m2)φ = 0, or

(�+m2)φ = 0. (3.6)

This is the celebrated Klein-Gordon equation. The Klein-Gordon equation beautifully em-
bodies the principle of relativistic invariance. However, on second thought, we may wonder if it
really is the equation we have been looking for. First, the Klein-Gordon operator (�+m2) dif-
fers from the Schrödinger operator in that it carries dimension (energy)2, and not just energy.
It is, thus, not an equation trivially reducing to the Schrödinger equation in the non-relativistic
limit p2/2m� m.

INFO One might get the idea to take the ’square root’ of the Klein-Gordon equation, i.e.
E = ±

√
p2 +m2, or (i∂t∓

√
−∆ +m2)ψ = 0. Then, however, we need to decide which solution

to pick, the one with positive, or with negative energy. We might decide to discard the negative
energy solutions ’on physical grounds’. But can we really? Second, the equation is now of infinite
order in the differential operator ∆. Only in the non-relativistic limit does the positive energy
branch reduce to the Schrödinger (!) equation i∂tψ ' (m − 1

2m∆)ψ, where m = mc2 plays the
role of the rest frame energy. In general, however, an infinite order equation hardly seems to be a
viable option.

The above difficulties notwithstanding, the idea of ’taking the square root’ was attractive enough;

it formed the historic basis of Dirac’s extension of the Klein-Gordon approach, to be discussed

below.

Irritatingly, the E2-problem is not the only difficulty we meet with the Klein-Gordon equa-
tion: according to the general principles of quantum mechanics, the correspondence p̂↔ −i∇
leads to the interpretation of j ≡ 1

2mi

(
φ̄∇φ− φ∇φ̄

)
as a current density. As it is our top pri-

ority to stay relativistically covariant, we are then forced to introduce j0 ≡ 1
2mi

(
φ̄∂0φ− φ∂0φ̄

)
as the corresponding 0-component, so that we obtain

jµ =
1

2mi

(
φ̄∂µφ− φ∂µφ̄

)
, (3.7)

as the quantum mechanical four current. In line with the interpretation of the spatial
components ji as currents, we think of j0 as a component describing particle densities. Indeed,
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it is easy to verify that for φ a solution of the Klein-Gordon equation jµ obeys a continuity
equation,

∂µjµ = 0, (3.8)

much like the density ρ = ψ̄ψ and current j = 1
2mi

(ψ̄∇ψ − ψ∇ψ̄) carried by solutions ψ of
the non-relativistic Schrödinger equation obey one (recall this point.)

So far everything looks good. The problems start when we realize that unlike with the non-
relativistic ρ, the relativistic ’density’ j0 is not positive definite! The Klein-Gordon equation
is second order in time, which means that both φ and ∂tφ can be chosen arbitrarily as initial
conditions. Pick positive φ and negative ∂tφ and you obtain a negative ’density’ j0. How do we
interpret this phenomenon? One option follows from the observation that non-trivial solutions
φ must be complex (for for real φ both density and current are trivially zero.) Now recall
that in the quantum mechanics of charged particles, gauge transformations Aµ → Aµ + ∂µφ
act on wave functions as ψ → exp(iφ)ψ. In other words, charge requires complexity of wave
functions, too. This observation suggests an interpretation of the relativistic jµ as a charge
current, as opposed to a mere particle or probability current. Within this interpretation,
negative j0, i.e. negative electric charge density, creates much less of a headache. Still we are
left with a feeling of uneasiness: the charge interpretation seems vague, at this point. And
even if it holds, it is irritating that the theory forces us to introduce negative charge states
(for whatever they describe) along with positive ones.
The bottom line of the discussion above is that the relativistic extension comes at the prize of
’negative solutions’ – negative in energy, or negative in density – bullying their way into the
theory. We will soon understand that these solutions anticipate the physics of anti-particles,
i.e. partners negative in energy and charge relative to the original particles. While these states
remain hidden in the non-relativistic setting, we have to introduce them once we go relativistic.

3.3 Dirac equation

The Dirac equation is relativistic equation carrying physical dimension (energy)1. In this re-
spect, it may be thought of as a ’square root’ of the Klein-Gordon equation. However, in
contradistinction to the naive square root discussed above, it is of first (and not infinite) order
in derivatives. Heuristically, this first order-ness embodies the linear dispersion characteristic
for theories at the ultra-relativistic limite: the law E ∼ (cp)2 (Klein-Gordon) gets replaced by
E ∼ (cp) (Dirac). But how is the construction of an effective first order equation achieved
in practice? There are different routes to this end. The most direct one is Dirac’s historic
construction, reviewed in the majority of textbooks on the subject, and briefly sketched below
for the convenience of the reader. While Dirac’s approach is concise and very much to the
point, it may feel a bit ’ad hoc’ to some. Certainly, it doesn’t give one much physical insight.
The opposite extreme would be a representation-theory oriented approach, which deduces the
structure of the linear evolution equation hierarchically, outgoing from the known transfor-
mation behavior of contravariant vectors under Lorentz transformations. This formulation
(reviewed in many textbooks of mathematical physics) does provide insight into the structure
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of the theory, but this comes at the price of an extended construction. We will here try to
follow a ’middle way’, which emphasizes symmetry under transformations (the most important
principle of relativity, after all), but dispenses with mathematical rigor. Although this approach,
too, has its shortcomings, it compromises between efficiency and physical transparency, which
may be appropriate for this text.

3.3.1 Rotation invariance: SU(2)–SO(3) correspondence

Unlike with the Klein-Gordon equation (or the Schrödinger equation for that matter), the
formulation of Dirac equation necessitates the presence of spin. It turns out that the intimate
relation between linearity of the dispersion, (relativistic) invariance, and spin finds a precursor
within the more familiar context of non-relativistic quantum mechanics. We will first discuss
this point to then generalize to the relativistic setting.

Consider a fictitious Schrödinger equation governed by the operator Ĥ = Ĥ0 +xil̂i, where
l̂i, i = 1, 2, 3 are the cartesian components of the angular momentum operator, xi are the
three components of a mathematical object whose realization we are to identify, and rotational
invariance is required. Under a rotation, l̂ = {li} transforms as an axial vector. Rotational
invariance of the theory then requires that the components x = {xi} must transform like an
axial vector, too (for then the ’bilinear form’ xil̂i ≡ xT l̂ will stay invariant as required.)

A vector-object x showing the desired ’active’ transformation behavior is realized in the
quantum mechanics of spin: chose xi = σi as Pauli matrices, i.e. generators of SU(2) in
a spin 1/2 representation.

3
Our Hamilton operator now acts in a Hilbert space H ⊗ C2,

where H is the ’orbital’ Hilbert space in which angular momentum acts, and the second factor
accommodates spin.

A rotation of space is mediated by a matrix R̂ ∈ SO(3), which acts on the angular momen-
tum operator as l̂ 7→ R̂l̂, i.e. by matrix multiplication. The Hamilton operator transforms as
Ĥ → ĤR̂ ≡ Ĥ0 + (R̂l̂)T Ĵ . The whole point now is that spinor states transform, too, viz. as

|ψ〉 → Û |ψ〉, where Û ∈ SU(2) is a matrix to be identified momentarily. Rotational invariance
requires expectation values (i.e. the detectable output of the theory) to be independent of the
frame of reference. We thus demand that

〈ψ|Ĥ|ψ〉 !
= 〈(Ûψ)|ĤR̂|Ûψ〉 = 〈ψ|(Û †ĤR̂Û)|ψ〉. (3.9)

Since this is to hold for any |ψ〉, we have the condition U †ĤR̂Û = Ĥ. Substituting the

definition of ĤR̂, we obtain the condition

Û †((R̂l̂)Tσ)Û = (R̂l̂)T (Û †σÛ) = l̂T R̂(Û †σÛ)
!

= l̂Tσ,

which is satisfied if

R̂(Û †σÛ) = σ ⇔ Û †σÛ = R̂σ,

3

More generally, we might consider xi = Ĵi, where Ĵi are SU(2) generators in a general spin S represen-
tation. However, to keep the notation simple, we restrict ourselves to S = 1/2.
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or, in components

Û †σiÛ = Rijσj. (3.10)

Now, the ’natural’ matrix U to choose in the present context follows from the familiar iso-
morphy of the Lie algebras so(3) and su(2) of the groups SO(3) and SU(2), resp. The
correspondence between the two algebras is expressed by the table

su(2) so(3)

Ĵx = i
2
σx = i

2

(
0 1
1 0

)
↔ Ĵx =

0 0 0
0 0 −1
0 1 0



Ĵy = i
2
σy = i

2

(
0 −i
i 0

)
↔ Ĵy =

 0 0 1
0 0 0
−1 0 0



Ĵz = i
2
σz = i

2

(
1 0
0 −1

)
↔ Ĵz =

0 −1 0
1 0 0
0 0 0



(3.11)

assigning to SU(2) group generators their SO(3) analogs.
4

In our present context, the group
SO(3) acts by rotation of three dimensional real space, while SU(2) acts through spinor
rotation in a spin 1/2 representation. Let us represent a rotation matrix R̂ ∈ SO(3) as
R̂ = exp(viĴi), where the parameters vi ∈ R define the rotation angles. The algebra isomorphy
above then suggests a correspondence

R̂ = exp(viĴi)↔ exp(viĴi) = Û , (3.12)

where Û ∈ SU(2) and the generators on the right hand side are su(2) generators. This
identification indeed does the job. The easiest way to check this is to consider rotations
around a coordinate axis, e.g. vi = θδi1 a rotation by an angle θ around the x-axis. A
straightforward calculation shows

R̂θ ≡ exp(θĴx) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


and

Ûθ ≡ exp(θĴx) =

(
cos
(
θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(
θ
2

) ) .
4

On a formal level, the Lie algebra correspondence is expressed by the commutation relations [Ĵi, Ĵj ] =

εijkĴk.
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These matrices indeed satisfy the compatibility relation (3.10). We thus conclude that the
’natural’ identification of SO(3) and SU(2) group identification suggested by the structure of
Lie algebras leads to the required spinor rotation invariance of the Schrödinger equation.

INFO Notice, however, that in spite of the isomorphy of their Lie algebras the two groups SO(3)

and SU(2) are not globally isomorphic: consider a path [0, 2π] → SO(3), t 7→ exp(tĴz) in SO(3)
group space parameterizing a rotation by an angle increasing from 0 to 2π. This path begins and
ends at the unit element of the group, I3 = exp(0Ĵz) = exp(2πĴz). However, its SU(2) analog

exp(tĴx) = exp( it2 σ1) begins at I2 and ends at exp( i2π2 σ1) = −I2. This mismatch shows that the
group SU(2) is ’bigger’ than SO(3) in that the two group elements ±I2 ∈ SU(2) correspond to
the single I3 ∈ SO(3). In other words,

The SU(2)–SO(3) group correspondence is 2–1.

In mathematics, one says that SU(2) is the universal covering group of SO(3). The above
non-uniqueness has important topological consequences. In SO(3), our reference path begins and
ends at the same point I3. However, it can not be continuously contracted to a ’trivial’ constant
path t 7→ I3 (think why.) The non-contractability of a closed path is a signature of a non-simply
connected manifold. (A circle would be another example, i.e. a loop winding once around the
circle cannot be contracted.) By contrast, SU(2) is simply connected. In fact, one may think of
it as the smallest group ’covering’ SO(3) to yield a simply connected manifold.

In physics, the 2–1 correspondence means that a 360deg rotation of coordinate space corresponds

to a 180deg rotation in spin space. It takes a double 720deg space rotation to fully rotate spin.

This phenomenon is detectable in interference experiments.

3.3.2 Relativistic invariance: SL(2,C)–SO+(3, 1) correspondence

We will construct Dirac theory by generalization of the above construction to a relativistic
setting. Recall from our discussion of section 3.2 that we aim for a Hamiltonian linear in the
four momentum p. We thus start out from an ansatz,

Ĥ = xµp̂µ, (3.13)

where p̂µ now take over the role of the angular momentum components l̂i of the previous
section. Under a proper Lorentz transformation Λ ∈ SO+(1, 3) the four momentum trans-
forms as pµ → Λ ν

µ pν , and we seek for a realization of the ’coefficients’ xµ which transforms

accordingly, xµ → Λµ
νx

ν , so as to make Ĥ Lorentz-invariant.
Now, before turning more explicit, let us summarize a number of salient features of the

theory:

. The Lorentz group contains the three-dimensional rotation group as a subgroup. This
means that our theory must be derivable by extension of the theory constructed above.
Corollary: Dirac theory necessitates the presence of a spin structure!

. However, unlike with the rotation group, the Lorentz group is non-compact. This means
that the role of SU(2) above must be taken by a larger, and non-compact group (con-
taining SU(2) as a subgroup.)
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. Our group must be six-dimensional, with a Lie algebra satisfying the commutation rela-
tions (3.5).

While there exists a mathematical machinery for systematic identification of the relevant group
structures, we here simply state that the group doing the job is SL(2,C), i.e. the group of two-
dimensional matrices with complex entries and unit determinant. Indeed, SU(2) ⊂ SL(2,C),
as required. The group is non-compact, and six-dimensional (i.e. it is spanned by six real
parameters.)

5
The Lie algebra, sl(2,C) is spanned by matrices

∑
j zj

1
2
σj ≡

∑
j(aj

1
2
σj +

bj
i
2
σj), where zj ∈ C, and aj, bj ∈ R. Clearly, the sub-algebra su(2) ⊂ sl(2,C) is generated

by the parameters bj, while the parameters aj must correspond to the generators of Lorentz
boosts. Indeed, it is straightforward to compute the commutation relations between the
matrices 1

2
σj and i

2
σj and to verify the correspondence

sl(2,C) so(1, 3)

Ĵi = i
2
σi ↔ Ĵi

K̂i = 1
2
σi ↔ K̂i,

(3.14)

which generalizes Eq. (3.11) above, and establishes the Lie algebra isomorphy sl(2,C) '
so(1, 3).

6
Now, the ’natural’ generalization of the construct σil̂i to the present setting reads

p̂µσ
µ, where p̂µ ≡ −i ∂

∂xµ
are the components of the momentum operator, and {σµ} =

(σ0, σ1, σ2, σ3) contains the unit matrix, σ0, and the Pauli matrices σi.
7

Now, consider a
proper Lorentz transformation

Λ ≡ exp(θ · Ĵ + φ · K̂) ∈ SO+(1, 3)

where θ · Ĵ ≡ ∑i θiĴi, and the three parameters θi (φi) specify a space rotation (Lorentz
boost). Under this transformation, the momentum operator transforms covariantly, p̂µ →
p̂νΛ

ν
µ, so that the generalization of (3.9) reads

p̂µσ
µ !

= p̂νΛ
ν
µ(Û †σµÛ),

where

Û ≡ exp(θ · Ĵ + φ · K̂) ∈ SL(2,C) (3.15)

5

The latter statement follows from the observation that a two dimensional complex matrix M̂ is specified
by 2× 4 real numbers. The (complex) equation det(M) = 1 removes two degrees of freedom, leaves six.

6

As with the pair SU(2)↔ SO(3), the correspondence between the Lie algebras does not extend to the full
group manifold. Rather, SL(2,C) turns out to be the universal covering group of the (non-simply connected)
group SO+(1, 3).

7

We use uppercase indices because {σµ} will turn out to transform as a contravariant object.
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is the ’natural’ SL(2,C) representative of Λ.
8

Indeed is straightforward to verify
9

that

Û †σµÛ = Λµ
νσ

ν ,

and this entails the required invariance, p̂νΛ
ν
µ(Û †σµÛ) = p̂νΛ

ν
µΛµ

ρσ
ρ = p̂µσ

µ.
Summarizing, we have confirmed that the operator p̂µσ

µ transforms covariantly, if it acts on
two-component states |ψ〉 carrying an SL(2,C) spinor representation. However, before explor-
ing the physical properties of these so-called Weyl spinors, we need to discuss a complication
which gives the relativistic theory structure beyond the generalization SU(2)→ SL(2,C).

3.3.3 Left- and right-handed Weyl spinors

In the previous section, we considered the ’natural’ linear representation of group elements
Û ∈ SL(2,C), i.e. linear transformations |ψ〉 → Û |ψ〉. Now, SL(2,C) is richer than its
subgroup SU(2) in that it admits a second, and inequivalent two-dimensional representation.
Indeed, we may choose to assign to Û the transformation |ψ〉 → (Û−1)†|ψ〉. One can show,
that this transformation is unitarily inequivalent to the one above, i.e. there is no fixed
unitary matrix T̂ ∈ SU(2), such that (Û−1)† = TÛT̂−1 for all Û ∈ SL(2,C). Within the
boost/rotation parameterization (3.15), we have

(Û †)−1 = exp(θ · Ĵ− φ · K̂), (3.16)

i.e. the two representations differ by an inversion of the boost parameter. This shows that
for Û ∈ SU(2) ⊂ SL(2,C), or φi = 0, we have (Û−1)† = Û , i.e. when restricted to the
unitary subgroup the two representations collapse, in line with the fact that, up to unitary
transformation, there is only one unitary spin 1/2 SU(2)-representation.

The alternative representation gives us an option to construct a second covariant formu-
lation of the theory. To see this, let us define the vector of spin matrices

σ̄µ ≡ (σ0,−σ1,−σ2,−σ3).

It is then not difficult to verify that

(Û)−1σ̄µ(Û−1)† = Λµ
ν σ̄

µ,

again transforms as a contravariant vector. Lacking any a priori physical principles discriminat-
ing between the two different representations, we’d better keep an eye on both. For reasons to
become clear momentarily, states transforming under Û , and (Û †)−1, resp., are denoted |ψL〉
and |ψR〉 and called left- and right-handed Weyl spinors. Their transformation behavior
is summarized by

|ψL〉 Û−→ Û |ψL〉,

|ψR〉 Û−→ (Û−1)†|ψR〉. (3.17)

8

For the appearance of the disclaimer ’natural’, see below.
9

From the previous section we know that the formula holds for rotations. A direct computation shows that
it also holds for axes-oriented Lorentz boosts, say Λ = exp(φK̂x). Since a general Lorentz transformation can
be obtained by a succession of rotations and boosts, this proves the formula’s validity.
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where (up to the notorious (2–1) ambiguity) the group element Û ∈ SL(2,C) is determined
by the Lorentz transformation under consideration.

3.3.4 From Weyl– to Dirac–spinors

Our so-far considerations were primarily based on criteria of transformation-invariance, con-
ditions imposed by the mathematical consistency of the theory. We will now add to this
kinematic (means, physical) considerations to upgrade to the full Dirac theory. It may be
worth mentioning that Dirac theory, too, can be derived solely on the basis of mathematical
structures (cf. our remarks on Clifford algebras below). This is manifestation of the strong
anchorage of (quantum) relativity in geometric principles.

Assume that the quantum state of a particle of mass m in its rest frame is described by
the two-component spinor ψ. Denote the state transformed to a frame moving relative to
the rest frame with velocity v by ψ(p), where p = {pµ} = (γm,−γmv) is the covariant
four momentum. The transformation to the moving frame is described by non-vanishing
boost parameters φi. Now, Eqs. (3.15) and (3.16) tell us that the transformation matrices of
generating left– and right–handed Weyl states ψL(p) = Ûψ(0) and ψR(p) = (Û−1)†ψ(0) differ
in the sign of the boost parameter, i.e. they are generally different. However, in the rest frame,
we have no reason to discriminate between ’left’ and ’right’ state, ψL(0) = ψR(0) ≡ ψ(0).
This consideration signals that ’left-’ and ’right-handedness’ must be a property linked to the
kinematic motion of particles.

To explore this point, we use that the boost parameter φ = nφ, where n is the unit vector
in p-direction, and φ is given in (3.4). We then have

ψL/R(p) = exp

(
±1

2
φ · K̂

)
ψ(0) =

(
cosh(

φ

2
)± sinh(

φ

2
)n · σ

)
ψ(0) =

=

((
γ + 1

2

)1/2

±
(
γ − 1

2

)1/2

n · σ
)
ψ(0) (3.18)

where the second equality relies on some straightforward algebra based on (3.4). Multiplying

the equation by
(
γ+1

2

)1/2 ∓
(
γ−1

2

)1/2
n · σ, we obtain((

γ + 1

2

)1/2

∓
(
γ − 1

2

)1/2

n · σ
)
ψL/R(p) =

((
γ + 1

2

)1/2

±
(
γ − 1

2

)1/2

n · σ
)
ψR/L(p),

and one more multiplication by
(
γ+1

2

)1/2 ±
(
γ−1

2

)1/2
n · σ gets us to

ψL/R(p) =
(
γ ± (γ2 − 1)1/2n · σ

)
ψR/L(p) =

1

m
(E ± pn · σ)ψR/L(p).

where we used that the particle energy E2 = p2 + m2 is related to the parameter γ through
γ = E/m (show it.)
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Using that E = p0, we may formulate this equation as(
−m p0 + p · σ

p0 − p · σ m

)(
ψR(p)
ψL(p)

)
= 0.

Introducing four-component spinor

ψ(p) =

(
ψR(p)
ψL(p)

)
, (3.19)

and the 4× 4 matrices

γ0 =

(
I

I

)
, γi =

(
−σi

σi

)
, (3.20)

this equation assumes the concise form

(γµpµ −m)ψ(p) = 0. (3.21)

Eq. (3.21) is the (momentum representation) of the celebrated Dirac equation. In a coor-
dinate representation, p̂µ → i ∂

∂xµ
, the equation assumes the form

(iγµ∂µ −m)ψ(x) = 0.

Finally, interpreting pµ as eigenvalues of linear operators p̂µ it may be written as (3.22). The
historical derivation of this equation, different from the one discussed here, is reviewed in the
info block below.

INFO The construction above is different from the historical derivation of the Dirac equation.
In fact, Dirac’s original derivation is much shorter, and rather elegant at that. However the
price to be payed is that, unlike with the derivation given above, the physical principles behind the
mathematical structure of the equation remain opaque. Still, it is rewarding to recapitulate Dirac’s
original line of arguments: For the reasons outlined in section 3.2, Dirac was after an equation
linear in the four-momentum operator. He thus started from an ansatz

(γµp̂µ −m)|ψ〉 = 0, (3.22)

with as yet undetermined ’coefficients’ γµ. Multiplication with γν p̂ν gives

γν p̂ν(γµp̂µ −m)|ψ〉 = (γµγν p̂ν p̂µ −m2)|ψ〉 =

(
1

2
[γµ, γν ]+p̂ν p̂µ −m2

)
|ψ〉0,

where in the second equality we used the defining equation once more, and the third equality is
based on the commutativity of the components of the momentum operator. Now, in all what we
are doing, we must stay compatible with the relativistic dispersion relation expressed by the Klein
Gordon equation (p̂µp̂µ −m2)|ψ〉 = (gµν p̂ν p̂µ −m2)|ψ〉 = 0. We satisfy this relation if

γµγν + γνγµ = 2gµν . (3.23)
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Dirac observed that this relation can not be realized with real, or complex valued coefficients. The
simplest mathematical object doing the job turned out to be the γ-matrices (3.20), and this is
how these objects where originally introduced.
Formally, one may think of (3.23) as the defining relations of an algebra generated by the matrices
γµ. Indeed, the matrices γµ are elements of a vector space (they can be added and multiplied by
numbers), endowed with a product (the matrix product, constraint by the relation (3.23).) The set
formed by taking all linear combinations of products γµ, γµγν , γµγνγρ, . . . thus forms an algebra,
the so-called Clifford algebra. The algebraic approach to Dirac theory turned out to be eminently
rich, both from a physics and a mathematics point of view: our previous discussion has been
limited to four-dimensional space, endowed with a metric of signature (+,−,−,−).

10
However,

Clifford algebras can be defined for spaces of arbitrary dimension and metric. The representation
theory of the general Clifford algebra provides a handle for the construction of Dirac operators
in much more general settings, and this includes spaces with metrics of non-trivial curvature, as
relevant to general relativity.

kx

(a)

ε

(b)

ky

ky

ky

Dirac operators of dimension 1,2, and 3 find physical re-
alizations in various condensed matter systems. Arguably
the most prominent example are two dimensional sheets of
sp2-hybridized carbon, a material called graphene. The
dispersion relation of graphene (cf. the figure) contains characteristic cusps, which signals that
the low energy physics of the compound is governed by a two-dimensional variant of the Dirac
operator. The experimental discovery of graphene in 2005 (→ Nobel prize 2010) sparked a wave of
research on relativistic quantum mechanics in a setting off the beaten tracks of 3 + 1-dimensional
particle physics.

3.3.5 Things to be learned from the structure of the Dirac equation

A great deal more was hidden in the Dirac equation than the author had expected when he
wrote it down in 1928. Dirac himself remarked in one of his talks that his equation was more
intelligent than its author. It should be added, however, that it was Dirac who found most of
the additional insights. Weisskopf on Dirac

Above we have seen how the ’kinematics’ of Lorentz boosts establishes a correlation be-
tween left- and right-Weyl spinors, which finds its algebraic expression in the Dirac equation.
In this section, we will take a closer look at the (matrix–)structure of the equation. Specifically,
we will discover that the form of the γ-matrices contains important information on the rela-
tivistic dynamics of quantum particles which can be extracted without elaborate calculation.

Helicity

10

The signature of a metric is defined by the number of negative eigenvalues. While the magnitude
and ordering of eigenvalues can be changed by scaling and unitary transformation, the signature is a robust
invariant.
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Let us first take a look at the Dirac equation of
massless particles, m = 0. In this limit, the left and
the right sector decouple, and the Dirac equation reduces
to

(p0 ∓ σ · p)ψR/L(p) = 0. (3.24)

Now, for m = 0 we have p0 = |bp|, which means that

σ · nψR/L(p) = ±ψR/L(p), (3.25)

where n = p/|p| as before. These equations explain the origin of the denotation left- and
right- spinor. The Weyl spinors are eigenstates of the helicity operator σ ·n, which measures
the spin component in the direction of travel, n. The equation tells us that massless quantum
particles carry helicity ±1, i.e. a unit spin which is directed in the direction of travel (R) or
opposite to it (L). Eq. (3.25) explains the origin of the denotation ’left-’ and ’right-handed’
Weyl spinors.

Parity and time reversal

Remember that we introduced the Weyl spinors as a means to incorporate proper Lorentz
transformations into quantum theory. But what about Lorentz transformations outside the
proper Lorentz group SO+(1, 3), notably parity and time reversal? Parity acts on the four
momentum as P : p = (p0,p) 7→ (p0,−p) ≡ ΛPp. Following the general logics of our
approach, we thence need to find a Dirac spinor transformation |ψ〉 → ÛP |ψ〉, such that

ÛPγ
µÛ−1
P

!
= (ΛP)µνγ

ν

and the Dirac bilinear pµΛµ → pν(ΛP)νµ(ΛP)µργ
ρ = pµγ

µ remains invariant. Using the

commutation relations (3.23) of the γ-matrices, it is evident that ÛP = γ0 does the job.
Indeed,

(γ0)−1(γ0, γ1, γ2, γ3)γ0 = (γ0,−γ1,−γ2,−γ3)

as required. Under parity the four-component Dirac spinor thus transforms

|ψ〉 P−→ γ0|ψ〉. (3.26)

We observe that parity exchanges the left- and the right-handed components of the spinor.
This was to be expected, as parity does not change spin (on account of spin representing an
axial vector), but does change momentum. Helicity, thus, will be inverted.

Turning to time reversal, our discussion of section 1.4.2 tells us that this transformation
is best explored in the coordinate representation of the Dirac equation,

(i∂µγ
µ −m)ψ(x) = 0.

Under time reversal, T : x = (x0,x) → (−x0,x) ≡ ΛT x. From our previous experience
we also know that we will need an anti–unitary transformation, i.e. a product of complex
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conjugation, K̂, and a unitary transformation, |ψ〉 → ÛT K̂|ψ∗〉 to implement time reversal.
Setting ÛT ≡ γ1γ3, we indeed find

UT K̂(γ0, γ1, γ2, γ3)K̂−1Û−1
T = UT (γ0, γ1,−γ2, γ3)Û−1

T = (γ0,−γ1,−γ2,−γ3) = −Λµ
νγ

ν .

From this relation we readily deduce that the time reversed spinor

|ψ〉 T−→ γ1γ3K̂|ψ〉 (3.27)

solves the Dirac equation for the time reversed derivative operator ∂
∂(ΛT x)µ

= (−∂0, ∂1, ∂2, ∂3).
Notice that

γ1γ3 = iσ2 ⊗ I,

where I acts in LR-space. We learn that time reversal acts on a Dirac spinor as ψ(x) →
(iσ2)ψ(x)∗,

11
. Unlike with non-relativistic quantum mechanics, where the the behavior of

spinful states under time reversal (cf. Eq. (1.72)) had to be postulated, it here follows from
the criterion of Lorentz invariance. This is one manifestation of a more general principle to
be discussed in section xx below: many physical phenomena pertaining to the spin (even of
’slow’ particles) are of relativistic origin.

3.4 Many particle interpretation

3.4.1 Particle current

In section 3.2 we have seen that negative energy states and negative particle ’densities’ where
phenomena accompanying the Klein-Gordon equation. Let us explore how the Dirac equation
performs in this compartment. We begin by taking the hermitian conjugate of the Dirac
equation,

ψ(x)†
(
−i(γµ)†

↼

∂µ −m
)

= 0,

where the arrow indicates that the derivative acts on the spinor to the left. Now, (γi)† = −γi,
while (γ0)† = γ0, which tells us that the hermitian adjoint has messed up the covariant
structure of the equation. We can repair this defect by multiplying the equation from the right
by γ0. Using the commutation relations (3.23) and defining the conjugate Dirac spinor

ψ̄ ≡ ψ†γ0,

we obtain the equation

ψ̄(x)
(
−iγµ

↼

∂µ −m
)

= 0.

11

Rather than writing z̄ for complex conjugation, we here use z∗. In Dirac theory the overbar is commonly
reserved for another operation, see section 3.4 below.
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With this definition, a good candidate expression for a four-particle current reads

jµ ≡ ψ̄γµψ. (3.28)

From our previous discussion, we know that j ≡ {jµ} transforms as a contravariant vector,
as it should. Further, j obeys a continuity equation:

∂µj
µ = ψ̄

(↼
∂µ γ

µ + ∂µγ
µ + im− im

)
ψ = 0,

where in the second equality, we added 0 = im− im. Unlike with the Klein-Gordon equation,
the Dirac density j0 = ψ̄γ0ψ = ψ†ψ is positive, i.e. our problem of negativ particle densities
is gone!
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EOur enthusiasm about the recovered positivity of den-

sity may be tempered by the follow-up observation that
the second problem of the Klein-Gordon equation, the
existence of negative energy states, persists. To see this,
multiply the Dirac equation (Eγ0−p ·γ−m)ψ(p) by γ0

to obtain (E−γ0(p ·γ−m))ψ(p) = 0. It is straightfor-
ward to compute the eigenvalues (try to do it in ’elegant’
terms, i.e. without elaborate calculation) as

E = ±
√
|p|2 +m2.

As expected, the energies obtain by taking the square root of the relativistic expression E2 =
|p|2 +m2, and this includes both the positive and the negative branch.

Notice the consequences of this observation: it looks like a Dirac particle prepared in
an arbitrary initial state particle may cascade down to negative energies, thence releasing an
infinite amount of transition energy ∆E. This doesn’t make physical sense.

3.4.2 Dirac’s way out

Confronted with these problems, Dirac proposed a revolutionary re-interpretation of his equa-
tion. Within the new picture, the peculiar structure of the Dirac spectrum not only ceased to
be problematic, it actually became the source of physical phenomena crucial to the foundations
of modern particle physics. In essence, Dirac’s postulates can be summarized as follows:

. The particles described by the Dirac equation necessarily have to be fermions. The
double occupancy of Dirac eigenstates is, thence, forbidden.

. (At zero temperature), all negative energy eigenstates are occupied. The union of all
filled states forms the so-called Dirac sea. Together with the continuum of empty
states, the Dirac sea defines the Dirac vacuum
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Figure 3.1: Left: Vacuum polarization. High energy photons create particle/anti-particle pairs
by excitation of filled states into the empty positive energy continuum. Right: Particle/anti-
particle annihilation. The reverse process. A created photon carries the excess energy away.

Comments: (i) the first postulate amounts to a linkage of two of the most fundamental
properties of quantum particles, spin and exchange statistics. The Dirac equation requires
spin 1/2 and, according to the postulate, fermionic exchange statistics. (ii) The first postulate
effectively states that a meaningful interpretation of Dirac theory requires a many particle
system. (iii) The filling of the negative eigenstates prevents the constituents of this system
from cascading down in energy. However, if the system is exposed to an energy source
providing energy ∆E > 2m larger than the gap between the Dirac sea and the empty states,
negative energy particles may be kicked out into the continuum of empty states (Fig. 3.1,
left.) What we are left with, then, is a ’hole’ in the Dirac sea, plus a positive energy particle.
Interpreting the hole as an anti-particle, we conclude that sources of high energy radiation,
such as high energy photons, γ, may ’polarize’ the vacuum by creating particle/anti-particle
pairs, γ → p + p. Here p may be any particle described by the Dirac equation, electrons,
protons, neutrinos, ... Conversely, a positive energy particle may occupy a hole in the Dirac
sea, thereby releasing energy (Fig. 3.1, right.) According to the interpretation above, we
should think of this as a particle/anti-particle annihilation process, p + p → γ. (Notice that
the minimum energy released in the process is twice the rest mass energy. For a proton pair,
this will be about 2GeV — matter/anti-matter reactions make for a violent source of energy!)
(iv) Dirac’s interpretation thus predicts the existence of anti-particles for all particles. Dirac’s
1928 prediction of antiparticles, followed by the 1929 discovery of the positron e, marked a
cornerstone in the advent of particle physics.

3.5 Dirac many particle theory

The important bottom line to be drawn from our discussion of section 3.5 is that Dirac theory
has to be interpreted as a many particle theory. Before, we had attempted to construct the
Dirac equation as a generalization of the Schrödinger equation, i.e. we were firmly operating
within the realm of single particle quantum mechanics. The question then arises as to how
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our previous consideration might be integrated into a many body framework.
With the machinery of second quantization in place, it is actually not difficult to solve this

problem. When we formulated the Dirac equation (3.22), we met the (prejudiced) choice to
interpret the Dirac spinor |ψ〉 as a single particle ’wave function’, an approach we saw does
not pass the test of physical consistency. Now, from many body theory, we know that to each
Schrödinger like equation (i∂t−Ĥ)|ψ〉 = 0, we have an associated Heisenberg equation (i∂t+
[Ĥ, ])Â = 0 for operators. Specifically, in a single particle basis characterized by indices {l},
the equation (iδlk∂t−Hlk)ψk corresponds to a second quantized representation Ĥ = a†jHjkak.
Applied to the operator al, the Heisenberg equation assumes the form (iδlkdt−Hlk)ak, equal
in form to the Schrödinger equation, only that the object we act upon is an operator.

This observation suggests a reinterpretation of the Dirac equation,

(iγµ∂m −m)ψ(x) = 0, (3.29)

where ψ(x) now is a four-component operator valued spinor. Being fermion operators, the
components of ψ obey the equal time commutation relations,

x0 = x0′ : [ψa(x), ψa
′
(x′)]+ = δaa

′
δ(x− x′). (3.30)


