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1.0 Classical field theory

Field theory addresses the physical properties of systems containing effectively infinitely many
degrees of freedom. Think of the water molecules combined to form the flow of a river. From a
fundamentalist’s perspective, there is nothing special about such situations: individual degrees
of freedom being described by classical point mechanics, or quantum mechanics, one is to
solve the corresponding degrees of freedom to obtain the dynamics of the system at large.
Of course, this view ignores the fact that the solution of equations of motion beyond O(101)
degrees of freedom is impossible, even on modern computers. What is more, we aren’t even
interested in the dynamics of individual microscopic system constituents. Rather, we wish to
predict physically observable behavior, such as the current flow of a river.

Field theory, instead, approaches the problem in terms of a pragmatic three stage work
program: first, identify effective degrees of freedom, subsuming large numbers of microscopic
degrees of freedom in terms of collective variables. For example, in the case of our river these
might be the local and time dependent velocities v(r, t) of small volumes of water at a given
coordinate and time. Second, we are to transcribe the fundamental equations of motion of
classical or quantum mechanics into effective equations of motion for the collective variables.
And, third, we need to solve them. Note that the number of degrees of freedom, e.g. the
collection of all vectors {v(r, t)}, remains infinitely large.

There are cases where the nature of the microscopic degrees of freedom is not known, or
where they may not even exist. A case in point is classical electrodynamics, which predicts
forces exerted on test charges or currents through electric or magnetic fields. In this case, the
degrees of freedom are vector valued variables such as E(r, t), where qE(r, t) is defined to
be the space and time dependent force acting on a test particle of electric charge q. In this
case E(r, t) are the effective degrees of freedom, and no reference to underlying microscopic
variables is made. (In fact, their identity cannot be determined within classical electrodynamics,
one needs to ‘quantize’ the theory, to get closer to a microscopic level.)

All field theories have in common that they describe their effective degrees of freedom as
mathematical fields, i.e. maps U → T, (r, t) 7→ ϕ(r, t), where U is a subset of space-time,
i.e. a domain that can be parameterized in terms of spatial vectors r and a time variable,
t. Concerning the target space, T , there is huge freedom. From real numbers (think of
a temperature field T (r, t)) over vectors (a velocity field v(r, t)), to matrices (the rotation
matrix R(r, t) specifying the orientation of a magnetization field in a ferromagnet).

There are a few large families of classical field theories every student of physics should at
least have heard about. These are
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4 CHAPTER 1. CLASSICAL FIELD THEORY

� Classical electromagnetism.

� General relativity, i.e. the theory describing the geometric structure of space-time in
terms of a space-time dependent metric g(r, t).

� Fluid dynamics, i.e. the theory predicting the flow of liquid matter.

Among these, electromagnetism is generally taught first: it is the simplest (by far), and it
naturally introduces a plethora of concepts relevant to field theory in general. Following this
trusted principle, about 80% of this course will focus on electromagnetism. The remaining 20%
will be a short introduction to fluid dynamics, a teaser of general relativity, and an outlook on
the quantization of electromagnetism, which serves as a gateway into quantum field theory.



2.0 Introduction to Electrodynamics

2.1 History

We begin with a brief chronological account of the development of electrodynamics:

2.1.1 Ancient world and Middle Ages

Ancient world: Unlike with mechanics/astronomy, there is no ‘theory’ of electromagnetism.
Known phenomena include: the attraction of wool and other types of tissue by rubbed amber
(greek → electron) and the attraction of metals such as iron by magnetite (‘magnesia’ → city
in ancient Turkey).

Middle ages: Petruus Peregrinus (Pierre der Maricourt), 1269: applies experimental
methods (!) to measure the forces exerted by a spherical magnet. Coins the term poles of a
magnet.

2.1.2 Modern times and Age of Enlightenment

In his work ‘de magnete’, 1600, William Gilbert, 1544–1603 presents a thorough analysis
of magnetic phenomena. Topics covered in his work include the magnetic nature of the
earth, the character of the forces between magnets (→ torsion), a theoretical understanding of
compasses, and the fundamental differences between electric and magnetic forces (attractive
forces, ‘attractio’ vs. torsional forces ‘verticitas’).

In the 17th century, not much progress is made (Mechanics is considered more interest-
ing.) However, electric devices (bases on mechanisms of friction) become popular as tool of
entertainment at European courts.

Early 18th century: the era of ‘qualitative electrostatics’: Benjamin Franklin, 1706–1790,
invents the lightening rod and introduces the notion of electric charge (a term inspired by
military vocabulary, the ‘discharging’ of a canon, similarly with ‘batteries’.)1 The existence of

1Arguably Franklin owed much of his success to the fact that he lived in America and remained, therefore,
largely uninfluenced by false concepts circulating in Europe.
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6 CHAPTER 2. INTRODUCTION TO ELECTRODYNAMICS

positive and negative charges is understood.

Late 18th century: the era of ‘quantitative electrostatics’: Charles Auguste de Coulomb,
1736–1806, discovers the Coulomb force F ∼ q1q2r/r

3 between electric charges. (Indepen-
dently discovered by others.) Much underrated, Henry Cavendish, 1731–1810: discovers
Coulomb law, understands essential aspects of the physics of dielectric materials and of elec-
tric conduction. (But is a lazy publisher.)

Alessandro Volta, 1745–1827, invents the Voltaic column (and presents it to Napoleon),
emancipation of unreliable friction devices.

George Green (date of birth unknown) and Karl Friedrich Gauss (1777–1855) develop
the ‘final form’ of electrostatics.

2.1.3 Romantic era till late nineteenth century

Early 19th century: the era of ’magnetostatics’: the invention of the electric battery paves
the way to the systematic analysis of electric currents and to conduction experiments.

Inspired by the romantic idea of a ‘global spirit’ and the understanding that all forces are
mere manifestations of a unified force (Schelling), researchers such as Oersted and Faraday
attempt to understand electricity and magnetism on a common basis. Nature philosophy ac-
tively influences science!

Hans Christian Oersted, 1777–1810, qualitative discovery of magnetic forces induced by
electric currents. (Quantitative theory→ Biot and Savart.) The advent of Electro–Magnetism.
Anrdré Marie Amperè, 1775-1836, discovery of forces between conductors carrying currents.
Georg Simon Ohm, 1789–1854, discovery of Ohm’s law.

Michael Faraday, 1791–1867, seeks for reversal of Oersted’s experiment (‘convert mag-
netism into electricty’) → the law of induction, principle of the generator. Faradays work
leads to the emergence of a fundamentally new understanding of electromagnetic forces: the
idea of a field (→ a conceptual revolution), i.e. the understanding that, independent of the
existence of matter, fields are an intrinsic quality of space. Matter influences fields and vice
versa. However, the existence of fields is not tied to the presence of matter. Essentially, this
picture forms the basis of our contemporary understanding of all forces.2

James Clerk Maxwell, 1831–1879, Maxwells equations of electromagnetism
(1862). Fields acquire own existence (independent of matter) and governed by

their own fundamental laws.

Heinrich Hertz, 1857–1894, discovery of electromagnetic waves (1887) → first transat-
lantic radiowaves 1901. Unification of electrodynamics and optics.

2Faraday tried to include gravitation into the unified picture, a work that is still far from completion!
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2.1.4 Twentieth century

Albert Einstein, 1879–1955, theory of special relativity (1905). (Work inspired by earlier
insight of Hendrik Lorentz, 1853–1928.)

Realization that electrodynamics is not a closed theory (difficulties with point charges.)
→ embedding of electrodynamics in Quantum electrodynamics (developed as of 1929.)

2.2 The apparatus of electrodynamics

2.2.1 Basic quantities

Def.: (classical)3 electrodynamics: Classical theory of electric and magnetic phenomena.

Central to the theory of electrodynamics ED: four electromagnetic fields:

field denotation (historical)
E electric field strength
B magnetic induction
D electric displacement
H magnetic field

Table 2.1: Electromagnetic fields

▷ Info. Mathematically, a field is a mapping ϕ : M → T, x 7→ ϕ(x) from a base manifold M
into a target manifold T .

Examples: Temperature distribution in the lecture hall, a mapping (lecture hall)⊂ R3 → R, r 7→
T (r) — a scalar field in three–dimensional space. Wind weather forecast, a mapping (region of

forecast)⊂ R2 → S1,x → n(x), where the unit vector n(x) defines the direction of wind — a field

on the unit circle, S2, etc.

——————————————–

3As with classical mechanics, classical electrodynamics (ED) is not a closed theory. It runs into problems at
small length scales (→ infinite self energies) which find their solution within the larger framework of quantum
electrodynamics.
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The fields X ≡ E, . . . ,H are vector fields in (3+1) dimensional space–time:4

X : R3 × R → R3,

x ≡ (x, t) 7→ X(x).

▷ Info. In fact, the fundamental fields of ED are not vector fields! The identification E, . . . ,H ↔
(vector fields) is an outgrow of history. It makes sense only locally, and as long as we stick to a

fixed intertial system. (cf. with the phase space of classical mechanics which, also, is not a vector

space.) The reason why we stick to the vector field convention in the early parts of this course is its

overwhelming prevalence in the physics community.

——————————————–

To complete the setup of the theory, we need to introduce two more fields, the matter
fields of ED:

matter field denotation
ρ charge density
j current density

Table 2.2: Matter fields

The charge density is a scalar field ρ : R4 → R, x 7→ ρ(x) describing the distribution of
charges in space and time (see section 2.2.4 below.) the current density j : R4 → R3, x 7→
j(x) is a vector field describing the distribution of electric current (densities).

2.2.2 Interaction of matter and fields

Charge and current density act as ‘sources’ driving the generation of electromagnetic fields.
The connection (matter fields; electromagnetic fields) is provided by the celebratedMaxwell
equations (expressed in Gaussian units, see section 2.2.3 below)

∇ ·D = 4πρ, (2.1)

∇×H− 1

c

∂

∂t
D =

4π

c
j, (2.2)

∇× E+
1

c

∂

∂t
B = 0, (2.3)

∇ ·B = 0. (2.4)

4Notation: Most vectors in ED are defined in 3+1 space–time dimensions. The space like components will
be denoted by boldface characters, e.g., x ∈ R3. The unification with the time–like component (e.g., t) to a
four–component object will be often be denoted by a non–boldface symbol, e.g., x = (ct,x) ∈ R4, where the
vacuum speed of light c = 3 · 108 m s−1 is included to give all components the same dimension of physical
length.
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Eqs. (2.3) and (2.4) are the homogeneous (source–free) equations, Eqs.(2.1) and (2.2) the
inhomogeneous Maxwell equations.

The Maxwell equations alone do not suffice to uniquely determine the dependence of the
fields E, . . . ,H on the sources j ≡ (ρ, j). (Too few differential equations for 4 × 3 = 12
field components!) Implicit to the Maxwell equations are relations D = D[E] (H = H[B])
determining the electric displacement in terms of the electric field strength (the magnetic field
in terms of the magnetic induction.)5 Particularly simple connections D ↔ E (H ↔ D) apply
in the case of vacuum electrodynamics (on which we will focus in the first chapters of this
course):

vacuum: D = ϵ0E, H =
1

µ0

B, (2.5)

where the dielectric constant ϵ0 = 1 and the magnetic permeability µ0 = 1 are con-
stants,6 i.e. up to constants of proportionality (whose significance will be discussed below),
the fields D and E (H and B) can be identified with each other.

▷ Info. From a purist point of view the sources of Maxwells equation contain all charges

and currents in the universe. In particular the abundance of microscopic charges and currents

bound in extended matter are explicitly included in the source terms. Within this microscopic

or vacuum formulation of electrodynamics one may identify E = D and H = B. In general,

however, the microscopic approach is met with insurmountable problems: Conceptually, the correct

description of charges on microscopic scales requires a quantum mechanical formulation, i.e. a

theoretical framework beyond the scope of classical electrodynamics. Practically, it is impossible to

solve Maxwells equations for, say, the O(1023) charges embodied in a macroscopic piece of matter.

This means that the microscopic form of Maxwells equations is applicable only to those situations

where the system under consideration is effectively matter–free (except for a few isolated carriers

of charges and currents that may be described in the idealized manner discussed in section 2.2.4

below.) The extension of the theory to the presence of extended matter will be discussed in chapter

xxx below.

——————————————–

electromagnetic

fields

matter 

fields
Maxwell equations

Lorentz forc
e

Figure 2.1: On the mutual influence (electromagnetic fields ↔ matter fields)

For a given dependence D[E],H[B] (and given boundary conditions, see below) the

5For two arbitrary functions f and g, the notation f [g] indicates that f is a functional of g, i.e. depends
on the function g as a whole. E.g. the notation D[E] indicates that, in general, D(x, t) may depend on the
values {E(x′, t′)} takes at different instances of space and time.

6... assuming the value unity only in the Gaussian system of units chosen here, cf. section 2.2.3 below.
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Maxwell equations uniquely specify the fields in terms of the charges. Reciprocally, the fields
exert influence on the charge distribution. Responsible for this feedback mechanism is the
Lorentz force (density)

f = ρE+
1

c
j×B, (2.6)

where f(x, t)dV is the force a small element of matter concentrated in the volume element
dV experiences due to the presence of the electromagnetic fields. Thus, electromagnetic fields
are influenced by matter fields and vice versa.

▷ Info. Consequence of the mutual influence of fields on matter: a new understanding of forces
between particles. Newtonian mechanics: the interaction between two (charged) particles A and
B is instantaneous ; contradiction with the principle of relativity, i.e. the existence of a maximal
speed of signal propagation (the velocity of light), see below. In ED, the interaction between A
and B is mediated by a field: the charge of particle A creates an electromagnetic field (via the
Maxwell equations) which then influences B (via the Lorentz force.) This indirect interaction is
retarded (by the speed of field propagation which will turn out to be the speed of light.) History: the
experimentally observed forces between charges could not be understood in terms of an instantaneous
Newtonian interaction and required the introduction of non–matter fields into our description of
nature. Modern physics describes all four fundamental iqnteractions as indirect processes matter ↔
(gauge) field ↔ matter.

Indeed, we will see that ED is compatible with the principles of special relativity while classical

Newtonian mechanics is not. Precise formulation: under a general Lorentz transformation (see chap-

ter xx), the Maxwell equation remain form invariant. However, this transformation is not manifest

(a consequence of the interpretation of the EM fields as vector fields!)

——————————————–

2.2.3 Maxwell equations: generalities

Objectives of this lecture course:

▷ Understand connection matter fields ; EM fields, i.e. explore how to solve the Maxwell
equations. (Roughly two thirds of the course.)

▷ Understand the general structure of the theory ; special relativity and its ramifications
in ED.

Here: warmup to the first task.

Structure of the Maxwell equations

Maxwell equations: a system of coupled first order linear partial differential equations. (The
good news: ‘first order’ and ’linear’). Apart from problems with exceptionally high symmetry
no closed solutions can be found (cf. with situation in Newtonian mechanics.) ; numerical



2.2. THE APPARATUS OF ELECTRODYNAMICS 11

integration theory of Maxwell equations in engineering. However, a far reaching understanding
of the general behaviour of fields can be developed, a consequence of the fact that

Electrodynamics is a linear theory.

Which means that if E, . . . ,H (E′, . . . ,H′) solves the Maxwell equations for sources (j, ρ)
((j′, ρ′)), the fields E+E′, . . . ,H+H′ will be a solution to (j+ j′, ρ+ρ′), the superposition
principle. For example, to understand the electric field created by a system of point charges
in space, it suffices to understand the field created by a single point charge. The field of the
full charge distribution obtains by adding the constituent fields, etc.

Units

The detailed form of the equations of ED depends on the chosen system of units. Two principal
approaches:

▷ The practitioner’s point of view: Stick to the international system of units (SI–system,
aka MKSA–system) wherein length (1 m), mass (1 kg), time (1 s), and current (1A)
carry their own physical units. Express all equations so as to conform with this unit
system.

▷ The purist’s point of view: avoid the introduction of new units as much as possible and
use the Gauß system aka cgs–system of units. For this, I am willing to pay the price
of being at odds with most of the people (engineers & applied physicists) working with
electromagnetic phenomena.

The SI–system is very lab–friendly — an invaluable advantage. Yet by introducing units which
are only seemingly fundamental (1A), it tends to obscure the principal connection between
physical quantities. For this reason we will use the Gauß system of units in this course.

▷ Info. The definition of the Ampère in the SI–system. Two infinite parallel wires kept at a
distance of 1m carry a uni–directional electric current of 1A each if they exert an (attractive) force
of 2 ·10−7 N on each other.

In addition to the Ampère, the SI–system contains a number of secondary (non–fundamental)
units. Specifically, the unit of electric charge, the Coulomb, C, is fixed as 1 C ≡ 1 A·s, i.e. a
conductor carries 1C of charge if a current of strength 1A has flown into it for 1 second. The
strength of the electric field is measured in volt/meter: A point in space is subject to an electric
field of strength one volt per meter (1 V/m) if a charge of 1C placed at that point will experience a
force of strength F=1N=1 m kg/s2. Since the electrostatic Lorentz force is F = QE, we find that
1V = 1 m2 kg /(A s3). The Maxwell equation ∇×E+ ∂tB = 0 implies [B] = [E]× (time/length).
Magnetic fields are measured in units tesla, where 1T = 1 V s/m2.
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The Maxwell equations in the SI–system assume the form

∇ ·D = ρ,

∇×H− ∂

∂t
D = j,

∇×E+
∂

∂t
B = 0,

∇ ·B = 0,

where the value of the vacuum dielectric constant is ϵ0 = 8.8544 · 10−12 As/Vm and the magnetic

permeability is given by µ0 = 12.5664 · 10−7 Vs/Am.

——————————————–

To elucidate the difference between the two systems consider two static charges q1
and q2 at distance r. Anticipating our discussion below we note that the charge q1 (kept at
r = 0, say) will create a static D–field of strength D(r) = c0 · q1/r, where r = |r| and the
constant c0 = 1 (Gauß) c0 = 1/4π (SI) depends on the convention chosen in the first of the
Maxwell equations. This corresponds to a field E of strength E = ϵ−1

0 D = c0q1/(ϵ0r
2). By

virtue of the Lorentz law the second charge will then feel a (Coulomb) force F = c0q1q2/ϵ0r
2.

According to the philosophy of the Gauß system, this law — bridging between mechanic
and electromagnetic quantities — defines the unit of charge. Specifically, we say that two
point particles carry a charge of 1 esu (one electrostatic charge unit) if they experience a
mutual force of 1 dyn = 1 g cm/s2 when kept at a distance of 1cm: 1 esu = 1 g1/2 cm3/2 s−1.
(Units for magnetic fields, currents, etc. are introduced in a similar spirit and will be discussed
whenever we need them.) In contrast, the SI–system has already fixed the unit of charge by
the redundant yet convenient introduction of the Ampère. Experimentally, one finds that two
charges of 1C each kept at a distance of 1m exert a force of strength F=8.987 · 109 N on each
other, i.e. 8.987 · 109 N = 1

4πϵ0
1 Q2 m−2. Solving for ϵ0, we obtain the value given above.

Thus, the price to be payed for the introduction of handy units of charge is the appearance
of inconvenient conversion factors between the fields.7 In the CGS system there is no need
to distinguish between the electric field and the displacement field and we may set ϵ0 = 1.
Relatedly, the SI–system obscures the connection between quantities which, fundamentally,
carry the same physical dimension.

For an in–depth discussion of systems of units (including a few more than those discussed
here), we refer to [1].

2.2.4 Charges and currents

General definition of charge and current distributions

We begin our analysis of the Maxwell equations with a discussion of its sources. First consider
the concept of charge. Empirically, we know that

▷ The existence of charge is tied to matter.

7Similar reasoning can be applied to explain the value of the magnetic permeability.
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▷ charge is a scalar quantity that can be measured: Fixing a certain reference charge (for
example 1 esu or 1C), we may assign a value to other charges by comparison8 with that
reference charge.

▷ The value of the charge QV ↔ V assigned to a volume V of matter can be positive
and negative.

▷ Charge is an ‘extensive’ scalar quantity which means that if two disjoint regions of space,
V1 and V2, V1 ∩ V2 = { }, contain charges QV1 and QV2 , respectively, then the total
charge contained in V1 ∪ V2 is given by QV1∪V2 = QV1 +QV2 .

▷ Charge is a ‘conserved’ quantity, i.e. as far as we know, nowhere in universe is charge
created. (This, however, does not exclude the creation of positive and negative charges
of equal and opposite magnitude.)

These features motivate the definition of a charge density distribution as follows: For a given
point in space, x, let V1 ⊃ V2 ⊃ . . . be a sequence of volume elements converging onto the
point x. Let Qn be the charge contained in Vn.

9 We then define the charge density at x as

ρ(x, t) ≡ lim
n→∞

Qn(t)

Vn
. (2.7)

With this definition, the total charge contained in a finite region of space, V , is given by

QV (t) =

∫
V

d3x ρ(x, t). (2.8)

j(r, t)

n

dσ

j · n Since charges cannot be spontaneously created, the only way for
QV to change is that charges enter or leave the volume V through
its surface ∂V = S. We define the (charge) current through S by

IS(t) + Q̇V (S)(t) = 0, (2.9)

i.e. the total current flowing through the surface S equals the rate at which the charge
contained in V changes. This is an example of a global conservation law.

We wish to generalize the local definition of current to a refined, local one: Define a
current density vector field j(x, t) by demanding that for any oriented surface element dσ
with normal vector n(r), dσ(j · n)dt is the amount of charge passing through dσ in the time
interval [t, t + dt] (why is this a genuine definition?) The amount of charge dQS,out flowing
during the interval [t, t + dt] through a surface S of finite extent is obtained by integration
dQS,out = dt

∫
S
dσ (n · j). Defining the current through S, IS by the rate of charge transfer,

IS = dQS,out/dt, we obtain

IS(t) =

∫
S

dσ (j · n).

8In practice, the notion ‘comparison’ implies an experiment, e.g., the measurement of the force acting on
a charge.

9Notice that Qn = Qn(t) may depend on time.
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Specifically, for a closed surface, −dtQV (S) = dtQS,out = IS, as stated by the global conser-
vation law above. Further, recalling the definition of charge Eq. (2.8) and the conservation
law (2.9), we obtain the

∫
V
d3x (∇ · j+ ∂tρ) = 0. This equation must hold for any choice of

the reference volume V . The only way to satisfy this condition is to require the continuity
equation

∂tρ+∇ · j = 0. (2.10)

Eq. (2.10) represents the ‘local formulation’ of the conservation of current. Advantage of the
global formulation: It is arguably more intuitive. Advantage of the local formulation: It does
not make reference to a test volume and it is ‘local’, i.e. makes a statement about charges
and currents at one given instance of space–time.

A shorthand notation: Define the — at this stage purely formal — notation: ∂µ ≡
(c−1∂t,∇), µ = 0, 1, 2, 3. Then the continuity equation assumes the form:

∂µj
µ = 0, (2.11)

where jµ=0 = cρ, jµ=1,2,3 = ji=1,2,3 are the components of the four–vector current den-
sity.10

Notice that current conservation is implied by the Maxwell equations: Taking the diver-
gence of c×(2.2) and adding it to the time derivative of (2.1), we obtain

c∇ · (∇×H)︸ ︷︷ ︸
0

= 4π(∂tρ+∇ · j).

Point charges and current loops

To facilitate the analysis of the Maxwell equations, we will often work with charge and current
distributions that are ‘singular’ in that they are concentrated on infinitely sharply concen-
trated regions in space (mathematically: sets of measure zero.) Specifically, we will consider
point–like charges (the analog of point particles in classical mechanics) and currents flows
concentrated on mathematical curves (the latter representing theorists cartoons of ‘infinitely
thin wires’). To meaningfully represent such singular configurations in terms of the source
functions ρ and j, we need to introduce the notion of distributions.

▷ Math. How would one describe a ‘point charge’, i.e. an accumulation of a finite amount of
charge, q, concentrated on a single point in space, in terms of a charge distribution ρ? What we
need is a ‘function’ that is zero almost everywhere, except for one single point. Such functions have
been popularized in physics (long before they made their way to mathematics) as δ–functions. Our
objective here is to give the ‘δ–function’ a precise definition, and, equally important, to learn how to
work with it.

To start with, consider the case of functions f : R → R in one–dimensional space. Define:
D(R) = C∞

c (R) where Cn
c (R) is the space of n–fold differentiable functions with compact support.

10Following a widespread convention, we will denote the space like components of vectors by intermediate
lowercase latin variables, i, j, k, · · · = 1, 2, 3. (3+1)–dimensional space–time vectors are indexed by interme-
diate lowercase Greek variables, λ, µ, ν, · · · = 0, 1, 2, 3.
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(Elements of D are very benign. For reasons to be come clear momentarily, they are sometimes
called test–functions.) Notice that D forms an (infinite–dimensional) real vector space: For two
functions ϕ1, ϕ2 ∈ D and c1, c2 ∈ R, c1ϕ1 + c2ϕ2 ∈ D.11

A continuous functional on D is a continuous mapping F : D → R, ϕ 7→ F [ϕ] assigning to every
ϕ ∈ R a number. A continuous linear fuctional is a functional that is linear: F [c1ϕ1 + c2ϕ2] =
c1F [ϕ1]+c2F [ϕ2]. A distribution F on R is a continuous linear functional subject to one additional

condition: if the sequence of test functions ϕk
k→∞−→ ϕ converges to the test functions ϕ, then

limk→∞ F [ϕk] → F [ϕ].

▷ Example: Let f : R → R be a continuous function. Define the functional

Ff [ϕ] ≡
∫ ∞

−∞
dx f(x)ϕ(x). (2.12)

(Why does Ff meet the defining criteria above?) Distributions of this type are called regular
distributions. In a way, the function ϕ probes the properties of f , hence the denotation ‘test
function’.

Not every distribution is regular. As an important example we mention:

▷ Example: The δ–distribution: For a ∈ R, define

δa[ϕ] = ϕ(a). (2.13)

The δ–distribution meets all the criteria of the definition above. Evidently, however, there is no
regular function such that δa[ϕ] =

∫
dx f(x)ϕ(x).

Although the δ–distribution as such is not regular, one may prove the following statement:
every distribution F can be represented as the limit F = limn→∞ Ffn of a sequence of regular
distributions. (As we shall see, the functions fn ‘modeling’ a irregular distribution are of considerable
applied relevance.) Specifically, let us construct a sequence of functions fan such that Ffa

n
→ δa

converges to the δ–distribution:

fan(x) =
n

ϵ
exp

(
−πn

2(x− a)2

ϵ2

)
.

11More generally, the set Cn(U,Rr) containing the n–fold differentiable functions f : U ⊂ Rd → Rr forms
a vector space, too. (Functions of this type can be added and multiplied by numbers.) This is why we
often speak of a space of functions of a certain type. The interpretation of functions as elements of (infinite
dimensional) spaces will play a pivotal role below.
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x

fn

f1

f2

f3

The functions fan are unit–normalized,
∫
dx fan(x) = 1 and, for

large enough n, sharply peaked around x = a. Taylor expanding
the test–function ϕ around x = a, one verifies that

Ffa
n
[ϕ] =

n

ϵ

∫
dx exp

(
−πn

2(x− a)2

ϵ2

)
ϕ(x) = ϕ(a) +O(ϵ2/n2),

i.e. limn→∞ fan [ϕ] = δa[ϕ]. In the physics community, it is custom-
ary to work with the (symbolic, because the limit does not exist )
notation)

δ(x− a) ≡ lim
n→∞

fan(x), (2.14)

and to think of δ(x− a) as a ‘function’, the δ–function, infinitely
sharply peaked around a. Using this notation,

δa[ϕ] = ϕ(a) =

∫
dx δ(x− a)ϕ(x) ≡ Fδ(x−a)[ϕ].

Remarks: (a) Of course, the δ–distribution may be generated by functions fn different from the
Gaussian functions above. (Invent examples.) (b) We will use the sloppy physics notation throughout.

For a differentiable function, f , a straightforward integration by parts shows that Ff ′ [ϕ] =
−Ff [ϕ

′]. Applying this result to the sequence of functions converging onto the δ–distribution, we
obtain a formal definition of the ‘derivative of the δ–function’,

Fδ′(x−a) = −Fδ(x−a)[ϕ
′] = −ϕ′(a).

Conversely, the δ–function may be obtained as the derivative of the Heaviside step function Θ. Of
course, the step function Θ(x − a) is not differentiable in the conventional sense. (Its difference
quotient is zero everywhere, except for x = a where it diverges. Thus, the formal limit of the
difference quotient, the ‘derivative’ has properties akin to a δ–function.). Formally, however, we may
define

FΘ′(x−a)[ϕ] = −FΘ(x−a)[ϕ
′] = −

∫ ∞

−∞
dxΘ(x− a)ϕ′(x) = −

∫ ∞

a
dxϕ′(x) = ϕ(a) = Fδ(x−a)[ϕ],

where in the second last equality we used that ϕ(∞) = 0 (compact support of test functions.) Since
this equality holds for arbitrary functions testing the step function, we define d

dxΘ(x−a) = δ(x−a).

x1 x2 x3

i = 1 i = 2 i = 3

x

g For an arbitrary differentiable function g and a sequence of
functions fn(x) converging onto δ(x), we define δ(g(x)) ≡ limn→0 fn(g(x)).
Evaluating the test function integral,

Fδ(g)[ϕ] =

∫
dx δ(g(x))ϕ(x) =

∑
i

∫
dg

|g′(x)| δ(g)ϕ(g
−1(x)) =

=
∑
i

1

|g′(xi)|
ϕ(g−1(xi)),

where the sum extends over all those regions where g is invertible
(see the figure.) and xi are the zeros of g in these domains. In the notation of the δ–function:

δ(g(x)) =
∑
i

1

|g′(xi)|
δ(x− xi). (2.15)

To summarize our so far results (and a few more that are trivially proven):
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▷ δ(x− a)f(x) = δ(x− a)f(a),

▷ δ(x) = δ(−x),

▷ Θ′(x− a) = δ(x− a),

▷ δ(g(x)) =
∑

i
1

|g′(xi)|δ(x− xi),

▷ δ(cx) = |c|−1δ(x).

The generalization to higher dimensions is straightforward: As-
suming d = 3 for definiteness, we define

δ(x− a) =
3∏

i=1

δ(xi − ai).

With this definition
∫
d3x f(x)δ(x−a) = f(a). The generalization

of Eq. (2.15) becomes (exercise)

δ(g(x)) =
∑
i

∣∣∣∣ ∂g∂xi

∣∣∣∣−1

δ(x− xi),

where g : R3 → R3 is a function and |∂g/∂x| a shorthand notation for the determinant of the Jacobi
matrix. This equation can be used, e.g., to compute the form of the δ–function in non–cartesian
coordinates. For example, in polar coordinates,

δ(x) =
1

r2 sin θ
δ(r)δ(θ)δ(ϕ).

(Check that this function obeys the defining properties of the δ–function.)

——————————————–

As with the ‘point particles’ of classical mechanics, it is often useful to consider point charges,
i.e. infinitely small regions V ↘ 0 in space centered around a reference point x0 and carrying
a fixed amount of charge QV↘0 = q. For example, we may chose V (a) to be a ball of radius
a carrying a charge density ρa(x) =

3q
4πa3

1V (x), where 1V (x) is the characteristic function of
V (unity if x ∈ V , zero otherwise.) Evidently, QV (a) = q, i.e. the shrinkage of the volume
for a ↘ 0 is compensated by a diverging charge density. At the same time, the functions ρa
converge onto a three–dimensional representation of the δ–function, i.e.

ρ(x) = lim
a↘0

ρa(x) ≡ qδ(x− x0), (2.16)
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x
x′

n
a

j
S

I

The current–analog of a point charge is a cur-
rent loops, i.e. a curve in space carrying a uniform
current I. To obtain an operational definition of a
current loop, consider a curve γ in space. For most
(all modulo sets of measure zero) points x in space,
we may identify a point x′ ∈ γ that is closest to x.
(Just minimize the distance function |x − x′(t)|,
where x′(t) is an explicit parameterization of γ.)
Define ja(x) = nx′(I/πa2)Θ(a − |x − x′|), where
nx′ = dtx

′(t)/|dtx′(t)| is the unit vector along γ
at x′ (cf. the figure.) To see that this defini-

tion does the job, compute the current through any surface S cutting through γ. With-
out loss of generality, we may assume that S is planar and perpendicular to γ (why does
this follow from charge conservation?). Then, nx′ = n equals the vector normal to S and
I =

∫
S
dσ j · n = 2π

∫ a

0
ρdρ(I/πa2) = I, independent of a we define the current density of a

loop as j = lima↘0 ja.
We next show that an alternative representation of the limiting distribution is given by

j(x) = I

∫
dt ẋ(t)δ(x(t)− x). (2.17)

S

I

xn

x‖

x(t)

n

To prove this assertion, let us again demonstrate that the
total current through any plane S cutting through the curve is
given by I. Choosing coordinates so that at time t0 the curve
pierces S at x = 0 and denoting the unit vector normal to S
by n, we obtain

IS =

∫
S

dσ n · j = I

∫
dt

∫
dσ ẋn(t)δ(x∥(t))δ(xn(t)) =

= I

∫
dt

∫
dσ ẋn(t)δ(x∥ − x∥(t))

δ(t− t0)

dtxn(t)
= I

∫
dσ δ(x∥(t0)) = I,

where x∥ is the two–dimensional in–plane component of x and we used (2.15).

2.2.5 Integral form of the Maxwell equations

▷ Math. To prepare our discussion below, we recapitulate the laws of Stokes and Gauß, and
introduce a few more integral theorems of vector analysis.

Gauß’ law: Let S be a smooth orientable and closed surface embedded in R3. Let v : U → R3

be a vector field where the support U ⊃ V (S) and V (S) denotes the volume enclosed by S. Then∫
S
dσ v · n =

∫
V (S)

d3x∇ · v, (2.18)
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v

v n

n

dσ

S

.

Figure 2.2: Schematic on Gauß’s law

where n(x ∈ S) is a unit (|n| = 1) and outwardly directed vector at the point of the surface element
of S.

▷ Example: Consider a radially symmetric vector field v(r) = f(r)er, where er is the radial
unit vector and f an arbitrary function. Let S be a sphere of radius R centered at the origin r = 0.
Using polar coordinates, dσ = R2 sin θdθdϕ and n · er = 1, the integral of v over S is evaluated as∫

S
dσ v · n = f(R)R2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ = 4πR2f(R).

On the other hand (cf. section 8.1 for a discussion of vector differential operators in curvilinear
coordinate systems)

∇ · (fer) = ∇f · er + f∇ · er = f ′ + 2f/r.

Evaluating the r.h.s. of Gauß’ theorem∫
V (S)

d3x∇ · v =

∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dϕ (f ′(r) + 2f(r)/r) = 4π

∫ R

0
drdr(r

2f) = 4πR2f(R),

we obtain the same answer as above.

γ

S(γ)

v

ds
ds · v

Figure 2.3: Schematic on Stokes law

Stokes law: Let γ be a smooth closed path in R3 and S(γ) any surface bounded by γ. Further,
let v be a vector field defined on all of S (including its boundary ∂S = γ.) Then,∮

γ
ds · v =

∫
S(γ)

dσn · (∇× v). (2.19)
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▷ Example: Consider a vector v field with cylindrical symmetry, i.e. v = f(ρ)eϕ, where
cylindrical coordinates (ρ, ϕ, z) are implied. Integrating v over a circular contour γ of radius R
around the symmetry axis ρ = 0 of the problem, we obtain (exercise)∮

γ
ds · v = R

∫ 2π

0
dϕf(R) = 2πRf(R).

To obtain the same result by Stokes theorem, we compute

∇× v =
1

ρ

∂

∂ρ
(ρf(ρ))ez.

Thus, choosing for S(γ) a circular disc with radius R (dσ = ρdρ dϕ; n = ez),∫
S(γ)

dσ n · (∇× v) =

∫ 2π

0
dϕ

∫ R

0
ρdρ

1

ρ

∂

∂ρ
(ρf(ρ)) = 2πRf(R),

In agreement with the results of the line integration.

Notice that both Stokes and Gauß’ law relate the integral of the derivative of a vector field over
a certain manifold to the integral of the same vector field over the boundary of the manifold. The
laws above are but two representatives of a family of identities of this type.12 All these laws take
the symbolic form ∫

M
dω =

∫
∂M

ω, (2.20)

where M is a manifold with boundary ∂M and ’d’ stands for a derivative operation acting on some
differentiable entity ω. (In fact, the notation above is not quite as symbolic as it may seem. It is
shown in the theory of differential form that both (2.18) and (2.19) law derive from a general variant
of Stokes theorem which takes exactly the form of (2.20).)

From Gauß’s law one may derive a number of secondary integral identities which will be useful
below: Applying (2.18) to a vector field of the form v = θ∇ψ, where θ and ψ are functions, and
using the identity ∇ · (θ∇ψ) = ∇θ · ∇ψ + θ∆ψ we obtain Green’s first identity∫

S
dσ θ∂nψ =

∫
V (S)

d3r (∇θ · ∇ψ + θ∆ψ) , (2.21)

where ∂nψ is the derivative of the function ψ in the direction normal to the surface S at the point
of the surface element dσ.

Writing down Green’s first identity with the role of θ and ψ interchanged and subtracting it from
(2.21), we obtain Green’s second identity∫

S
dσ (θ∂nψ − ∂nθψ) =

∫
V (S)

d3r (θ∆ψ − ψ∆θ) . (2.22)

——————————————–

12... the simplest example of which is the one–dimensional identity
∫ b

a
dx∂xf = f(b)− f(a). (Think of the

function f as a one–component vector field and the interval [a, b] as an integration domain with ‘boundary’
∂[a, b] = {a} ∪ {b}.)
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Following the logics of the previous section in reverse order, we derive ‘global’ representa-
tions of the Maxwell equations. Historically, the – experimental — discovery of these global
laws preceded the formulation of the laws of ED as differential equations by Maxwell.

▷ Math. Consider a vector field v : R3 → R3. We denote the scalar field f(x) = ∇ · v as
the source field of v. Motivation: Loosely speaking, the integral of v over any closed surface is
determined by the net amount of v poking outwardly through that surface. At the same time, this
integral (Gauß’ law) equals the integral of f over the volume enclosed by the surface. Imagining
outwardly directed field lines13 as emanating from some ‘sources’, we identify f(x)dV as the source–
contents of the volume element dV .

v

v

g

f ≠0

≠0

Figure 2.4: Schematic on the source and the circulation contents of vector fields

Similarly, the vector field g ≡ ∇ × v is called the circulation field of v. The field v contains

circulating contributions if, for some closed contours γ,
∮
γ ds · v ̸= 0. Since (Stokes)

∮
γ ds · v =∫

S(γ) dσ n · g, a non–vanishing of g implies that curves with this property exist (chose γ to be a

small curve winding around a region in space where g is non–vanishing and of definite sign.)

——————————————–

D

ρ

H

D

I

S
γ

B

E
dtB

a) b) c) d)

B

Figure 2.5: Schematic on the integral form of Maxwells equations. a) Gauß’s law, b) circulation of
the magnetic field, c) absence of magnetic charges, d) law of induction

13Loosely speaking, the field lines of a vector field are curves in space locally tangent to the field (i.e. a
visualization of the field is obtained by attaching arrows tangent to the field lines.) The more precise definition
goes as follows: For each point x in space define a curve Φx(t) such that dtΦx(t)

∣∣
t=0

= v(x). Φx(t) traces

out the field line through x. The map R3 × R → R3, (x, t) 7→ Φx(t) is called the flux of the vector field.
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Gauß’ law (physics)

According to experimental observation,14 electric charges are the sources of the electric (dis-
placement) field: ∫

S

dσD · n = 4π

∫
V (S)

d3x ρ = 4πQV (S), (2.23)

where S is an arbitrary closed surface, i.e. the amount of field lines leaving the volume V (S)
is determined by the charge QV (S) inside V (S) (cf. Fig. 2.5 a).) Eq. (2.23) is what physicists
denote as Gauß’s. The qualifying attribute ‘(physics)’ is appropriate because the empirical
law (2.23) and the mathematical law (2.18) need to be distinguished.

Applying (2.18) to the l.h.s. of this equation and using the arbitrariness of S (cf. the analo-
gous argumentation on currents in the previous section), we obtain the Maxwell equation (2.1).

Circulation of the magnetic field

Consider a surface S in space pierced by electric current. Experimentally, one finds that the line
integral of the magnetic15 field circulating around that surface equals that current. Likewise,
a surface pierced by non–vanishing temporally fluctuating displacement field also supports a
magnetic field circulation (cf. Fig. 2.5 b).) These observations are summarized in the law∫

S(γ)

dσ

(
4π

c
j+

1

c
dtD · n

)
=

∫
γ

ds ·H. (2.24)

Application of Stokes law to the r.h.s. obtains ∀S :
∫
S
dσ (∇×H−c−1dtD−4πc−1j) ·n = 0,

i.e. the Maxwell equation (2.2).

Absence of magnetic charges

To the best of our knowledge no isolated magnetic charges exist in the universe; the net flux16

of the magnetic field through any closed surface equals zero: ∀S :
∫
S
dσB ·n = 0 (cf. Fig. 2.5

c).) Application of Gauß’ law to this equation yields the Maxwell equation (2.4).

Law of induction

Consider a time dependent magnetic induction B piercing a surface S bounded by a curve γ.
One observes that the circulation of the electric field strength around γ is determined by the

14Experimentally, the field D is determined by measuring the force F = ϵ−1
0 qD locally acting on a test

charge q.
15The magnetic field can be determined, e.g., by measuring the torque exerted on a current loop.
16It is customary to denote the integral ΦS(v) =

∫
dσ n · v of a vector field over a surface S as the flux of

the field through S. Do not confuse this quantity with the flux Φ introduced previously!
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time derivative of the flux of B through S (cf. Fig. 2.5 d)):∮
γ

ds · E = −1

c

∫
S

dσ n · dtB.

Applying Stoke’s theorem to the l.h.s. of this equation, we find ∀S :
∫ ∫

S
dσ n·(E+c−1dtB) =

0, equivalent to the Maxwell equation (2.3)
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3.0 Electromagnetostatics

So far: discussed mathematical structure of Maxwell equations and outlined connection to
experimentally observable phenomena. Now: develop solution theory of Maxwell equations.

3.1 Decoupling of the Maxwell equations in the static
limit

Main source of complexity: coupling of the four equations to an in–separable entity. Drastic
simplifications arise in cases where the fields are static: ∂tE = · · · = ∂tH = 0. What are
necessary and sufficient conditions for time–independence of the fields?

Equation (2.1) implies that ∇ · ∂tD = 4π∂tρ, i.e. ∂tD = 0 necessarily implies ∂tρ = 0,
the time–independence of all charge distributions. This in turn enforces (Eq. (2.10)) that
∇ · j = 0, i.e. in the static limit there are no sources of electric currents, all field lines of the
current field are closed. Differentiating the Maxwell equation (2.2) w.r.t. time, and noting
that ∂tH = ∂tD = 0 we further conclude that the current flow is stationary, ∂tj = 0. To
summarize, we find that

The time–independence of the EM fields necessarily implies the
stationarity of charge densities, ∂tρ = 0, and of the currents ∂tj = 0;

in the static limit, the current–field is source–free, ∇ · j = 0.

Arguing in reverse, we consider the Maxwell equations for stationary sources ∂tρ = 0
and ∂tj = 0. In the following we will show that under these conditions stationary solutions
E, . . . ,H can be found. Adopting stationarity of the fields as a working hypothesis, we obtain
the static limit of the Maxwell equations

∇ ·D = 4πρ,

∇× E = 0, (3.1)

∇×H =
4π

c
j,

∇ ·B = 0. (3.2)

25
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Importantly, the set of equations decomposes into two groups, one describing the ‘electric
sector’ of the theory, with the charge density as a source, the other the magnetic sector, with
the current density as a source.

3.2 Electrostatics

3.2.1 Formulation of the problem

We begin by exploring the theory of static electric fields, as described by the basic equations
(3.1) (plus the vacuum relation D = ϵ0E.) Exploiting that we are working in the Gauß
system, we will set ϵ0 = 1 throughout and indicate the ϵ0–dependence of the theory only in
final formulae.

For an electric field defined in a simply connected region of space,1 the fact that E is
circulation–less, ∇×E, implies2 that E can be written as the gradient of a scalar function ϕ:

E ≡ −∇ϕ , (3.3)

where ϕ : R3 → R,x → ϕ(x) is the scalar potential of the theory. Substituting this ansatz
into the first of Eqs.(3.1), we obtain the Poisson equation

∆ϕ = −4πρ. (3.4)

Once this equation is solved, the problem is under control for a (Eq. (3.3)) will yield the
electric field strength E.

▷ Info. For a given point in space, x0, the equation ϕ(x) = ϕ(x0) defines a two–dimensional

surface in the vicinity of x0 – an equipotential surface. The electric field E(x0) points in the

direction of the steepest descent of ϕ at x. i.e. it is perpendicular to the equipotential surfaces of

the problem. Once the potential is known we may, thus, easily visualize the electric field.

——————————————–

1A subset U ⊂ Rd is simply connected if every closed curve in it can be smoothly contracted to zero. For
example, the full space R3 is simply connected, but R3 \ {0, 0,R}, i.e. space with the z-axis removed, is not.
In the latter case, curves winding around the z-axis cannot be shrunk to a point.

2Proof: For a given point in space r, an arbitrary fixed reference point r0, and an equally arbitrary curve γ
connecting r0 and r, define ϕγ(r) ≡ −

∫
γ
ds · E. Then ∇ϕ(r) = −E(r). To see that ϕγ ≡ ϕ is independent

of the choice of γ, compute ϕγ − ϕγ′ =
∮
γ−γ′ ds ·E =

∫
S(γ−γ′)

dσ n · ∇ ×E = 0, where γ − γ′ is the closed

curve obtained by concatenating the reverse of γ′ with γ. Notice, however, that the surface construction
requires that ∇×E be defined everywhere on S(γ−γ′), and this is where the condition of simple connectivity
comes in. As an example, consider the vector field v =

−yex+xey

(x2+y2) , defined everywhere except on the z-axis,

where x = y = 0. It is straightforward to verify that ∇ × v = 0. However, v is not a gradient field. This
can be checked by verifying that

∮
s · v = 2π along any path enclosing the z-axis. The fact that the domain

of definition of v is not-simply connected invalidates the above construction (surfaces bounded by curves
encircling the z-axis are pierced by the z-axis, i.e. ∇× v is not defined on all of them.)
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Thus, our central objective will be to develop solution strategies for the Poisson equation.
For later reference we note that in the case of a vanishing charge distribution, ρ = 0, the
Poisson equation is denoted as Laplace equation

∆ϕ = 0. (3.5)

▷ Math. As a first useful application of the δ–function, we introduce the concept of Green
functions. Suppose we want to solve a linear differential equation Lf = g, where f, g ∈ Cn(U ⊂
Rd,R) are functions (f is the solution we are after) and L is a linear differential operator, i.e. a
an expression of the type

L = h(0)(x) +
∑
i

h
(1)
i (x)∂xi +

∑
ij

h
(2)
ij (x)∂2xixj

, (3.6)

where the h’s are some functions and the derivatives act on the argument function f . Notice that
L(c1f1 + c2f2) = c1Lf1 + c2Lf2, i.e. L acts linearly in function space (hence the denotation linear
differential operator.) Many problems in electrodynamics (and for that matter quantum mechanics)
effectively reduce to the solution of linear partial differential equation of the type above. For example,
the Poisson equation (3.4) belongs to this category (L↔ −∆, f ↔ ϕ, g ↔ 4πρ.)

The weak spot of a linear differential equation is just its linearity. If f1 and f2 solve the equation
for g1 and g2, respectively, the function f1+f2 will be a solution for the inhomogeneity g1+g2. This
feature suggests to first solve the equation for functions g which are as simple as possible. Arguably
the simplest function at all is the δ–function: except for one point in space it vanishes everywhere, i.e.
it is maximally structureless. We may employ the δ–function to represent an arbitrary inhomogeneity
as

g(x) =

∫
ddx′ δ(x− x′)g(x′),

i.e. as a sum (integral) over point–localized inhomogeneities centered at x′ of unit–normalization
(
∫
δ = 1) each carrying a weight g(x′). It is, thus, a good idea to first solve the equation

LG(x,x′) = δ(x− x′), (3.7)

where the derivatives in L act only on the argument x. The function — a distribution, in fact — G
is known as the Green function of the differential equation. Once the Green function is known, the
general solution of the differential equation can be obtained as by summation (integration) over the
prototype solutions G:

f(x) =

∫
d3x′G(x,x′)g(x′).

Indeed, by direct substitution, Lf(x) =
∫
d3x′ LG(x,x′)g(x′) =

∫
d3x′ δ(x−x′)g(x′) = g(x). The

linearity of the problem thus enables us to break down the solution of the general problem into the
(generally much simpler) solution of the point–inhomogeneity problem, plus a subsequent integration.

Now, one may ask whether Eq. (3.7) does have a unique solution at all. Referring for a

substantiated discussion to below, we here merely note that the solution becomes unique once

appropriate boundary conditions for G(x,x′)
∣∣
x→∂U

at the boundaries of the domain of definition are

specified. For unspecified boundary conditions, the solution is not unique: For any G, the function

G+F will be a solution as well, provided F solves the homogeneous problem LF (x) = 0. Differential
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equations whose solution requires the specification of data at the boundaries of the domain of support

are known as boundary value problems.

——————————————–

3.2.2 Boundary value problem I: infinite space

Potential created by a static charge distribution

We next specialize to the case of the Poisson equation. Using the notation of the previous
section, L = −∆, f = ϕ and g = 4πρ. In this section, we will consider the Poisson equation
in infinite three–dimensional case, i.e. the domain of definition of the differential equation
is U = R3. As for the boundary conditions to be imposed on Φ, we require — on physical
grounds — that the electric field E created by any spatially localized charge distribution vanish
at infinity (for otherwise infinitely separated charges would exert a force on each other.) This
condition is satisfied if ϕ(r → ∞) → 0, i.e. ϕ vanishes at the boundaries of U , a ball of
infinite radius. (We will see below, that this condition is, in fact, necessary to ensure the
vanishing of the electric field.)

According to the logics developed in the previous problem, the solution of the problem is (up
to an integration) equivalent to the computation of the Green function of electrostatics,

∆G(x,x′) = −δ(x− x′). (3.8)

Physically, G(x,x′) is proportional to the potential of a point charge at x′ felt at x. Notice
that this potential can depend only on the difference vector, x−x′, i.e. G(x,x′) = G(x−x′).

We next discuss two strategies for solving Eq.(3.8):

Solution strategy I: (Physics inspired but very restrictive.) Without loss of generality,
we chose coordinates such that x′ = 0. Physically, we expect G(x) = G(r) to depend only
on the distance to the origin.3 To determine the r–dependence of G(r) let us integrate the
vector field ∇G(r) = ∂rG(r)er (which is proportional to the electric field created by the point
charge at the origin, why?) over a sphere S of radius R centered at the origin x = 0 (cf. the
example on p ??:

∫
S
dσ n · ∇G = 4πR2∂RG(R) =

∫
V (S)

d3x ∇ · ∇︸ ︷︷ ︸
∆

G = −
∫
V (S)

δ(x) = −1.

Solving for G we obtain ∂RG(R) = −1/4πR2 which integrates to G(R) = 1/4πR. Switching
back to vectorial coordinates we obtain the important result

G(x,x′) =
1

4π

1

|x− x′| . (3.9)

Before discussing this any further, let us discuss the much more sophisticated

3More formally, this feature follows from the fact that both δ(x) and the Laplace operator ∆ are invariant
under rotations in space. Thus, the solution to ∆G(x) = δ(x) will be rotationally invariant, too.
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▷ Math. Recall that the Fourier transform of a function f ∈ Cn(Rd,R) is defined by

f̃(k) =
1

(2π)d

∫
ddx f(x)e−ik·x, (3.10)

(provided the integral exists.) Note: to enlarge the class of functions that can be Fourier transformed,
it is customary to generalize the definition above according to

f̃(k) = lim
ϵ→0

1

(2π)d

∫
ddx f(x)e−ik·x−ϵx2

.

Remarks: (a) every function f(x) that grows sub–exponentially for large |x| can be transformed. (b)
It is customary to suppress the convergence generating factor ϵ if it is not needed. (c) For notational
simplicity, we will often denote the Fourier transform by f instead of f̃ .

The function f(x) is retrieved by the inverse transformation4

f(x) =

∫
ddk eik·xf̃(k).

▷ Example: The function f(x) = 1 can not be transformed in the restrictive sense (3.10).
However

f̃(k) = lim
ϵ→0

1

(2π)d

∫
ddx f(x)e−ik·x−ϵx2

= lim
ϵ→0

1

(4πϵ)d/2
e−k2/4ϵ = δ(k),

where the last identity follows by comparison with (the d–dimensional generalization of) (2.14).
Indeed, for a general function the substitution of the inverse Fourier transform into (3.10) demands

f(k)
!
= 1

(2π)d

∫
ddx

∫
ddk eik·(x−x′)f(k′) which implies the important identity

1

(2π)d

∫
ddx eik·x = δ(k). (3.11)

Table 3.2.2 summarizes the most important features of the Fourier transform. (The proofs follow
readily from Eq. (3.10).):

In the last line, the convolution of two functions is defined as

(f ∗ g)(x) =
∫
ddx′f(x− x′)g(x′).

——————————————–

Solution strategy II: (more laborious but highly generalizable) Consider a general linear

4As with the x → k direction of the transformation, the inverse transform should be understood as

f(x) = lim
ϵ→0

∫
ddk eik·x−ϵk2

f̃(k).
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function trafo. function trafo.

f(x) f̃(k) f ∗(x) f̃ ∗(−k)

f(x) + g(x) f̃(k) + g̃(k) af(x) af̃(k)

∂xj
f(x) ikj f̃(k) − ixjf(x) ∂kj f̃(k)

1 δ(x) δ(x) (2π)−d

f(x+ a) e−ik·af̃(k) e−ix·af(x) f̃(k+ a)

f(ax) |a|−df̃(k/a) (f ∗ g)(x) (2π)df̃(k)g̃(k)

Table 3.1: Important features of the Fourier transform

partial differential equation Lf = g with constant coefficients, i.e. one where the differential
operator L (cf. Eq. (3.6)) contains only constant functions h = const. . (Our Poisson
equation belongs to this family.) Differential equations of this type can readily be solved5 by
Fourier transformation:

Consider the equation (summation convention)(
h(0) + h

(1)
i ∂xi

+ h
(2)
ij ∂

2
xixj

+ . . .
)
f(x) = g(x).

Fourier transforming both sides of this equation we obtain (h(0)+ih
(1)
i ki−h(2)ij kikj+. . . )f̃(k) =

g̃(k) which is solved by f̃(k) = g̃(k)/(h(0)+ih
(1)
i ki−h(2)ij kikj+. . . ). A solution of the equation

is thus given by

f(x) =

∫
ddk eik·x

g̃(k)

h(0) + ih
(1)
i ki − h

(2)
ij kikj + . . .

,

i.e. the problem has been reduced to the computation of an integral. We write ‘a’ solution
instead of ‘the’ solution because (for unspecified boundary conditions) to any f one may add
a solution f0 of the homogeneous equation Lf0 = 0. Fourier transforming this latter equation,
we obtain (h(0) + ih

(1)
i ki − h

(2)
ij kikj + . . . )f̃0(k) = 0 which has the solution (think why)

f̃0(k) = h(k) δ(h(0) + ih
(1)
i ki − h

(2)
ij kikj + . . . ).

We illustrate the general procedure on the example of the Poisson equation (3.8). Fourier
transforming the equation, and setting x′ = 0 as before, we obtain the

G̃(k) =
1

(2π)3k2
.

5In the jargon of differential equations, ‘solution’ means transformation to a form that may still involve an
integral operation.
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The next and final task is to compute the inverse transform of this expression:

G(x) =
1

(2π)3

∫
d3k

eik·x

k2
=

1

(2π)2

∫ π

0

sin θdθ︸ ︷︷ ︸
−d(cos θ)

∫ ∞

0

k2dk
eikr cos θ

k2
=

=
1

2π2

∫ ∞

0

dk
sin kr

kr
=

1

2π2r

∫ ∞

0

dk
sin k

k
=

1

4πr
,

where in the second equality we introduced polar coordinates in k–space, k ↔ (k, ϕ, θ) (with
the vector x lying on the axis θ = 0) and in the final equality used that

∫∞
0
dk sin k

k
= π/2.

Generalizing to arbitrary values of the reference vector x′, we obtain G(x−x′) = 1/4π|x−x′|
in agreement with our earlier result (3.9).

According to the general scheme developed on p 27, the potential created by a general
charge distribution is given by ϕ(x) = 4π

∫
d3x′G(x,x′)ρ(x′), or

ϕ(x) =

∫
d3x′

ρ(x′)

|x− x′| . (3.12)

Using that ∇|x − x′|−1 = −(x − x′)/|x − x′|3, the electric field created by the system of
charges is given by

E(x) =

∫
d3x′ ρ(x′)

x− x′

|x− x′|3 . (3.13)

▷ Example: The potential created by a set of N point charges qi at positions xi is obtained by
integration over ρ(x) =

∑N
i=1 qiδ(x− xi),

ϕ(x) =

N∑
i=1

qi
|x− xi|

. (3.14)

▷ Example: Consider an electrostatic dipole, i.a. a system of two opposite charges of equal
strength ±q/a at positions ±an′, where n′ is a unit vector. (For convenience we place the center
of the dipole at the coordinate x = 0.) The corresponding charge distribution is given by ρ(x) =
q
a(δ(x−an′/2)− δ(x+an′/2)). Assuming that |x| ≫ a, the potential created by the dipole is given
by

ϕ(x) =
q

a

(
1

|x− an′/2| −
1

|x+ an′/2|

)
=
qn′ · x
|x|3 +O((a2/|x|)2)
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In the limit a → 0 — two infinitely charged and infinitesimally sepa-
rated point charges — the source configuration becomes a point dipole.
The product qn′ ≡ d is denoted its dipole moment. The potential
created by a point dipole at the coordinate origin is given by

ϕ(x) =
d · x
|x|3 , (3.15)

i.e. it is anisotropic and decays doubly as fast as the potential of a point charge (see the figure for
a schematic of the equi–potential lines of a dipole d.) Taking the gradient of this expression, we
obtain the electric field of the dipole,

E(x) =
3n(n · d)− d

|x|3 , (3.16)

where n is the unit vector in x–direction.

As a corollary, we note that our analysis above implies the identity,

1

|x|
F.T.−→ 1

2π2

1

k2
. (3.17)

Using this formula we may solve the Poisson equation directly (i.e. without using Green
functions) by Fourier transformation techniques: Fourier transformation of ∆ϕ = −4πρ yields
k2ϕ(k) = 4πρ(k) or ϕ(k) = 4πk−2ρ(k) = (2π)3(2π2k2)−1ρ(k). Now, we know that (2π)d

times the product of two functions in Fourier space transforms to convolution of the real space
representations. Thus,

ϕ(x) =

(
1

|x| ∗ ρ
)
(x) =

∫
d3x′

ρ(x′)

|x− x′| .

Energy considerations

There is no a priori rule how to attribute an ‘energy’ to an electromagnetic field. However,
we do know of a mechanics-inspired prescription how to compute the energy of a system of
(point) charges: Consider a system of N point charges at positions xi. To a configuration of
N = 1 charges we assign the energy E1 = 0.

▷ Info. There is, of course, some arbitrariness in assigning energy zero to a single non–vanishing

charge in vacuum. This charge will create a finite electric field and it is, somehow, counter–intuitive

to treat this system as one void of ‘energy’. However, every attempt to meaningfully assign a ‘self–

energy’ to point charges in classical electrodynamics leads to unphysical divergences. The problem

of the infinite self–energy finds it resolution only in quantum electrodynamics. All we can do in

the classical context is to artificially normalize the infinite constant corresponding to the self–energy

to zero.

——————————————–
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The mechanical energy (i.e. the work to be done against the force field F = q2E = −q2∇ϕ,
where ϕ is the potential created by charge no.1) required to bring a second charge from infinity
to its destination coordinate x2 is given by E2 = q2ϕ(x2 − x1) = q2q1/|x1 − x2|. Bringing in
a third charge against the potential of the two charges that have already been placed will cost
the additional energy q3q1/|x1−x3|+q3q2/|x2−x3|, i.e. the total energy required to build up
a three charge configuration is given by E3 = q2q1/|x1−x2|+q3q1/|x1−x3|+q3q2/|x2−x3| =∑

1≤i<j≤3 qiqj/|xi − xj|. Iterating this procedure, we conclude that the mechanical energy of
an N–charge configuration is given by

E =
∑

1≤i<j≤N

qiqj
|xi − xj|

=
1

2

N∑
i ̸=j

qiqj
|xi − xj|

. (3.18)

Thinking of a continuum charge distribution ρ as a (dense) accumulation of point charges,
it is evident that the continuum generalization of this result, i.e. the energy of a charge
distribution is given by

E =
1

2

∫
d3xd3x′

ρ(x)ρ(x′)

|x− x′| . (3.19)

▷ Info. However, what happened to the exclusion rule i ̸= j? The problem of self energies
relates to the divergence of the denominators 1/|x − x′| as the points x and x′ approach each
other. (Gedanken experiment: Think of a point charge q as two charges q/2 infinitely closely
spaced. The energy of this configuration, computed according to (3.18), diverges.) However, for
any continuous charge distribution, the integral (3.19) is finite, i.e. there is no problem with the
potentially dangerous regions x ≃ x′ where the arguments x and x′ approach each other. To see
this, consider the contribution to the integral from regions where |x− x′| < a is small:∫ ∫
|x−x′|<a

d3xd3x′
ρ(x)ρ(x′)

|x− x′| ≃
∫
d3xρ2(x)

∫
|y|<a

d3y
1

|y| =
∫
d3xρ2(x)4π

∫ a

0
y2
dy

y
=

∫
d3xρ2(x)2πa2,

which is finite: The ’smallness’ of the three–dimensional volume element y2dy sin θdθdϕ over–

compensates the divergence of the denominator. We thus conclude that (3.19) adequately describes

the energy of the continuum charge distribution and that the problem of the self energy does not

arise.

——————————————–

An interesting reformulation of the energy formula (3.19). Using Eq. (3.12),

E =
1

2

∫
ddxϕ(x)ρ(x) = − ϵ0

8π

∫
ddxϕ(x)∆ϕ(x)

(2.21)
=

ϵ0
8π

∫
ddx∇ϕ(x)∇ϕ(x) =

=
1

8π

∫
d3xD(x) · E(x),

where, for later reference, we have re–installed the dielectricity constant ϵ0 = 1. Remarkably,
the last representation no longer makes reference to the matter–origin of the electric field; it
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assigns an energy to the electric field as such. We will, thus, use

E =
1

8π

∫
d3xD · E. (3.20)

as a definition of the total energy of the electric field. The energy density, i.e., the energy
per volume element is given by uE(x) ≡ 1

8π
(D ·E)(x). Later on we will see that many other

characteristics of matter distributions — momentum, angular momentum, etc. — allow for a
generalization to the electromagnetic context.

Surface charges and dipole layers

In many applications one is met with charge distributions residing on geometric structures of
dimensionality lower than three — charged wires, or surfaces, planar accumulations of dipoles,
etc. We here discuss two important subspecies, viz. surface charge distributions and dipole
layers.

Surface charges: Consider a charged quasi–two dimensional surface. We idealize this
object by a truly two–dimensional surface, S. (Exercise: invent a limiting process, similar
in spirit to our discussion of the point dipole above, whereby the two–dimensional structure
emerges from a charge distribution of finite thickness.) We define η(x)dσ to be the charge
residing in the surface element dσ at x. The electric field created by the surface can be
obtained by obvious generalization of the general formula (3.13):

E(x) =

∫
S

dσ η(x′)
x− x′

|x− x′|3 . (3.21)

While Eq.(3.21) fully solves the problem, it does not tell us immediately how the electric
field will actually behave in the immediate vicinity of the surface. Information of this type
is conveniently obtained by running a few ‘tests’ based on the integral form of the Maxwell
equations:

D

γ

γ

S

S

S

E

+

+

γ
–

To this end, consider a little pill box D whose upper
lid, S+ (lower lid, S−) is above (beneath) the surface S
and whose height is assumed to be vanishingly small. We
assume that the two surfaces S± are aligned parallel to S
and that they are so small that variations of the electric
field along the lids S± are negligible. However, crucially
we anticipate jumps in the field vector upon crossing the
surface, S. Under these conditions, the surface integral
of E over D can be evaluated as

∫
D
E ≃ δS(E(x+) −

E(x−))·n ≡ δS∆E⊥(x), where δS is the area of S±, x± ∈ S± are points infinitesimally above
(below) the surface, n is the unit normal vector to S (and S±) at x, and ∆E⊥(x) denotes
the jump in the normal component of E at x. At the same time, by the Maxwell equation
(2.23), the surface integral equals

∫
V (D)

d3x∇·E = 4π
∫
V (D)

d3x ρ(x) = 4π
∫
V (D)∩S dση(x) ≃
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4πδSη(x). Comparing the two results we find

∆E⊥(x) = 4πη(x), (3.22)

i.e. the component of the electric field normal to the surface jumps by an amount set by the
surface charge.

To understand the behaviour of the tangential component, E∥, we integrate E over a small
closed contour γ comprising two stretches γ± infinitesimally above/below S. Computing the
line integral under the same assumptions as above, we obtain

∮
γ
ds ·E ≃ l(E∥(x+)−E∥(x−)),

where l denotes the length of γ± and the contribution to the line integral from the stretches
normal to S has been neglected. However, by Eq. (??), (or, equivalently, the condition
∇× E = 0), this integral equals zero, i.e.

∆E∥(x) = 0, (3.23)

the tangential component of the electric field is continuous across S. Altogether, we obtain a
profile of E as indicated qualitatively in the figure.

n

S

dipole layers: Dipole layers are quasi two–dimensional
configurations S of stacked dipoles. The individual dipole
moments d ∥ n are oriented normal to the surface (and
uniformly oriented, n · x > 0, say.)

▷ Info. Dipole layers are systems of considerable applied

relevance: many organic or biological molecules carry a

non–vanishing dipole element. Membranes formed by an effectively two–dimensional planar accumu-

lation of such molecules represent dipolar layers.

——————————————–

Let η(x′)ndσ be the dipole moment carried by a surface element dσ at x′. According to

(3.15), the potential created by this element is given by dϕ(x) = dσ η(x′)n·(x−x′)
|x−x′|3 . The full

potential created by the layer is given by

ϕ(x) =

∫
S

dσ η(x′)
n · (x− x′)

|x− x′|3 .

For a discussion of the potential ϕ, we refer to [1].

x

x’
ρ

Figure 3.1: A charge/observation point configuration that qualifies for a multipole expansion. Dis-
cussion, see text.



36 CHAPTER 3. ELECTROMAGNETOSTATICS

(Cartesian) multipole expansion

Assume we observe a spatially localized charge distribution ρ from a very remote point x.
(‘Remote’ means that |x| ≫ max{|x′||ρ(x′) ̸= 0}, where it is assumed that the origin of
the coordinate system is chosen somewhere in the support of ρ, i.e. |x| by far exceeds the
extent of the charge distribution, cf. Fig. 3.1.) The first thing we will notice is, of course,
the total charge carried by the distribution, Q =

∫
d3x′ρ(x′). Approaching the distribution

or, equivalently, increasing the resolution at which we monitor its potential, we might notice
that the charge is spread out inhomogeneously in space. E.g. even an overall neutral object
might be intrinsically polarized. In a sense to be made precise below, we might, thus, attribute
some vectorial dipole moment to the distribution. Approaching it further, we will be able to
resolve yet finer details in the spatial pattern of charge. This simple picture suggests that
the potential created by a charge distribution might be organized in a series whose individual
terms contain information on the spatial structure of the charge at (a) an increasing level of
detail whilst (b) decaying the more rapidly in space the higher their information content is. A
series of this type indeed exists and it is called the multipole expansion.

The most frequently applied forms of multipole expansions applied in practice utilize non-
cartesian coordinates and spherical harmonics, as discussed in the next section. We here
consider a simpler version which nevertheless illustrates the main principles. Since |x| ≫ |x′|
for all points x′ with ρ(x′) ̸= 0, we may expand the distance function as

1

|x− x′| =
1

r
+
xi
r3
x′i +

1

2

3xixj − r2δij
r5

x′ix
′
j + . . . . (3.24)

Substituting this expansion into (3.12), we obtain the ’cartesian’ variant of the multipole
expansion, ϕ = ϕ(0) + ϕ(1) + ϕ(2) + · · · ≡ ∑∞

l=0 ϕ
(l), where

ϕ(0)(x) =
Q(0)

r
, ϕ(1)(x) = Q

(1)
i

xi
r3
, ϕ(2)(x) =

Q
(2)
ij

2

xixj
r5

,

Q(0) =

∫
d3x′ ρ(x′),

Q
(1)
i =

∫
d3x′ ρ(x′)x′i,

Q
(2)
ij =

∫
d3x′ ρ(x′)(3x′ix

′
j − r′2δij),

This defines the series we have been looking for: The potential has been represented as a
series of ever more rapidly (the factor r−(l+1)) decaying contributions. The entire information
on the charge distribution is encoded in the multipole coefficients Q(l). In the next section,
we will show that the number of these coefficients, and hence the information carried on the
structure of the charge distribution, grows as 2l + 1 with l.6

6There is 1 = 2×0+1 coefficient Q(0) for l = 0, 3 = 2×1+1 coefficients Q
(1)
i for l = 1, and 5 = 2×2+1

coefficients Q
(2)
ij for l = 2. To understand the number 5, note the symmetry Q

(2)
ij = Q

(2)
ji and the ‘sum rule’∑

iQ
(2)
ii = 0.
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To better understand the physical meaning of the series, let us investigate the first few
contributions in more detail: The first contribution to the multipole expansion is given by

ϕ(0)(x) =
Q(0)

r
,

where the monopole moment Q0 is just the integrated charge of the distribution. This
matches the expectation that from far away, the distribution looks like a structureless point
charge.

To understand the meaning of the l = 1 term, let us define the dipole moment of the
charge distribution as

d ≡
∫
d3x′ ρ(x′)x′. (3.25)

This vector generalizes the dipole moment introduced in the example on p 31 to arbitrary
distributions. At the same time, its coefficients di = Q

(1)
i equal the l = 1 coefficients of the

expansion. Reflecting this equality, we call Q
(1)
i the dipole coefficients of the expansion.

The formula

ϕ(1)(x) = Q
(1)
i

xi
r3

=
d · x
r3

, (3.26)

then shows that to next to leading order, internal structure of a charge distribution becomes
visible via its dipole moment. (This principle is often relevant in the observation of extrater-
restrial objects such as exoplanets.)

–

+

–

+

It is straightforward to construct charge distributions that carry neither monopole
nor dipole moments (see the figure for an example.) For such distributions, the

quadrupole moments Q(2)
ij define the dominant contribution to the series. The

five independent moments are obtained by weighing the charge distribution by monomials of
second order in the coordinates and integrating. The information stored in these coefficients
describes the spatial structure of the distribution beyond the information carried by the dipole
moment. The next order of the multipole moments, the seven independent octupole mo-
ments Q(3)

ijk create potentials decaying as r−4 and are, therefore, of lesser applied relevance.
(The same applies to yet higher orders in the expansion.)

To summarize the utility of the multipole expansion,

▷ it allows one to express the potential ϕ(x) created by a charge distribution in relatively
simple terms, viz. as a function of x rather than by the general integral (3.12) (which
has to be calculated for each point x anew.)

▷ The multipole moments can be used to conveniently characterize the characteristics of
a charge distribution. E.g. for a nucleus of approximately ellipsoidal shape, the dipole
and quadrupole moments carry information on its deviations from a perfectly spherical
geometry, etc.
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▷ Notice, however, that the value obtained for the multipole moments depend on the
choice of origin of the coordinate system. For example, for a point charge at x0, all
multipole moments will be non–vanishing unless we chose x0 to be the origin of the
coordinate system (which would, of course, be the most reasonable choice.)

3.2.3 Poisson equation in non–cartesian coordinates

Whenever a problem in electrostatics possesses an in–built symmetry — rotational symmetry,
cylindrical symmetry, etc. — its solution simplifies dramatically. To benefit maximally from
the presence of a symmetry one ought to formulate the Poisson equation in problem adjusted
coordinates, i.e. a coordinate system in which one or several coordinates remain invariant
under the action of the symmetry operation. Coordinate systems of outstanding practical
importance are the spherical and cylindrical coordinates.

We next formulate and solve the Poisson and Laplace equation in spherical coordinates.
This discussion will provide the basis of the multipole expansion, a concept of importance in
numerous applications in science and engineering ...

▷ Math. To prepare the analysis below, we need to introduce the notion of complete systems
of orthonormal functions, a concept of great practical relevance in electrodynamics (plus quantum
mechanics and many other areas of physics for that matter.)

A brief reminder of linear algebra: consider an n–dimensional real vector space V with scalar
product V × V → R, (v,w) 7→ ⟨v,w⟩. Let A : V → V be an operator that is symmetric w.r.t.
⟨ , ⟩, i.e. ∀v,w ∈ V : ⟨v, Aw⟩ = ⟨Av,w⟩. Then, (i) A can be diagonalized (by an orthogonal
transformation), i.e. there exists a basis of eigenstates va, a = 1, . . . , n with Ava = λava. (ii)
We may chose the va’s to be mutually orthogonal and normalized: ⟨va,vb⟩ = δab, i.e. {va}
is an orthonormal basis. (iv) An arbitrary element v ∈ V can be expanded in the basis {va}:
v =

∑n
i=a cava, where the coefficients ca are given by ca = ⟨va,v⟩.

Remarks: (a) The eigenbasis of A can be obtained by the Gram–Schmidt orthogonalization algo-
rithm. (b) Nowhere do we require that the scalar product be the trivial one. I.e. ⟨v,w⟩ = vigijwj ,
where gij may be an arbitrary symmetric non–degenerate matrix. (d) Keep in mind: whenever we
say “An operator A is symmetric”, what we mean, in fact, is “it is symmetric w.r.t. a specifically
chosen scalar product”. This scalar product can, but need not, be the standard one. Only in that
special case does the ‘symmetric’ operator assume the form of a symmetric matrix.

In functional analysis it is shown that, and under which conditions, the statements above afford
a generalisation to the case of infinite dimensional vector spaces. We will here naively7 formulate
this generalisation for those infinite dimensional spaces that are the most important with regard to
applications in physics: function spaces.

As mentioned earlier, the space of differentiable8 functions C(U,R) defined on some subset
U ⊂ Rd forms a vector space. In addition to differentiability we will usually also require integrability,
i.e. we will consider functions f ∈ L2(U), where L2(U) is the space of square integrable functions

7... means without discussing the crucial convergence criteria required to firmly establish the diagonalis-
ability of symmetric operators.

8In a somewhat sloppy notation we will use the symbol C to denote spaces of functions that are as often
differentiable as is required by the problem at hand.
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(
∫
U d

dx f(x)2 exists.) To keep the notation slim we will denote the intersection L2(U) ∩ C(U,R)
again by L2(U). Remark: to bridge the gap between function spaces and finite dimensional vector
spaces, imagine a function as the limit of a finite–dimensional object: We may approximate any
continuous function f : U → R by introducing a fine discretization (a ‘grid’) in U and assigning to
each of its base points xi ∈ U the discrete value f(xi). In the limit of an infinitely dense grid, the
discrete vector formed by all the values {f(xi)} contains information equivalent to the full function.
We may, thus, approximate any continuous functions by a sufficiently high–dimensional conventional
vector. This analogy is often useful.

Now, the vector space L2(U) can be equipped with a real scalar product. Indeed, it is straight-
forward to verify that

⟨ , ⟩ : L2(U)× L2(U) → R,

(f, g) 7→ ⟨f, g⟩ ≡
∫
U
ddx f(x)g(x)

satisfies the defining equations of a scalar product. (Do it!)
Importantly, however, the ‘standard’ scalar product above is not always the natural one. By way

of example, consider the space of functions defined on the two–sphere S2. Let us parameterize S2

by the standard set of coordinates, U = {(θ, ϕ) ∈ [0, π[×[0, 2π[}.9 The ‘natural’ scalar product on
the two–sphere is given by

⟨f, g⟩ =
∫ 2π

0
dϕ

∫ π

0
sin θdθ f(θ, ϕ)g(θ, ϕ), (3.27)

i.e. it accounts for the surface area element of the sphere.10

Now, consider a linear differential operatorD acting in L2(U). (Alluding to the discretised picture
above, we may think of D as a high–dimensional matrix; approximating derivative operations by finite
differences, D does, literally, assume the form of a matrix acting on the discrete approximation of
functions.) An interesting situation arises if D is symmetric w.r.t. the scalar product on the function
space, i.e. if ⟨f,Dg⟩ = ⟨Df, g⟩, or∫

ddx f(x)g̃(x)(Dg)(x) =

∫
ddx (Df)(x)g̃(x)g(x),

where g̃ is the function defining the metric. Under these circumstances, the operator D possesses a
complete system of eigenfunctions {fn}, i.e. functions obeying the (differential) equationDfn(x) =
λnfn(x). These functions are mutually orthogonal and can be normalized: ⟨fn, fn′⟩ = δnn′ . Func-
tions f ∈ L2(U) can be expanded in the set {fn},11

f(x) =
∑
n

⟨f, fn⟩ fn(x).

9Critical readers will object that U does not parameterize the full sphere; a line from the north pole to the
south pole is excluded. This, however, does not play a role in our present discussion.

10Yet more generally, one might even consider scalar products of the form ⟨f, g⟩ =∫
ddxddx′ f(x)g̃(x,x′)g(x′), where g̃(x,x′) = g̃(x′,x) is a symmetric function of two arguments. However,

constructs of this type usually do not appear in applications.
11In cases where U is an unbounded set, the set of eigenvalues {λn}, the so–called spectrum of the operator

D, may become (partially) dense. In this case, denoting the eigenfunctions f(k), where k is a continuous
index, the expansion assumes the form of an integral f(x) =

∫
dk⟨f(k), f⟩f(x). The orthonormalisation

condition assumes the form ⟨f(k), f(k′)⟩ = δ(k − k′). (Why?)
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▷ Example: Let U = [0, 1]. We consider the space of functions L2(U) subject to the constraint
f(0) = f(1) = 0 (‘Dirichlet boundary conditions’). Let ⟨f, g⟩ ≡

∫ 1
0 dx f(x)g(x) be the standard

metric and consider the differential operator D = −d2x. The eigenfunctions of this operator are given
by fn(x) =

√
2 sin(πnx). They are orthonormalized,

∫ 1
0 dx fn(x)fn′(x) = δnn′ and the expansion

f(x) =
√
2
∑
n

cn sin(πnx), cn =
√
2

∫ 1

0
dx f(x) sin(πnx)

is the familiar Fourier series expansion.

▷ Example: Let U = [−1, 1] and D = −dx(1 − x2)dx. The operator D is symmetric w.r.t.
the standard scalar product on U . (Check it!) Its eigenfunctions DPl(x) = λlPl(x) are known as
Legendre polynomials. The first few Legendre polynomials are given by

P0(x) = 1 P1(x) = x,

P2(x) =
1

2
(3x2 − 1) P3(x) =

1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3) . . . .

The generalization to polynomials of arbitrary degree is given by Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, λl = l(l + 1). (3.28)

Breaking with the general rule of scalar product normalization, the Legendre polynomials are nor-
malized by Pl(1) = 1.

All we said below generalizes to the case of complex vector spaces. A complex scalar product
on a finite dimensional complex vector space is defined by ⟨v,w⟩ = v∗i gijwj , where g = {gij} is
an hermitian matrix: g = g†. Notice that ⟨v,w⟩ = ⟨w,v⟩∗. A general hermitian operator A,
⟨Av,w⟩ = ⟨v, Aw⟩ can (i) be diagonalized by an unitary transformation, i.e. there exists a basis
of eigenstates {va}, with Ava = λava, where λa ∈ R. Again, we may chose these states to
be orthonormal ⟨va,vb⟩ = δab. An arbitrary element v ∈ V can be expanded in the basis {va}:
v =

∑n
i=a cava, where the coefficients ca are given by ca = ⟨va,v⟩.

The generalization to the infinite dimensional case is obvious: consider the complex function
space, L2(U,C), i.e. the space of square integrable functions f : U → C. We define a scalar product
by

⟨f, g⟩ =
∫
U
ddx g̃(x)f∗(x)g(x),

where the weight function g̃ is real (why? Think of g̃ as the generalization of a diagonal hermitian
matrix.) A linear differential operator D is hermitian if ∀f, g ∈ L2(U,C) : ⟨f,Dg⟩ = ⟨Df, g⟩. The
eigenfunctions, fn, of an hermitian differential operator form an (orthonormalizable) complete set.
An arbitrary function can be expanded in the basis {fn} as f =

∑⟨fn, f⟩ fn.

▷ Example: On the interval U = [0, 2π[ consider the space of functions f : U → C with
‘periodic boundary conditions’, f(0) = f(x → 2π). We chose the standard complex scalar product
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⟨f, g⟩ =
∫ 2π
0 dx f∗(x)g(x). The orthonormalized eigenfunctions of the differential operator D =

−d2x, fn(x) = (2π)−1/2 exp(inx), n ∈ Z form a complete set. The expansion

f(x) =
1

(2π)1/2

∑
n

cne
inx, cn =

1

(2π)1/2

∫
dx e−inxf(x)

is the familiar Fourier series expansion on U .

The table below summarizes a number of relevant identities on linear symmetric operators in

finite and infinite–dimensional vector spaces.

finite dimensional function spaces

real scalar product ⟨v,w⟩ = ∑
i vigijwj ⟨f, g⟩ =

∫
ddx g̃(x)f(x)g(x)

complex scalar product ⟨v,w⟩ = ∑
i v

∗
i gijwj ⟨f, g⟩ =

∫
ddx g̃(x)f ∗(x)g(x)

sym. of linear operator ⟨v, Aw⟩ = ⟨Av,w⟩ ⟨f,Dg⟩ = ⟨Df, g⟩
eigenvector/eigenfunction Ava = ϵava Dfn = λnfn

orthonormalisation ⟨va,vb⟩ = δab ⟨fn, fm⟩ = δnm

expansion v =
∑

a⟨va,v⟩va f =
∑⟨fn, f⟩ fn

Table 3.2: Identities on complete set of states in finite and infinite dimensional vector spaces.

——————————————–

Solution of the Laplace equation (spherical coordinates)

Consider the Laplace operator in spherical coordinates,

∆ = ∆# + r−2∆s,

∆# =
1

r
∂2r r, (3.29)

∆s =
1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2ϕ, (3.30)

where the derivatives act on everything to the right. Our first objective is to compute the
general solution of the Laplace equation

∆Φ(r, θ, ϕ) = 0,

for unspecified boundary conditions. In spite of its formidable appearance, the Laplace operator
has one weak spot: it is separable, i.e. the sum of three pieces each of which contains only
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derivatives w.r.t. one of the three coordinates. This suggests to represent the solution as a
product,

Φ(r, θ, ϕ) = U(r)P (θ)Q(ϕ).

Substituting this ansatz into the Laplace equation and multiplying by r2/UPQ, we obtain

U−1(r2∆#)U = −(PQ)−1∆sPQ.

Now the l.h.s./r.h.s. of this equation depends only on the variables r/(θ, ϕ). The only way
to satisfy this condition (think about it!) is to require that the two sides of the equation are
equal and constant. Denoting this constant by l(l + 1),12 we obtain the two equations

∆#U = l(l + 1)r−2U, (3.31)

∆sPQ = −l(l + 1)PQ. (3.32)

The first of these equations is controlled by the radial component of the Laplace operator.
Substituting the monomial ansatz U ∼ rα into the radial equation, we obtain the solution

U = a+rl + a−r−(l+1). (3.33)

The presence of two undetermined constants signals that we have, indeed, found the most
general equation of the (second order) differential equation for U . Notice that the first/second
term on the r.h.s. diverges for r → ∞/r → 0, i.e. the choice of the constants a± will be
dictated by the boundary conditions imposed on the Laplace equation for large/small values
of the radial coordinate.

Turning to the angular component of the Laplace operator, we may apply an argument
similar to the one used above to separate the problem into the solution of two ordinary
differential equations: multiplication of Eq. (3.32) by sin2 θPQ obtains

P−1(sin θ∂θ sin θ∂θ + l(l + 1) sin2 θ)P = −Q−1∂2ϕQ,

i.e. an equation whose l.h.s./r.h.s. depends only on θ/ϕ. Requiring constancy of both sides,
we obtain the two ordinary differential equations

d2ϕQ+m2Q = 0, (3.34)[
(sin θ)−1dθ sin θdθ + l(l + 1)−m2(sin θ)−2

]
P = 0, (3.35)

where m2 = const. . The first of these equations is solved by Q = exp(imϕ). In order for
Q to be single–valued, Q(ϕ → 2π) = Q(0), we must require m ∈ Z.13 Changing variables,
x = cos θ, the remaining, polar equation assumes the form

dx
[
(1− x2)dxP ] + l(l + 1)− (1− x2)−1m2

]
P = 0.

12Later on, we shall see that l is integer. The positivity of the constant l(l + 1) ≥ 0 is required by the
fact that the operator −r2∆# (regarded as an operator acting in the space of square integrable functions) is
positive definite.

13Notice that the set of functions {Qm} is a complete set on the interval [0, 2π], cf. the example on p 40.
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For m = 0, this equation collapses to the differential equation [dx(1− x2)dx + l(l+1)]P = 0
discussed in an example on p 40; its solutions are the Legendre polynomials Pl(x) ≡ Pm=0

l .

As for the general case, m ̸= 0, it turns out that solutions that are finite on the interval
[−1, 1] exist only if (a) l is integer and (b) limited to values l ≥ |m|. The solutions corre-
sponding to the allowed values m = −l,−l + 1, . . . , l of the azimuthal index, Pm

l , are called
Legendre functions. For positive m they are defined by

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x). (3.36)

The solutions for negative values of m are given by Pm<0
l = (−)m (l−m)!

(l+m)!
Pm
l .

Summarizing, we have found that the so–called spherical harmonics

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) exp(imϕ) (3.37)

solve the angular part of the problem, ∆sYlm = −l(l + 1)Ylm. A number of remarks on this
important family of functions:

We first note that the angular part of the Laplace operator, ∆s is symmetric w.r.t. the
natural scalar product on the two–sphere, (3.27). (prove it!) This means that its eigenfunc-
tions, viz. the family of functions Ylm ∝ Pm

l (cos θ)Qm(ϕ) form a complete set of orthogonal
functions on the sphere. Indeed, one can prove that∫ 2π

0

dϕ

∫ π

0

sin θdθ Y ∗
lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ . (3.38)

The unit–normalization of the r.h.s. determines the normalization factor in (3.37). The
eigenvalues λl = −l(l + 1) are (2l + 1)–fold degenerate, i.e. each Y m

l , m = −l, . . . , l has
eigenvalue l(l+1). Arbitrary functions on the sphere can be expanded in spherical harmonics
as14

f(θ, ϕ) =
∑
lm

alm Ylm(θ, ϕ), alm =

∫ 2π

0

dϕ

∫ π

0

sin θdθ Y ∗
lm(θ, ϕ)f(θ, ϕ). (3.39)

Eq. (3.39) entails the completeness relation

∞∑
l=0

l∑
m=−l

Y ∗
lm(θ

′, ϕ′)Ylm(θ, ϕ) = δ(ϕ− ϕ′)(sin θ)−1δ(θ − θ′). (3.40)

14The possibility to expand functions in this way motivates the denotation ‘spherical harmonics’: ‘spherical’
for we are on the sphere, ‘harmonics’ because the functions Ylm assume the role of the harmonic functions
∼ exp(ikx) on flat integration spaces.
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For the sake of concreteness, the explicit form of a few spherical harmonics is given below:

l = 0 : Y00 =
1√
4π
,

l = 1 : Y1,0 =

√
3

4π
cos θ,

Y1,±1 =

√
3

8π
sin θ exp(±iϕ),

l = 2 : Y2,0 =

√
5

16π
(3 cos2 θ − 1),

Y2,±1 = ∓
√

15

8π
cos θ sin θ exp(±iϕ),

Y2,±2 = ∓
√

15

32π
sin2 θ exp(±2iϕ). (3.41)

For later reference, we notice that

Yl0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ), Ylm(0, ϕ) = δm,0

√
2l + 1

4π
. (3.42)

Combining Eq.(3.37) with our earlier result (3.33) for the radial function, we conclude that
the general solution of the Laplace equation in spherical coordinates is given by

Φ(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

(a+lmr
l + a−lmr

−(l+1))Ylm(θ, ϕ), (3.43)

where the value of the constants a± is determined by the boundary conditions of the problem.

Addition theorem

At this point, it is a good idea to take a step back and ask where our so far analysis has got
us: Firstly, we have not yet solved the Poisson equation — the prime information carrier on a
source–ful system — in spherical coordinates. Second, it has not yet become clear enough why
it is worthwhile to invest the considerable effort to formulate the theory in spherical coordinates
at all. In this and the following section, we will address these two remaining issues in turn.
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θ′ θ

α

φ′ φ

x

y

z

x′ x

Rather than solving the Poisson equation di-
rectly in spherical coordinates, we will build on pre-
vious results, i.e. use that the Green function of
electrostatics (in unbounded space) is given by Eq.(3.9).
In the math block below we prove that the Green
function of infinite–space electrostatics, character-
istic distance function G(x,x′) = (4π|x − x′|)−1

affords the expansion

G(x,x′) =
∞∑
l=0

rl<r
−(l+1)
>

2l + 1

l∑
m=−l

Y ∗
lm(θ, ϕ)Ylm(θ

′, ϕ′),

(3.44)
where r</r> denotes the smaller/larger of the radial arguments r and r′. Eq.(3.44) is known
as the addition theorem. In the next section we will apply it to demonstrate the utility of
the spherical harmonics in applied electrostatics.

▷ Math. Before turning to the actual proof of the addition theorem, notice that the structure
of the r.h.s. of Eq. (3.44) is essentially fixed by the condition that for x ̸= x′ the l.h.s. solves the
Laplace equation, ∆x|x−x′|−1 = ∆x′ |x−x′|−1 = 0, where ∆x/x′ is the Laplace operator acting on
the argument x/x′. This means that as a function of both arguments x and x′, the r.h.s. must be
of the structure (3.43). To avoid divergences at large and small values of the arguments, resp., the
expansion in the larger/smaller of the two radial coordinates must not engage the dangerous powers

rl/r−(l+1). This fixes the structure of the radial term rl<r
−(l+1)
> .

However, what the schematic argument above cannot tell us is the precise form of the expansion
coefficients. To actually prove the theorem, we consider the Green function of electrostatics as
defined by (3.8). Let us assume that G admits an expansion of the type

G(x,x′) =
∞∑
l=0

l∑
m=−l

gl(r, r
′)Y ∗

lm(θ, ϕ)Ylm(θ′, ϕ′). (3.45)

Substituting this ansatz into the defining equation, using the polar representation, ∆ = ∆#+r−2∆s,
and that ∆sYlm = −l(l + 1)Ylm we obtain

∞∑
l=0

l∑
m=−l

(
∆# − r−2l(l + 1)

)
gl(r, r

′)Y ∗
lm(θ, ϕ)Ylm(θ′, ϕ′) = −δ(x− x′).

Now, δ(x−x′) = (r−r′)−2δ(r−r′)δ(ϕ−ϕ′)(sin(θ−θ′))−1δ(θ−θ′) (3.40)
= r−2δ(r−r′)∑∞

l=0

∑l
m=−l Y

∗
lm(θ′, ϕ′)Ylm(θ, ϕ).

Substituting this representation of the δ–function, we obtain

∞∑
l=0

l∑
m=−l

[(
∆# − r−2l(l + 1)

)
gl(r, r

′) + δ(r − r′)
]
Y ∗
lm(θ, ϕ)Ylm(θ′, ϕ′) = 0.

The completeness of the functions Ylm implies15 the vanishing of the ‘coefficients’ [. . . ] for all values

15This can be seen by multiplying the equation by Y ∗
l′m′(θ′ϕ′) and integrating (θ′, ϕ′) over the spherical

measure. Eq.(3.38) then implies [. . . ]Ylm(θ, ϕ) = 0 which means that the prefactor [. . . ] = 0.
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of (l,m) separately: (
−∆# + r−2l(l + 1)

)
gl(r, r

′) = r−2δ(r − r′).

Consider this equation for r ̸= r′. Then (cf. Eq.(3.33)), the function gl(r, . ) must be a solution of
the radial Laplace equation. We thus conclude that

r < r′ : gl(r, r
′) = a+1,lr

l + a−1,lr
−(l+1),

r > r′ : gl(r, r
′) = a+2,lr

l + a−2,lr
−(l+1),

where the coefficients will be functions of the second argument, r′. (Due to the presence of a δ–
function on the r.h.s. of the differential equation, we do not expect the coefficients to be continuous
across the point r = r′.) Since, however, the coefficients do not depend on the angular variables, we
may determine their value by considering specific configurations of (θ, . . . , ϕ′). Let us choose, then,
θ = · · · = ϕ′ = 0. (Vectors x and x′ aligned and pointing in z–direction.) Then |x−x′|−1 = |r−r′|−1

becomes a scalar distance function. For both r > r′ and r < r′, this function be expanded in a power

series: |r−r′|−1 r>r′
= r−1

∑∞
l=0(r

′/r)l and |r−r′|−1 r<r′
= r′−1

∑∞
l=0(r/r

′)l. Substituting these series
into the ansatz (3.45), using (3.42), and (3.9), we obtain

1

4π

∑
l

rlr′−(l+1) =
∑
l

(a+1,lr
l + a−1,lr

−(l+1))
2l + 1

4π
,

and a similar formula for r > r′. Comparison of the two sides of the equation leads to the identification
a+1,l = r

′−(l+1)/(2l+ 1), a−2,l = r′l/(2l+ 1) and a+2 = a−1 = 0. Summarizing these results in a single
formula, we arrive at

gl(r, r
′) =

rl<r
−(l+1)
>

2l + 1
.

Finally, substituting the function g back into our ansatz for the Green function and remembering

Eq.(3.9) we obtain the addition theorem.

——————————————–

3.2.4 Spherical multipole Expansion

The spherical harmonics and the addition theorem (3.44) provide us with the means to define
a spherical version of the multipole expansion. This is important because it is tailored to
situations with spherical or cylindrical geometry and defines the multipole expansion most fre-
quently used in practice (for example in atomic and nuclear physics, in accelerator engineering,
and many other disciplines.)

Conceptually, the spherical mltipole expansion follows the same logics as that formulated
in section 3.2.2. The difference is that this time we start out from the addition theorem
discussed in the previous section: Substituting Eq.(3.44) into (3.12), we obtain

ϕ(x) = 4π
∞∑
l=0

l∑
m=−l

r−(l+1)

2l + 1
Ylm(θ, ϕ) qlm, (3.46)

qlm =

∫ ∞

0

r′2dr′
∫ 2π

0

dϕ′
∫ π

0

sin θ′dθ′ ρ(r′, ϕ′, θ′) r′lY ∗
lm(θ

′, ϕ′),
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where the coefficients qlm define the spherical multipole moments of the charge distribution.
The potential is now represented as a series of ever more rapidly (the factor r−(l+1)) decaying
contributions, and the entire information on the charge distribution is encoded in the multipole
coefficients qlm. The number of these coefficients, and hence the information carried on the
structure of the charge distribution, grows as 2l + 1 with l.

Since Y00 = (4π)−1/2, the first contribution to the multipole expansion is given by

ϕ(0)(x) = (4π)1/2
q00
r
.

As in the cartesian case, the monopole moment q00 = (4π)−1/2Q is but ((4π)−1/2×) the
integrated charge of the distribution.

To understand the l = 1 term, first consider Eq. (3.41) and note that the l = 1 spherical
harmonics can be obtained from the representation of a unit vector in spherical coordinates
n ≡ (sin θ cosϕ, sin θ sinϕ, cos θ)T as

Y1,m =

√
3

4π

3∑
a=1

Um,ana, U =
1√
2

 1 i 0

0 0
√
2

1 −i 0

 ,

where U is unitary, U †U = 1. Comparing to the definition of the Cartesian dipole mo-
ment (3.25), we conclude that q1,−1

q1,0
q1,+1

 =

√
3

4π
U∗

 d1
d2
d3

 ,

i.e. up to the (complex conjugate of the) unitary transformation U , the three component
vector q1 ≡ {q1,m} equals the dipole moment of the distribution. Substituting these relations
into the definition of the l = 1 term, we find

ϕ(1)(x) =
4π

3

1∑
m=−1

r−2Y1,m(θ, ϕ)q1,m = r−3(U∗
maxa)(Umbdb) =

d · x
r3

,

where in the last step the unitarity of U was used. This shows how the l = 1 term represents
the dipoloem moment of the distribution.

Similar reasoning may be applied to work out the relation between the spherical l = 2 terms
q2,m =

∫
d3x′ρ(x′)r′2Y2,m and the cartesian quadrupole moments. For example, applying

(3.41) to express the spherical harmonics in cartesian coordinates one finds,

q22 =

√
15

32π

∫
d3x′ (x′1 − ix′2)

2ρ(x′),

i.e. the integral of a weight function quadratic in the components of x′ multiplied by the
charge distribution. The four other quadrupole moments can be represented in a similar
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manner. (Due to Ylm = Y ∗
l−m it suffices to compute the coefficients qlm for positive m.) This

shows that, up to linear combination, the l = 2 moments are the quadrupole moments of the
distribution.

From the discussion above, one may get the impression that the spherical multipole ex-
pansion is more complicated than the cartesian one. Still it is the from most widely used in
practice. The reason is that, from an applied perspective, on frequently wants to describe de-
viations of charge distributions from perfectly isotropic forms. Problems of this type are most
naturally articulated, and answered, in the language of spherical coordinates and harmonics.

3.2.5 Boundary value problem II: finite space

Boundary conditions

Eq.(3.12) represents a solution to the Poisson equation with vanishing–potential boundary
conditions at spatial infinity. In the text above we spoke of the solution, yet we haven’t
actually shown its uniqueness. A related and more general question: suppose we wish to
compute the solution of the Poisson equation in some bounded region of space B. Further
suppose we wish to specify the functional profile of the potential at the boundaries ∂B of that
volume. How would one do that? I.e. how much information do we need to specify to make
the solution in B unique and when would the problem become over–specified. Further, given
a complete specification of the boundary conditions, how does one solve the Poisson equation
in practice? These are the questions we will address in this section.

▷ Info. The boundary value problem sketched above is not quite as academic as it might seem.
For example, in electrical engineering, one often needs to compute the electric field created by charge
distributions inside space domains limited by metallic boundaries (see the figure.)

φ1

φ2

ρ

E

Now, the potential inside an ideally conducting metallic surface
must be constant. Reason: was there a potential gradient tangen-
tial to the surface, the corresponding electric field would make the
mobile charges inside the metal re–arrange so as to eliminate that
very potential drop. (Notice that the constancy of the potential
implies that electric field lines are perpendicular to metallic sur-
faces.) However, by attaching electrodes to the boundary sheets,
one can put these at any desired value of the potential (relative to
the ground potential ϕ = 0.) Further, the region of interest my
by bounded by several, mutually isolated boundary regions, i.e. the
boundary potential may be described by some piecewise constant
function ϕ

∣∣
∂B

. By taking the — gedanken — limit of a very large
number of (mutually isolated) boundary sheets, we arrive at the

prototypical boundary value problem specified by an arbitrary function ϕ
∣∣
∂B

. Boundary conditions
set in this way are denoted as Dirichlet boundary conditions. We will see below that the Dirichlet
problem affords a unique solution (means extension of ϕ inside the domain.) That this must be so
follows from our expectation that the setup outlined above is physically meaningful, i.e. will generate
a unique electric field.
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However, there are alternative ways of formulating a physically meaningful boundary problem:

imagine a domain of space bounded by a layer of surface charges. In section 3.2.2 the field component

normal to a surface charge layer, ∂nϕ is determined by the (local) amount of surface charge. This

suggests that the specification of ∂nϕ everywhere at ∂B— so–calledNeumann boundary condtions

— also defines a uniquely solvable problem. However, the simultaneous specification of ϕ and its

normal derivative (or any other additional information for that matter) over–specifies the problem.

——————————————–

We begin our analysis by proving the uniqueness of the solution to the Poisson equation
with either Dirichlet or Neumann boundary conditions: Let the closed surface ∂B be the
boundary of some region of space, B. (Parts, or even the whole of ∂B may be at spatial
infinity.) On ∂B we specify either

▷ the potential ϕ
∣∣
∂B

(Dirichlet boundary conditions), or

▷ its normal derivative ∂nϕ
∣∣
∂B

(Neumann conditions.)

(Yet more generally, we may specify ϕ on a subset S ⊂ ∂B and ∂nϕ on the complementary
domain ∂B \ S.) Then the solution to the Poisson equation is uniquely determined.

To prove this statement, let us assume that two solutions ϕ1 and ϕ2 obeying the same
boundary conditions had been found. Applying Green’s first identity (2.21) to the difference
Γ ≡ ϕ1 − ϕ2, we obtain ∫

B

d3x (Γ∆Γ−∇Γ · ∇Γ) =

∫
∂B

dσΓ∂nΓ.

Using that ∆Γ = −∆ϕ1+∆ϕ2 = 4π(ρ−ρ) = 0 and that for all points in ∂B, either ∂nΓ = 0
or Γ = 0, we conclude

∫
d3x′ |∇Γ|2 = 0. Since |∇Γ| ≥ 0, this relation implies ∇Γ = 0

everywhere in B. Thus Γ = const. , i.e. the two potentials are equal up to an inessential
constant (which for Dirichlet boundary conditions must be zero at the boundary, and hence
everywhere.)

Formal solution of the boundary value problem

We next employ the method of Green functions to construct a formal solution of the boundary
value problem. The attribute ‘formal’ signals that the construction will leave us with much of
the hard work of obtaining a solution of the Poisson for concretely specified boundaries. What
the method will yield, though, is a reduction of the problem to the solution of two simpler
ones: (i) the solution of the Poisson equation for a δ–source and simplified boundary data,
plus (ii) an integral.

Let the Green function G(x,x′) be a solution of the δ–source Poisson equation in x′:
∆′G(x,x′) = −δ(x − x′) (i.e. deviating from our earlier definition, we let the Laplace
operator act on the coordinate x′. However, this is just a matter of convention; G is still a
Green function.) Now, a particular solution to this equation — the one with vanishing boundary
conditions at infinity — is G0(x,x

′) = (4π|x−x′|)−1. To implement other types of boundary



50 CHAPTER 3. ELECTROMAGNETOSTATICS

conditions, we may use the freedom to add to any particular solution an arbitrary solution of
the homogeneous equation (the Laplace equation), F (x,x′), where ∆′F (x,x′) = 0. Thus,
the most general form of the Green function is given by

G(x,x′) =
1

4π

1

|x− x′| + F (x,x′). (3.47)

Temporarily leaving the auxiliary function F unspecified, we next employ Greens’ second iden-
tity (2.22) to relate the Green function to the potential ϕ. Choosing θ(x′) = G(x,x′) and
ψ(x′) = ϕ(x′), we then obtain the equation

ϕ(x) = 4π

∫
B

d3x′G(x,x′)ρ(x′) +

∫
∂B

dσ′ [G(x,x′)∂n′ϕ(x′)− ϕ(x′)∂n′G(x,x′)] . (3.48)

While for boundaries ∂B sent to infinity we are back to formula (3.12), for finite volumes,
the surface terms on the r.h.s. implement the relevant boundary information. Specifi-
cally, for Dirichlet boundary conditions, we will try to determine a function F such that
G(x,x′)

∣∣
x′∈∂B = 0 obeys vanishing (Dirichlet) boundary conditions. Then,

ϕ(x) = 4π

∫
B

d3xG(x,x′)ρ(x′)−
∫
∂B

dσ′ ϕ(x′)∂n′G(x,x′) (3.49)

describes the potential in terms of the Green function and the pre–specified Dirichlet boundary
data ϕ(x′ ∈ ∂B). Notice the logics of our strategy: by utilizing the Green function, we reduce
the problem (general sources/general Dirichlet boundary data) to the much simpler one (δ–
source/vanishing Dirichlet boundary data). Once this latter problem has been solved, the
solution of a general problem of the first kind can be obtained by integration.

Turning to the case of Neumann boundary conditions and following the same strat-
egy as above, one might be tempted to set ∂n′G(x,x′)

∣∣
x′∈∂B = 0. However, this require-

ment would be too strong: application of Stokes theorem obtains
∫
∂B
dσ′ ∂n′G(x,x′) =∫

B
d3x′ ∆′G(x,x′) = −1, i.e. the normal derivative must not be globally vanishing. However,

we may well set it to the constant value ∂n′G(x,x′)
∣∣
x′∈∂B = −A−1, where A is the area of

∂B.
Substituting this ansatz into (3.48), we obtain

ϕ(x) = 4π

∫
B

d3xG(x,x′)ρ(x′) +

∫
∂B

dσ′ ∂n′ϕ(x′)G(x,x′) + ⟨ϕ⟩∂B, (3.50)

where the constant ⟨ϕ⟩∂B ≡ A−1
∫
∂B
dσ′ ϕ(x′) is the average value of the potential on the

boundary. Since this constant will not affect the electric field, its presence is not of importance.
(However, the need to solve (3.50) self consistently may create some headaches when it comes
to actual computations.16)

Before testing the method above on a concrete example, let us briefly discuss the physical
meaning of the function F in (3.47). Being a solution of the Laplace equation (inside B),

16Fortunately, in most Neumann–like problems, parts of the bounding surface are sent to infinity. In this
case, ⟨ϕ⟩∂B = 0 and the problem does not arise.
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we may think of the function F as the potential created by charges outside B. For any specific
choice of the reference point x of the unit charge determining G, these outer charges modify
the ‘bare’ potential ∼ |x− x′|−1 so as to conform with the boundary conditions. This way of
thinking of the function F is not only of conceptual value; It provides one with a hint as to how
to determine the function G in concrete applications. Especially in problems of a high degree
of symmetry may try to introduce some ‘image charges’ outside B whose position/strength is
chosen so as to adjust the boundary behaviour of ϕ appropriately.

Concrete solution of boundary value problems

First the bad news: there are no generally applicable solution strategies to obtain the Dirichlet
or Neumann Green function; in most problems of practical interest one will need to resort to
numerical procedures. However, in cases where one is dealing with a problem of exceptionally
high symmetry, one may try to follow the logics outlined in the end of the previous section
to manually construct a solution: Placing a system of fictitious charges — so called image
charges — outside the reference volume B one may try to modify the potential inside B
so as to conform with the boundary conditions. Let us introduce this method on two simple
examples:

∂B

q

▷ Example: Consider a charge distribution in front of an infinite
conducting plane. Choosing coordinates such that the plane coincides
with the x = 0 plane and assuming that at spatial infinity it bends through
the half space x > 0 into a closed surface ∂B we may apply the general
formalism above. Consider, thus, a unit charge at some point x in front of

the surface. We wish to compute the potential created by this charge (aka the Green function) where
ϕ
∣∣
∂B

= 0. To this end, we use the ansatz (3.47), where we think of the function F as the potential
created by a mirror or image charge kept at the other side of the plane. Symmetry considerations
suggest17 to choose the image charge to (a) be of equal and opposite strength −1, and (b) to place
it at a coordinate vector xs ≡ (−x, y, z) (i.e. the reflection of x at the grounded plane.) With this
choice, the Green function assumes the form

G(x,x′) =
1

4π

(
1

|x′ − x| −
1

|x′ + xs|

)
. (3.51)

This function indeed solves the Poisson in the positive half plane (the interior of ∂B.) On the plane
x = 0 it vanishes, i.e. it obeys vanishing Dirichlet boundary conditions as required. According to the
general construction recipe, the potential of a general charge distribution in the positive half plane
is given by

ϕ(x)
x>0
= 4π

∫
x>0

d3x′G(x,x′)ρ(x′).

It is important to keep in mind that this result holds only in the positive half plane (the interior of
B); the image charge is purely fictitious, i.e. there are no true charges in the negative half plane

17As mentioned above, the method of image charges is applicable to problems with an exceptionally high
degree of symmetry. Rather than ‘computing’ a system of suitable charges it is more customary to guess one.



52 CHAPTER 3. ELECTROMAGNETOSTATICS

implying that ϕ(x)
∣∣
x<0

= 0.18

One may ask whether the second term (3.51) can be given a more ‘physical’ interpretation than
that of the potential created by a phantom charge. Indeed, one should expect that a charge placed
in front of a grounded conducting plane will lead to the generation of some surface charge (i.e.
physically realized by electrons that are either attracted or repelled by the reference charge.) To
compute the induced charge, we may employ Eq.(3.22), i.e. determine the jump in the normal
component of the electric field across the surface. For the sake of simplicity, let us consider a point
charge q > 0 sitting at x = (a, 0, 0) in front of the plane. According to Eq. (3.51), the potential
created by this charge is given by

ϕ(x) =

{
q
[
((x− a)2 + y2 + z2)−1/2 − ((x+ a)2 + y2 + z2)−1/2

]
, x > 0,

0, x < 0.

Differentiating this result we obtain the surface charge density η(y, z) = ∆E⊥/4π = −∂xϕ/4π =
−(qa/2π)(a2 + y2 + z2)−3/2. Notice that the (negative) induced charge is maximal at the point
closest to the test charge and decays as ∼ r−3 for points in the plane far away from the point of
closest proximity. The total amount of induced charge is given by

qind =

∫
∂B
dydz η(y, z) =

qa

2π

∫
∂B

dydz

(a2 + y2 + z2)3/2
= −q.

The totality of the induced charge completely ‘screens’ the test charge. Contrary to the fictitious

image charge, the induced charge is physical (can be measured.). Also notice that the induced charge

uniquely determines ∂nϕ, i.e. it is surely impossible to freely impose both ϕ and ∂nϕ.

∂B

n

n′

r′

dr
s

▷ Example: As a second example, consider a charge distri-
bution inside a conducting sphere of radius R (kept at potential
ϕ = 0.) Again, we attempt to construct the Green function of the
problem by placing image charges into the region outside the system
boundary. Let us assume that a single unit charge will be sufficient
to equilibrate the potential on the sphere. By symmetry it is clear
that this charge must be sit somewhere on the axis connecting the
reference unit charge and the origin of the sphere.

Denoting the unit vector in the direction of the unit charge by
n and strength and distance of the image charge by s and d, respectively, the trial Green function is
given by

G(x,x′) =
1

4π

(
1

|rn− r′n′| −
s

|dn− r′n′|

)
,

where n is the unit vector in direction x. Setting r′ = R and reorganizing factors, this becomes

G(x,x′)
∣∣
r′=R

=
1

4π

(
1

R|n′ − (r/R)n| −
s

d|n− (R/d)n′|

)
!
= 0.

It is straightforward to verify that this expression vanishes if we set d = R(R/r) > R and s = R/r >

1. The potential created by an arbitrary charge distribution inside the sphere is then given by (3.49).

18While the absence of charges merely implies ϕ(x)
∣∣
x<0

= const. , the vanishing of constant follows from

the presence of a grounded (ϕ = 0) boundary.
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The analysis of the induced surface charge is left as an exercise.

3.3 Magnetostatics

3.3.1 Vector potential and solution of Maxwell equations

Before turning to the magnetic sector (3.2) of the static theory, let us recapitulate the solution
strategy in the electric theory. Using the fact that ∇ × E = 0 (three scalar equations
‘constraining’ the form of the vector field E), we wrote E = −∇ϕ, i.e. we obtained E as
the derivative of an unconstrained scalar field. Similarly, in the magnetic case, ∇ · B = 0
constrains the form of the field B. In analogy to the ansatz above we might, thus, attempt
to represent B as B = D(an unconstrained field), where D is a suitably chosen differential
operator. Since, however, ∇ · B = 0 represents only one scalar constraint equation, the
unconstrained auxiliary field will be of a more complex structure than the scalar potential ϕ.
Indeed, we are going to show below that the equation ∇·B = 0 implies that the magnetic field
can be written as B = ∇×A, i.e. as the curl of an auxiliary field known as the (magnetic)
vector potential. In magnetostatics, the vector potential plays a role analogous to the scalar
potential of electrostatics.

▷Math. To understand the mathematical principles behind the existence of a vector potential,
consider the following problem (whose solution is of considerable importance in its own right): Let
f be a source–free vector field, ∇ · f = 0, and g be a scalar field. Is there a vector field X such that
g = ∇ ·X are the sources of X and f = ∇×X its circulation? If so, is X unique?

To answer these questions, let us make an ansatz X = Xs +Xc, where

∇×Xs = 0, ∇ ·Xs = g,

∇ ·Xc = 0, ∇×Xc = f ,

i.e. we decompose the sought–for vector field into a ‘source component’Xs (curl–free but source–ful)
and a complementary ‘curl component’ Xc (curl but no sources.)

We know that the circulation–less component Xs = −∇ϕ can be written as the gradient of a
scalar function.19 This function must then be determined such that it satisfies the source condition,
∇·Xs = −∆ϕ = g. Turning to the complementary component Xc, let us assume that the vanishing
of the divergence can be resolved by making the ansatz, Xc = ∇ × A′, i.e. we assume that the
vanishing of the divergence implies the existence of a (vector) potential, very much like the vanishing
of the curl implied the existence of a scalar potential. Surely this ansatz is consistent with ∇·Xc = 0.

To relate A′ to the circulation of Xc, we compute ∇×Xc = ∇×∇×A′ = −∆A′+∇(∇·A′)
!
= f .

The problem posed by the solution of this equation can be simplified by noting that the addition of
the gradient of an arbitrary scalar function ψ to the vector potential, A′ → A ≡ A′ + ∇ψ, does
not change Xc, i.e. the transformed vector potential is as good a vector potential as the original
one. We now chose the function ψ such that ∇ · A = ∇ · A′ + ∆ψ = 0, i.e. we use it to render

19. . . , where the minus sign has been introduced to stay close to the conventions of electrostatics.
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A divergence-less. Our source equation then reduces to −∆A = f or three independent Poisson
equations ∆Ai = −fi for the components of A. These equations are solved (assuming infinite space
boundary conditions for simplicity) by the formula Ai(x) =

1
4π

∫
d3x′ |x− x′|−1fi(x

′).20

Expressed in terms of the scalar and the vector potential, X = −∇ϕ +∇ ×A. However, this

choice of X is not unique: Without changing the circulation, we may add to X the gradient of a

scalar function, X → X +∇h. If h solves the Laplace equation, ∆h = 0, the source content, too,

remains unchanged. I.e. the vector field X is unique up to solutions of the Laplace equation.

——————————————–

The mathematical considerations outlined above solve much of the problem posed by the
solution of Eqs.(3.2). The fact that the magnetic induction B is source free implies that it can
be written as the curl of a vector potential, B = ∇×A.21 The choice of the vector potential
is not unique: without altering B, we may add to A the gradient of an arbitrary function,

A → A+∇f. (3.52)

▷ Info. The transformation Eq.(3.52) is the most elementary example of a gauge transfor-
mation. Later on we will identify it as a specific case of the most general gauge transformation
of electrodynamics. In fact, gauge transformations play a pivotal role in theories far more general
than electrodynamics; they form the conceptual basis of various types of gauge theories. The list
of important gauge theories includes quantum electrodynamics (QED), quantum chormodynamics
(QCD), and many more.

The prototypical transformation (3.52) anticipates two crucial features of every gauge theory: (i)

the freedom to choose amongst different realizations of an auxiliary field (Generally, fields possessing

a gauge freedom are called gauge fields.) can be used to obtain a particularly simple, or problem

adjusted representation of the theory. (ii) As the gauge transformation affects only the gauge field (A)

but not the derived ‘physical field’ (B) all final results obtained by the theory must be independent

of the choice of the gauge. This condition of gauge invariance imposes a strong consistency check

on the validity of the theory and of physical approximation schemes.

——————————————–

Throughout it will be convenient to choose a gauge wherein ∇ · A = 0, the so–called
Coulomb gauge. (Recall the logics of the discussion above: for an arbitrary configuration A′,
we may chose a gauge function f such that ∆f = −∇·A′ solves the Poisson equation. Then,
the gauged vector potential A ≡ A′ +∇f is source–free. Without loss of generality we may

20Note that this solution is indeed divergenceless, as required:

∇ ·A = ∂iAi =
1

4π

∫
d3x′ ∂xi |x− x′|−1fi(x

′) =
1

4π

∫
d3x′

(
−∂x′

i
|x− x′|−1

)
fi(x

′) =

=
1

4π

∫
d3x′ |x− x′|−1∂x′

i
fi(x

′) = 0,

where ∂x′
i
fi(x

′) = ∇ · f(x′) = 0 by assumption.
21Alternatively, one may consider B = ∇×A as an ansatz for the solution, B, of the Maxwell differential

equations. The construction below demonstrates that this ansatz works.
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thus assume that A has been source–free from the outset.) Using the vacuum identification
H = B and substituting the ansatz B = ∇×A into the Maxwell equation∇×H = 4πc−1j we
then obtain ∇× (∇×A) = −∆A+∇(∇ ·A) = −∆A = 4πc−1j, i.e. the vector potential
is obtained by solving the three independent Poisson equations ∆Ai = −4πc−1ji. These
equations are mathematically equivalent to their electrostatic analog ∆ϕ = −4πρ discussed
above. Making the proper identifications and assuming infinite space boundary conditions we
thus obtain the solution

A(x) =
1

c

∫
d3x′

j(x′)

|x− x′| . (3.53)

Acting on this equation with the differential operator ∇× and using the auxiliary identity
∇ × (f(x)v(x′)) = ∇f(x) × v(x′) we find that the magnetic field created by the current
distribution is given by

B(x) =
1

c

∫
d3x′

j(x′)× (x− x′)

|x− x′|3 . (3.54)

After the experimentalists who first quantitatively explored the connection between magnetic
fields and currents, Eq.(3.54) is called the law of Biot and Savart.

Two more remarks on the result (3.53) are in place: Firstly, notice that the Eq.(3.53) was
derived for vanishing boundary conditions at infinity, A(x)

∣∣
|x|→∞ → 0. In principle, however,

our complete discussion of Poisson equations subject to more complex boundary conditions in
section 3.2.5 may be carried over to the magnetic case. Yet, unlike with electrostatics (where
both Dirichlet and Neumann boundary conditions could be given a clear physical meaning) we
do not yet know how to interpret ‘magnetic boundary conditions’ on the behaviour of A. For
a discussion of this point we refer to chapter 5 below. Secondly, we need to verify that the
vector potential (3.53) indeed obeys our working assumption, i.e. the Coulomb gauge condition
∇·A = 0. To this end, we note that the Fourier transform of the Poisson equation∆A = −4π

c
j

is given by −k2A(k) = −4π
c
j(k). Solving for A(k) we obtain A(k) = 4π

c
k−2j(k).22 Taking

the scalar product of this equation with the vector k and noting that ∇ · j Fourier transforms
to k · j = 0, we obtain k ·A = 0 or ∇ ·A = 0.

3.3.2 Magnetic multipole expansion

To better understand the physical meaning of Eqs.(3.53) and (3.54) above, let us consider a
situation where the current flow in the system is confined to a small region B is space. We
want to compute the magentic field created by the currents at points far away from B. As in
our discussion in section 3.2.4, we might apply the addition theorem to expand the distance
function in (3.53) in spherical harmonics, thus generating a magnetic variant of the multipole
expansion.

▷ Info. Indeed, expansions of this type are of considerable applied relevance: for example, the

22To establish the equivalence between the Fourier representation and the real space representation above,
recall the remarks made in the paragraph below Eq. (3.17).
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construction of magnetic traps is based on quadrupole magnets, i.e. magnets whose multipole

expansion starts at sub–leading order. Similarly, the particle beams in accelerators are commonly

focused by sequences of quadrupole magnets (occasionally even octupole magnets or magnets of yet

higher order.)

——————————————–

However, presently, we shall restrict ourselves to a simpler ‘brute force’ Taylor expansion of
the distance–denominator, similar to the one outlined in section 3.2.2. To present the results
of this expansion in a convenient manner, we will make use of the auxiliary identity∫

d3x(f j · ∇g + gj · ∇f) = 0, (3.55)

which holds for arbitrary functions f, g and source–free vector fields j. This equation is proven
by a straightforward integration by parts. Application of (3.55) to the cases g = xi, f = 1
and f = xi, g = xj yields the two relations∫

d3x ji = 0,

∫
d3x′(xijj + jjxi) = 0. (3.56)

Substituting the expansion (3.24) into (3.53), we obtain the series A = A(0)+A(1)+ . . . ,
which should be compared to the scalar potential series (??). Specifically, the analog of the
electrostatic monopole term is given by

A(0) =
1

cr

∫
d3x′ j(x′) = 0,

where we used the first of the two relations (3.56). The vanishing of the first moment reflects
the absence of magnetic monopoles.

Turning to the second moment, we obtain

A
(1)
i =

xj
cr3

∫
d3x′ x′jji

(3.56)
=

xj
2cr3

∫
d3x′ (x′jji − x′ijj) =

xjϵkjiϵkj′i′

2cr3

∫
d3x′ x′j′ji′ =

=
xjϵkji
2cr3

∫
d3x′ (x′ × j)k = − 1

2cr3

[
x×

∫
d3x′ x′ × j

]
i

.

In close analogy to the electric dipole moment, we define the magnetic dipole moment

m ≡ 1

2c

∫
d3xx× j. (3.57)

Expressed in terms of this quantity, the dipolar contribution to the vector potential is given by

A(1) =
m× x

r3
. (3.58)

In principle, the series expansion of the vector potential may now be driven to higher (quadrupo-
lar) orders. However, for the sake of simplicity, we will restrict our discussion to the discussion
of the dominant contribution to the series, Eq.(3.58).
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Taking the curl of (3.58), and noting that ∇ × (x × v) = −(∇ · x)v = −3v we obtain
the magnetic field created by the current dipole,

B(x) =
3n(n ·m)−m

r3
, (3.59)

where n is the unit vector in x–direction. Notice the structural equivalence of this expression
to its electric analog, Eq.(3.16).

Before proceeding, let us briefly discuss the magnetic dipole moments of two particular
types current of distributions of considerable practical relevance:

▷ Often, the current sources are realized as (approximately) closed current loops, each
carrying a constant current I. In this case (cf. Eq.(2.17)) the volume integral (3.57)
reduces to

m = − I

2c

∮
γ

ds× x. (3.60)

Particularly simple expressions are obtained for planar current loops, i.e. in cases where
the curve γ lies in a plane. Introducing coordinates such that the unit vector normal to
the plane n = e3 coincides with the coordinate vector e3, we then obtain for the ith
component of the magnetic moment

mi = − I

2c
ei ·

∮
γ

ds× x = − I

2c

∮
γ

ei · (ds× x) = − I

2c

∮
γ

ds · (x× ei).

Application of Stokes law then yields mi = − I
2c

∫
S(γ)

∫
dσ e3 · (∇× (x × ei)). Noting

that e3 · (∇× (x× ei)) = −2δ3i, we obtain

m =
AI

c
e3,

i.e. a magnetic moment perpendicular to the plane supporting the current loop and
proportional to the area of the loop.

▷ Imagine a system of point particles at coordinates xi where each particle carries
charge qi, is of mass mi, and moves with velocity vi. In this case, j =

∑
i viqiδ(x−xi).

Equation (3.57) reduces to

1

2c

∑
i

qixi × vi =
1

2c

∑
i

qi
mi

li, (3.61)

where l = x × (mv) is the angular momentum carried by a point particle. [Only
parts of the magnetic moment carried by genuine elementary particles are due to their
orbital angular momentum l. A second contribution stems from their ‘intrinsic’ angular
momentum or spin. Specifically, for an electron at rest, m = 2.002 × e

2cm
S, where

|S| = 1/2 is the electron spin and the pre–factor 2.002 is known as the g–factor of the
electron.]
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3.3.3 Magnetic forces

To understand the physical meaning of the connections (currents ; fields) derived above, let
us explore an intuitively accessible quantity, viz. the mechanical forces created by a current
distribution. Assuming that the charge density of the mobile charge carriers in the wire is given
by ρ, and that these charges move with a velocity v, the current density in the wire is given by
j = ρv.23 Comparison with the Lorentz force law (2.6) shows that in a magnetic field the wire
will be subject to a force density = c−1ρv×B. Specifically, for a thin wire of cross section dA,
and carrying a current I = ρdAv (v is the component of v = ve∥ along the wire.) the force
acting on a segment of length dl will be df = fdAdl = c−1ρdAdl(ve∥)×B = c−1Ids× dB.
Summarizing, the force acting on a line element ds of a wire carrying a current I is given by

df =
I

c
ds×B. (3.62)

In the following, we discuss a few applications of the prototypical force–formula (3.62):

Forces on current loops

Consider a single closed current loop γ carrying a current I. The current flow will generate
a magnetic field (3.54) which will in turn act on the line elements of the loop, as described by
(3.62). One may thus wonder whether the loop exerts a net force on itself. Integrating over
(3.62), we find that this force is given by

F =

∮
γ

df =
I

c

∮
γ

ds×B
(3.54)
=

I2

c2

∮
γ

∮
γ

ds× (ds′ × (x− x′))

|x− x′|3 =

=
I2

c2

∮
γ

∮
γ

(
ds′(ds · (x− x′))

|x− x′|3 − (x− x′)ds · ds′
|x− x′|3

)
=

= −I
2

c2

∮
γ

ds′
∮
γ

ds · ∇ 1

|x− x′| = 0.

The second term in the second line vanishes because it changes sign under coordinate inter-
change x ↔ x′. In the third line we used that (x− x′)|x− x′|−3 = ∇|x− x′|−1 and that the
integral of the gradient of a function over a closed loop vanishes. We conclude that a closed
current loop does not exert a net force onto itself.

However, distinct current distributions do, in general, act by magnetic forces onto each
other. By way of example, consider two infinite parallel wires kept at a distance d and car-
rying currents I1 and I2, resp. Choosing coordinates as shown in the figure and parameterizing

23The amount of charge flowing through a small surface element dσ during a time interval dt is dQ =
dσρn · vdt. Dividing by dt we find that the current through dσ is given by Idσ = dσn · (ρv) which means
that j = ρv is the current density.
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I1

I2

x

y

F

Figure 3.2: Two infinite wires exerting a force on each other

the line elements as ds1,2 = dx1,2 ex, we obtain the force F12 wire #2 exerts on wire #1 as

F12 =
I1I2
c2

∫
dx1

∫
dx2

ex × (ex × (ex(x1 − x2)− eyd))

|(x1 − x2)2 + d2|3 ) =

= ey
I1I2d

c2

∫
dx1

∫
dx2

1

(x22 + d2)3/2
= ey

2I1I2
c2d

∫
dx1,

where in the second line we used
∫∞
−∞ dx(x2+d2)−3/2 = 2/d2. Reflecting their infinite length,

the wires exert an infinite force on each other. However, the force per unit length dF
dx

= 2I1I2
c2d

ey
is finite and depends inverse quadratically on the distance between the wires. The force is
attractive/repulsive for currents flowing in the same/opposite direction. (One of the more
prominent manifestations of the attractive magnetic forces between parallel current flows is
the phenomenon of current implosion in hollow conductors.)

Forces on local current distributions

B

m

Consider a spatially localized current distribution in an external
magnetic field. We wish to compute total force acting on the dis-
tribution

F =

∫
d3x f =

1

c

∫
d3x j×B. (3.63)

Choosing the origin of the coordinate system somewhere inside the
current distribution, and assuming that the magnetic field varies slowly across the extent of
the current flow, one may Taylor expand B in the Lorentz force formula:

F =
1

c

∫
d3x j(x)× [B(0) + x · ∇B(0) + . . . ] .

(x · ∇B is a vector with components xi∂iBj.) The auxiliary identity (3.56) implies that the
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first contribution to the expansion vanish. The ith component of the force is thus given by

Fi ≃
1

c

∫
d3x ϵijk jj xl ∂lBk

(3.56)
=

1

2c

∫
d3x ϵijkϵmjl(j× x)m∂lBk =

=
1

2c

∫
d3x (δklδim − δkmδil)(j× x)m∂lBk =

1

2c

∫
d3x ((j× x)i∂kBk − (j× x)k∂iBk) =

= ∂i
∣∣
x=0

(m ·B(x)),

or
F = ∇

∣∣
x=0

(m ·B(x)), (3.64)

where in the second line we used ∇ · B = ∂lBl = 0 Thus, (a) the force is strongest if the
magnetic moment is aligned with the magnetic field, and (b) proportional to the rate at which
the external magnetic field varies. Specifically, for a uniform field, no forces act.

While the force on a magnetic moment relies on the presence of a field gradient, even a
constant field does exert a finite torque

N =

∫
d3xx× f =

1

c

∫
d3xx× (j×B). (3.65)

Approximating the field by its value at the origin,

Ni =
1

c

∫
d3x ϵijkϵklm xjjlB(0)m =

1

c

∫
d3x (δilδjm − δimδlj)xjjlB(0)m =

=
1

c

∫
d3x (xjjiB(0)j − xjjjB(0)i)

(3.56)
=

1

2c

∫
d3x ϵlji(x× j)lB(0)j =

= (m×B(0))i.

Thus, the torque acting on the moment,

N = m×B(0), (3.66)

is perpendicular to both the external field and the moment vector. It acts so as to align the
field and the moment.



4.0 Electrodynamics

4.1 Magnetic field energy

As a prelude to our discussion of the full set of Maxwell equations, let us address a question
which, in principle, should have been answered in the previous chapter: What is the energy
stored in a static magnetic field? In section 3.2.2, the analogous question for the electric field
was answered in a constructive manner: we computed the mechanical energy required to build
up a system of charges. It turned out that the answer could be formulated entirely in terms of
the electric field, without explicit reference to the charge distribution creating it. By symmetry,
one might expect a similar prescription to work in the magnetic case. Here, one would ask
for the energy needed to build up a current distribution against the magnetic field created by
those elements of the current distribution that have already been put in place. A moments
thought, however, shows that this strategy is not quite as straightforwardly implemented as
in the electric case: no matter how slowly we move a ‘current loop’ in an magnetic field, an
electric field acting on the charge carriers maintaining the current in the loop will be induced
— the induction law. Work will have to be done to maintain a constant current and it is this
work function that essentially enters the energy balance of the current distribution.

I B

To make this picture quantitative, consider a current
loop carrying a current I. We may think of this loop as being
consecutively built up by importing small current loops (car-
rying current I) from infinity (see the figure.) The currents
flowing along adjacent segments of these loops will even-
tually cancel so that only the net current I flowing around
the boundary remains. Let us, then, compute the work that
needs to be done to bring in one of these loops from infinity.

Consider, first, an ordinary point particle kept at a (me-
chanical) potential U . The rate at which this potential
changes if the particle changes its position is dtU = dtU(x(t)) =
∇U · dtx = −F · v, where F is the force acting on the par-
ticle. Specifically, for the charged particles moving in our

prototypical current loops, F = qE, where E is the electric field induced by variation of the
magnetic flux through the loop as it approaches from infinity.1 Now, what is E in a situa-

1In the expression describing the potential change, the Lorentz force contribution drops out because (v ×

61
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tion where there are no free electric charges acting as sources? Our test particle moves in a
magnetic field, and due to this motion the strength of the magnetic field experienced by it
changes in time. This causes an electric field by the law of induction. To relate the field E
to the time variation of a ‘magnetic quantity’, consider the line integral around an arbitrary
loop,

∫
ds · E = −c−1

∫
δS
dσ n · dtB = −c−1

∫
δS
dσ n · dt(∇×A) = −c−1

∫
ds · dtA. Since

this holds regardless of the geometry of the loop, we have E = −c−1dtA, where dtA is the
change in vector potential due to the movement of the loop. We thus express the change in
potential energy as dtU = q

c
dtA · v. Now let us generalize this expression from the potential

change of a single particle, to that, dU , of the particles moving in a volume element d3x inside
a current carrying loop. Since the charge carried by a volume element in the loop is given by
ρd3x, and ρv = j, we get

dtdU =
d3x

c
dtA · j. (4.1)

Finally, integration over space and time yields the total energy change associated with the
motion of the loop (or more generally a current distribution) as

E =
1

c

∫
d3x j ·A. (4.2)

Although derived for the specific case of a current loop, Eq.(4.2) holds for general current
distributions subject to a magnetic field. (For example, for the current density carried by a
point particle at x(t), j = qδ(x− x(t))v(t), we obtain E = qv(t) ·A(x(t)), i.e. the familiar
Lorentz–force contribution to the Lagrangian of a charged particle.)

Now, assume that we shift the loop at fixed current against the magnetic field. The change
in potential energy corresponding to a small shift is given by δE = c−1

∫
d3x j · δA, where

∇ × δA = δB denotes the change in the field strength. Using that ∇ × H = 4πc−1j, we
represent δE as

δE =
1

4π

∫
d3x (∇×H) · δA =

1

4π

∫
d3x ϵijk(∂jHk)δAi =

= − 1

4π

∫
d3xHkϵijk∂jδAi =

1

4π

∫
d3xH · δB,

where in the integration by parts we noted that due to the spatial decay of the fields no
surface terms at infinitey arise. Due to the linear relation H = µ−1

0 B, we may write H · δB =
δ(H · B)/2, i.e. δE = 1

8π
δ
∫
B · E. Finally, summing over all shifts required to bring the

current loop in from infinity, we obtain

E =
1

8π

∫
d3xH ·B (4.3)

for the magnetic field energy. Notice (a) that we have again managed to express the
energy of the system entirely in terms of the fields, i.e. without explicit reference to the
sources creating these fields and (b) the structural similarity to the electric field energy (3.20).

B) · v = 0: magnetic forces do not change the energy of particles.
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4.2 Electromagnetic gauge field

Consider the full set of Maxwell equations in vacuum (E = D and B = H),

∇ · E = 4πρ,

∇×B− 1

c

∂

∂t
E =

4π

c
j,

∇× E+
1

c

∂

∂t
B = 0,

∇ ·B = 0. (4.4)

As in previous sections we will try to use constraints inherent to these equations to compactify
them to a smaller set of equations. As in section 3.3, the equation ∇ ·B = 0 implies

B = ∇×A. (4.5)

(However, we may no longer expect A to be time independent.) Now, substitute this represen-
tation into the law of induction: ∇×(E+c−1∂tA) = 0. This implies that E+c−1∂tA = −∇ϕ
can be written as the gradient of a scalar potential, or

E = −∇ϕ− 1

c
∂tA. (4.6)

We have, thus, managed to represent the electromagnetic fields as in terms of derivatives of
a generalized four–component potential A = {Aµ} = (ϕ,−A). (The negative sign multiply-
ing A has been introduced for later reference.) Substituting Eqs. (4.5) and (4.6) into the
inhomogeneous Maxwell equations, we obtain

−∆ϕ− 1
c
∂t∇ ·A = 4πρ,

−∆A+ 1
c2
∂2tA+∇(∇ ·A) + 1

c
∂t∇ϕ = 4π

c
j (4.7)

These equations do not look particularly inviting. However, as in section 3.3 we may observe
that the choice of the generalized vector potential A is not unique; this freedom can be used
to transform Eq.(4.7) into a more manageable form: For an arbitrary function f : R3 × R →
R, (x, t) 7→ f(x, t). The transformation A → A +∇f leaves the magnetic field unchanged
while the electric field changes according to E → E−c−1∂t∇f . If, however, we synchronously
redefine the scalar potential as ϕ→ ϕ− c−1∂tf , the electric field, too, will not be affected by
the transformation. Summarizing, the generalized gauge transformation

A → A+∇f,
ϕ → ϕ− 1

c
∂tf, (4.8)

leaves the electromagnetic fields (4.5) and (4.6) unchanged. (In the four component shorthand
notation introduced above, the gauge transformation assumes easy–to–memorize the form
Aµ → Aµ − ∂µf , where the four–derivative operator {∂µ} = (∂0,∇) and x0 = ct as before.)
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The gauge freedom may be used to transform the vector potential into one of several
convenient representations. Of particular relevance to the solution of the time dependent
Maxwell equations is the so–called Lorenz gauge2

∇ ·A+
1

c
∂tϕ = 0. (4.9)

This equation, too, affords a compact four–vector notation: for a general vector {vµ} = (v0,v)
we define a vector {vµ} ≡ (v0,−v), i.e. a an object with ‘lowered components’ that differs
from the one with ‘raised components’ by a sign change in the space–like sector. Using this
notation, the Lorenz condition assumes the form ∂µA

µ = 0. It is always possible to satisfy
this condition by a suitable gauge transformation. Indeed, if A′ does not obey the Lorenz

condition, we may define Aµ = A′
µ − ∂µf to obtain 0

!
= ∂µA

µ = ∂µA
′µ − ∂µ∂

µf . If we chose
f so as to satisfy the equation ∂µf

µ = ∂µA
′µ, the Lorenz equation is satisfied. Expressed in

terms of space and time components, this latter equation assumes the form(
∆− 1

c2
∂2t

)
f = −

(
∇ ·A′ +

1

c
∂tϕ

′
)
,

i.e. a wave equation with inhomogeneity −(∇ ·A+ c−1∂tϕ). We shall see momentarily that
such equations can always be solved, i.e. an implementation of the Lorenz gauge condition is
possible.

In the Lorenz gauge, the Maxwell equations assume the simplified form(
∆− 1

c2
∂2t

)
ϕ = −4πρ,(

∆− 1

c2
∂2t

)
A = −4π

c
j. (4.10)

In combination with the gauge condition (4.9), Eqs. (4.10) are fully equivalent to the set of
Maxwell equations (4.4). Again, the four–vector notation may be employed to compactify the
notation still further. With ∂µ∂

µ = −∆ + c−2∂2t and jµ = (cρ,−j), the potential equations
assume the form

∂ν∂
νAµ =

4π

c
jµ, ∂µA

µ = 0. (4.11)

Before turning to the discussion of the solution of these equations a few general remarks are
in order:

▷ The Lorenz condition is the prevalent gauge choice in electrodynamics because (a) it
brings the Maxwell equations into a maximally simple form and (b) will turn out below
to be invariant under the most general class of coordinate transformations, the Lorentz

2Named after the Danish physicist Ludwig Lorenz (1829-91) whose name is often confused with that of
Hendrik Lorentz (1853-1928), the inventor of the Lorentz transformation, and many other concepts in the
field.
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transformations see below. (It is worthwhile to note that the Lorenz condition does not
unambiguously fix the gauge of the vector potential. Indeed, we may add to any Lorenz
gauge vector potential Aµ a function Aµ → Aµ + fµ satisfying the homogeneous wave
equation ∂µ∂µf = 0 without altering the condition ∂µA

µ = 0.) Other gauge conditions
frequently employed include

▷ the Coulomb gauge or radiation gauge ∇ · A = 0 (employed earlier in section
3.3.) The advantage of this gauge is that the scalar Maxwell equation assumes the
simple form of a Poisson equation ∆ϕ(x, t) = −4πρ(x, t) which is solved by ϕ(x, t) =∫
d3x′ρ(x, t)/|x − x′|, i.e. by an instantaneous ’Coulomb potential’ (hence the name

Coulomb gauge.) This gauge representation has also proven advantageous within the
context of quantum electrodynamics. However, we won’t discuss it any further in this
text.

4.3 Electromagnetic waves in vacuum

As a warmup to our discussion of the full problem posed by the solution of Eqs. (4.10), we
consider the vacuum problem, i.e. a situation where no sources are present, jµ = 0. Taking
the curl of the second of Eqs. (4.10) and using (4.5) we then find(

∆− 1

c2
∂2t

)
B = 0.

Similarly, adding to the gradient of the first equation c−1 times the time derivative of the
second, and using Eq.(4.6), we obtain(

∆− 1

c2
∂2t

)
E = 0,

i.e. in vacuum both the electric field and the magnetic field obey homogeneous wave equations.

4.3.1 Solution of the homogeneous wave equations

The homogeneous wave equations are conveniently solved by Fourier transformation. To this
end, we define a four–dimensional variant of Eq. (3.10),

f̃(ω,k) =

∫
d3xdt f(t,x)e−ik·x+iωt, (4.12)

f(t,x) =

∫
(d3k)(dω) f(ω,k)eik·x−iωt,

where (dds) ≡ dds/(2π)d. The one difference to Eq.(3.10) is that the sign–convention in the
exponent of the (ω/t)–sector of the transform differs from that in the (k,x)–sector. We next
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subject the homogeneous wave equation(
∆− 1

c2
∂2t

)
ψ(t,x) = 0,

(where ψ is meant to represent any of the components of the E– or B–field) to this transfor-
mation and obtain (

k2 −
(ω
c

)2
)
ψ(ω,k) = 0.

Evidently, the solution ψ must vanish for all values (ω,k), except for those for which the factor
k2 − (ω/c)2 = 0. We may thus write

ψ(ω,k) = c+(k)δ(ω − kc) + c−(k)δ(ω + kc),

where c± ∈ C are arbitrary complex functions of the wave vector k. Substituting this
representation into the inverse transform, we obtain the general solution of the scalar ho-
mogeneous wave equation

ψ(t,x) =

∫
d3k

(
c+(k)e

i(k·x−ckt) + c−(k)e
i(k·x+ckt)

)
. (4.13)

The general solution is obtained by linear superposition of elementary plane waves, ei(k·x∓ckt),
where each wave is weighted with an arbitrary coefficient c±(k). The elementary constituents
are called waves because for any fixed instance of space, x/time, t they harmonically depend
on the complementary argument time, t/position vector, x. The waves are planar in the
sense that for all points in the plane fixed by the condition x · k = const. the phase of the
wave is identical, i.e. the set of points k · x = const. defines a ‘wave front’ perpendicular
to the wave vector k. The spacing between consecutive wave fronts with the same phase
arg(exp(i(k · x − ckt)) is given by ∆x = 2π

k
≡ λ, where λ is the wave length of the wave

and λ−1 = 2π/k its wave number. The temporal oscillation period of the wave fronts is set
by 2π/ck.

k

E

B

Focusing on a fixed wave vector k, we next generalize our
results to the vectorial problem posed by the homogeneous wave
equations. Since every component of the fields E and B is subject
to its own independent wave equation, we may write down the
prototypical solutions

E(x, t) = E0e
i(k·x−ωt), B(x, t) = B0e

i(k·x−ωt), (4.14)

where we introduced the abbreviation ω = ck and E0,B0 ∈ C3 are constant coefficient
vectors. The Maxwell equations ∇ · B = 0 and (vacuum) ∇ · E = 0 imply the condition
k · E0 = k · B0 = 0, i.e. the coefficient vectors are orthogonal to the wave vector. Waves
of this type, oscillating in a direction perpendicular to the wave vector, are called transverse
waves. Finally, evaluating Eqs.(4.14) on the law of induction ∇×E+ c−1∂tB = 0, we obtain
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the additional equation B0 = nk ×E0, i.e. the vector B0 is perpendicular to both k and E0,
and of equal magnitude as E0. Summarizing, the vectors

k ⊥ E ⊥ B ⊥ k, |B| = |E| (4.15)

form an orthogonal system and B is uniquely determined by E (and vice versa).

At first sight, it may seem that we have been to liberal in formulating the solution (4.14):
while the physical electromagnetic field is a real vector field, the solutions (4.14) are manifestly
complex. The simple solution to this conflict is to identify ReE and ReB with the physical
fields.3

4.3.2 Polarization

In the following we will discuss a number of physically different realizations of plane electro-
magnetic waves. Since B is uniquely determined by E, we will focus attention on the latter.
Let us choose a coordinate system such that e3 ∥ k. We may then write

E(x, t) = (E1e1 + E2e2)e
ikx3−iωt,

where k · x = kx3 was used. Depending on the choice of the complex coefficients Ei, a
number of physically different wave–types can be distinguished. To understand the different
options, decompose Ei = |Ei| exp(iϕi) into a real amplitude, Ei and phase ϕi, to obtain

ReE(x, t) = e1|E1| cos(kx3 − ωt+ ϕ1) + e2|E2| cos(kx3 − ωt+ ϕ2). (4.16)

Now let us look at a number of different limiting cases.

Linearly polarized waves

For identical phases ϕ1 = ϕ2 = ϕ, we obtain

ReE = (|E1|e1 + |E2|e2) cos(kx3 − ωt+ ϕ),

i.e. a vector field linearly polarized in the direction of the vector |E1|e1 + |E2|e2.

▷ Info. Linear polarization is a hallmark of many artificial light sources, e.g. laser light is

usually linearly polarized. Likewise, the radiation emitted by many antennae shows approximately

linear polarization.

——————————————–
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Figure 4.1: Schematic of a circularly polarized electric and magnetic field.

Circularly polarized waves

Next consider the case of a phase difference, ϕ1 = ϕ2 ∓ π/2 ≡ ϕ and equal amplitudes
|E1| = |E2| = E:

ReE(x, t) = E (e1 cos(kx3 − ωt+ ϕ)∓ e2 sin(kx3 − ωt+ ϕ)) .

Evidently, the tip of the vector E moves on a circle — E is circularly polarized. Regarded
as a function of x (for any fixed instance of time), E traces out a spiral whose characteristic
period is set by the wave number λ = 2π/k, (see Fig. 4.1.) The sense of orientation of this
spiral is determined by the sign of the phase mismatch. For ϕ1 = ϕ2 + π/2 ( ϕ1 = ϕ2 − π/2)
we speak of a right (left) circulary polarized wave or a wave of positive (negative) helicity.

▷ Info. As with classical point particles, electromagnetic fields can be subjected to a quantization

procedure. In quantum electrodynamics it is shown that the quantae of the electromagnetic field,

the photons carry definite helicity, i.e. they represent the minimal quantum of circularly polarized

waves.

——————————————–

Elliptically polarized waves

Circular and linear polarization represent limiting cases of a more general form of polarization.
Indeed, the minimal geometric structure capable of continuously interpolating between a line
segment and a circle is the ellipse. To conveniently see the appearance of ellipses, consider
the basis change, e± = 1√

2
(e1 ± ie2), and represent the electric field as

E(x, t) = (E+e+ + E−e−)e
ikx3−iωt.

3One may ask why, then, did we introduce complex notation at all. The reason is that working with
exponents of phases is way more convenient than explicitly having to distinguish between the sin and cos
functions that arise after real parts have been taken.
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In this representation, a circularly polarized wave corresponds to the limit E+ = 0 (positive
helicity) or E− = 0 (negative helicity). Linear polarization is obtained by setting E+ = ±E−.
It is straightforward to verify that for generic values of the ratio |E−/E+| ≡ r one obtains
an elliptically polarized wave where the ratio between the major and the minor axis is set
by |1+r/1−r|. The tilting angle α of the ellipse w.r.t. the 1–axis is given by α = arg(E−/E+).

This concludes our discussion of the polarization of electromagnetic radiation. It is impor-
tant to keep in mind that the different types of polarization discussed above represent limiting
cases of what in general is only partially or completely un–polarized radiation. Radiation of
a given value of the frequency, ω, usually involves the superposition of waves of different
wave vector k (at fixed wave number k = |k| = ωc−1.) Only if the amplitudes of all partial
waves share a definite phase/amplitude relation, do we obtain a polarized signal. The degree
of polarization of a wave can be determined by computing the so–called Stokes parameters.
However, we will not discuss this concept in more detail in this text.

4.4 Green function of the wave equation

4.4.1 Computation of the Green function

To prepare our discussion of the full problem (4.11), let us consider the inhomogeneous scalar
wave equation (

∆− 1

c2
∂2t

)
f = −4πg, (4.17)

where the inhomogeneity g and the solution f are scalar function. As with the Poisson equation
(3.4) the weak spot of the wave equation is its linearity. We may, therefore, again employ
the concept of Green functions to simplify the solution of the problem. The Green function
G(x, t;x′, t) is defined by obvious generalization of the Green function of electrostatics, (3.8)
to a problem with space–time degrees of freedom.(

∆− 1

c2
∂2t

)
G(x, t;x′, t′) = −δ(x− x′)δ(t− t′). (4.18)

Once the solution of this equation has been obtained (which requires specification of a set of
boundary conditions), the solution of (4.17) becomes a matter of a straightforward integration:

f(x, t) = 4π

∫
d3x′dt′G(x, t;x′, t′)g(x′, t′). (4.19)

Assuming vanishing boundary conditions at infinity G(x, t;x′, t′)
|x−x′|,|t−t′|→∞−→ 0, we next turn

to the solution of Eq.(4.18).

▷ Math. In view of the physical importance of the Green function, we present two alternative
ways of deriving it, both emphasizing different aspects. The first utilizes methods of the theory of
complex functions.
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It starts from the solution of Eq. (4.18) in Fourier space. Application of Eq. (4.12) to both sides
of the equation yields (show it)

G̃(k, ω) =
1

k2 − c−2ω2
,

so ‘all’ that’s left is the computation of the inverse transform

G(x, t) =

∫
(d3k)

∫
(dω)

eik·x−iωt

k2 − c−2ω2
.

Let us do the integral over frequency first, and consider the integral

I(k) ≡ −c2
∫
dω

2π

e−iωt

(ω − kc)(ω + kc)
.

It now looks like we are hitting a disaster. The integrand contains two poles and looks ill-defined. We
deal with this problem in a cavalier manner by interpreting the integral as one over a complex variable
ω along the real axis. When running upon the poles, we decide to surround them along infinitesimal
semi-circles. This, of course, introduces an ambiguity, surrounding in the upper or lower complex
half planes. For reasons that will become evident momentarily, choose the upper plane. At infinity,
|ω| → ∞, we close our integration contour along a huge semicircle in the lower complex plane.
(We have to close in the lower plane, because in the upper plane exp(−iωt) would be divergent for
positive t.) This defines the re-interpretation

I+(k) ≡ −c2Θ(t)

∮
dω

2π

e−iωt

(ω − kc)(ω + kc)
,

where the superscript + indicates that we have met a choice, and the Heaviside function Θ(t) reminds
us that the construction works for t > 0. We can now do the integral via the theorem of residues to
obtain (exercise)

I+(k) =
ic

2k
Θ(t)

(
e−ikct − e+ikct

)
.

Now substitute this result back into our integral,

G+(x, t) =

∫
d3k

(2π)3
eik·xI+(k).

Following a recipe previously applied in the computation of the Green function of electrostatics, we
introduce polar coordinates and integrate over angles to obtain

G+(x, t) =
1

(2π)2xi

∫ ∞

0
kdk

(
eikx − e−ikx

)
I+(k) =

=
Θ(t)c

2(2π)2x

∫ ∞

0
dk

(
eikx − e−ikx

)(
e−ikct − e+ikct

)
=

=
Θ(t)c

4πx
(δ(x− ct)− δ(x+ ct)) =

=
Θ(t)

4πx
δ(t− x/c),
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where in the second last equality we integrated over the exponentials to obtain δ-functions, and in

the second used that δ(x+ ct) = 0, because both, x and t are positive, and expressed the δ-function

as a function of t, cancelling a factor of c.

——————————————–

We first note that for the chosen set of boundary conditions, the Green function G(x −
x′, t − t′) will depend on the difference of its arguments only. We next Fourier transform
Eq.(4.18) in the temporal variable, i.e. we act on the equation with the integral transform
f̃(ω) =

∫
dt exp(iωt)f(t) (whose inverse is f(t) =

∫
(dω) exp(−iωt)f̃(ω).) The temporally

transformed equation is given by(
∆+ k2

)
G(x, ω) = −δ(x), (4.20)

where we defined k ≡ ω/c. If it were not for the constant k (and a trivial scaling factor (2π)−1

on the l.h.s.) this equation, known in the literature as the Helmholtz equation, would be
equivalent to the Poisson equation of electrostatics. Indeed, it is straightforward to verify that
the solution of (4.20) is given by

G±(x, ω) =
1

8π2

e±ik|x|

|x| , (4.21)

where the sign ambiguity needs to be fixed on physical grounds.

▷ Math. To prove Eq.(4.21), we introduce polar coordinates centered around x′ and act with
the spherical representation of the Laplace operator (cf. section 8.1.2) on G±(r) = 1

8π2 e
ikr/r.

Noting that the radial part of the Laplace operator, ∆# is given by r−2∂rr
2∂r = ∂2r + (2/r)∂r and

∆#(4πr)−1 = −δ(x) (the equation of the Green function of electrostatics), we obtain(
∆+ k2

)
G±(r, ω) =

1

8π2
(
∂2r + 2r−1∂r + k2

) e±ikr

r
=

=
e±ikr

8π2

((
∂2r + 2r−1∂r

)
r−1 + 2e∓ikr(∂rr

−1)∂re
±ikr + e∓ikrr−1

(
∂2r + k2 + 2r−1∂r

)
e±ikr

)
=

= − 1

2π
δ(x)∓ 2ikr−2 ± 2ikr−2 = − 1

2π
δ(x),

as required.

——————————————–

Doing the inverse temporal Fourier transform, we obtain

G±(x, t) =

∫
dω e−iωtGω/c(x) =

∫
dω e−iωt 1

8π2

e±iωc−1|x|

|x| =
1

4π

δ(t∓ c−1|x|)
|x| ,

or

G±(x− x′, t− t′) =
1

4π

δ(t− t′ ∓ c−1|x− x′|)
|x− x′| . (4.22)

For reasons to become clear momentarily, we call G+ (G−) the retarded (advanced) Green
function of the wave equation.
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4.4.2 Physical meaning of the Green function

Retarded Green function

To understand the physical significance of the retarded Green function G+, we substitute the
r.h.s. of Eq.(4.22) into (4.19) and obtain

f(x, t) =

∫
d3x′

g(x′, t− |x− x′|/c)
|x− x′| . (4.23)

For any fixed instance of space and time, (x, t), the solution f(x, t) is affected by the sources
g(x′, t′) at all points in space and fixed earlier times t′ = t−|x−x|′/c. Put differently, a time
t− t′ = |x−x′|/c has to pass before the amplitude of the source g(x′, t′) may cause an effect
at the observation point x at time t— the signal received at (x, t) is subject to a retardation
mechanism. When the signal is received, it is so at a strength g(x′, t)/|x−x′|, similarly to the
Coulomb potential in electrostatics. (Indeed, for a time independent source g(x′, t′) = g(x′),
we may enter the wave equation with a time–independent ansatz f(x), whereupon it reduces
to the Poisson equation.) Summarizing, the sources act as ‘instantaneous Coulomb charges’
which are (a) of strength g(x′, t′) and felt at times t = t′ + |x− x′|/c.

t

x

x = ct

Figure 4.2: Wave front propagation of the pulse created by a point source at the origin schematically
plotted as a function of two–dimensional space and time. The width of the front is set by δx = cδt,
where δt is the duration of the time pulse. Its intensity decays as ∼ x−1.

▷ Example: By way of example, consider a point source at the origin, which ‘broadcasts’ a

signal for a short instance of time at t′ ≃ 0, g(x′, t′) = δ(x′)F (t′) where the function F is sharply

peaked around t′ = 0 and describes the temporal profile of the source. The signal is then given

by f(x, t) = F (t − |x|/c)/|x|, i.e. we obtain a pattern of out–moving spherical waves, whose

amplitude diminishes as |x|−1 or, equivalently ∼ 1/tc (see Fig. 4.2.)
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Advanced Green function

Consider now the solution we would have obtained from the advanced Green function, f(x, t) =∫
d3x′ g(x

′,t+|x−x′|/c)
|x−x′| . Here, the signal responds to the behaviour of the source in the future.

The principle of cause–and–effect or causality is violated implying that the advanced Green
function, though mathematically a legitimate solution of the wave equation, does not carry
physical meaning. Two more remarks are in order: (a) when solving the wave equation by
techniques borrowed from the theory of complex functions, the causality principle is built in
from the outset, and the retarded Green function automatically selected. (b) Although the
advanced Green function does not carry immanent physical meaning, its not a senseless object
altogether. However, the utility of this object discloses itself only in quantum theories.

4.4.3 Electromagnetic gauge field and Green functions

So far we have solved the wave equation for an arbitrary scalar source. Let us now specialize
to the wave equations (4.11) for the components of the electromagnetic potential, Aµ. To a
first approximation, these are four independent scalar wave equations for the four sources jµ.
We may, therefore, just copy the prototypical solution to obtain the retarded potentials of
electrodynamics

ϕ(x, t) =

∫
d3x′

ρ(x′, t− |x− x′|/c)
|x− x′| ,

A(x, t) =
1

c

∫
d3x′

j(x′, t− |x− x′|/c)
|x− x′| . (4.24)

There is, however, one important consistency check that needs to be performed: recalling that
the wave equations (4.11) hold only in the Lorenz gauge ∂µA

µ = 0 ⇔ c−1∂tϕ +∇ ·A = 0,
we need to check that this condition is actually fulfilled by the solutions (4.24). Relatedly, we
have to keep in mind that the sources are not quite independent; they obey the continuity
equation ∂µj

µ = 0 ⇔ ∂tρ+∇ · j = 0.
As in section 3.3, it will be most convenient to probe the gauge behaviour of the vector

potential in a fully developed Fourier language. Also, we will use a four vector notation
throughout. In this notation, the Fourier transformation (4.12) assumes the form

f̃(k) =
1

(2π)4

∫
d4x f(x)eixµkµ , (4.25)

where a factor of c−1 has been absorbed in the integration measure and kµ = (k0,k) with
k0 = ω/c.4 The Fourier transform of the scalar wave equation (4.17) becomes kµk

µψ(k) =
−4πg(k). Specifically, the Green function obeys the equation kµk

µG(k) = −(2π)−4 which
is solved by G(k) = −((2π)4kµk

µ)−1. (One may check explicitly that this is the Fourier
transform of our solution (4.22), however for our present purposes there is no need to do

4Recall that x0 = ct, i.e. kµx
µ = k0x0 − k · x = ωt− k · x.
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so.) The solution of the general scalar wave equation (4.19) obtains by convoluting the Green
function and the source,

f(x) = 4π(G ∗ g)(x) ≡ 4π

∫
d4xG(x− x′)g(x′).

Using the convolution theorem, this transforms to f(k) = (2π)44π G(k)g(k) = −4πg(k)
kµkµ

.

Specifically, for the vector potential, we obtain

Aµ = −4π
jµ
kνkν

. (4.26)

This is all we need to check that the gauge condition is fulfilled: The Fourier transform of
the Lorenz gauge relation ∂µA

µ = 0 is given by kµA
µ = kµAµ = 0. Probing this relation on

(4.26), we obtain kµAµ ∝ kµjµ = 0, where we noted that kµjµ = 0 is the continuity relation.
We have thus shown that the solution (4.24) thus conforms with the gauge constraints. As

an important byproduct, our proof above reveals an intimate connection between the gauge
behaviour of the electromagnetic potential and current conservation.

Eqs. (4.24) generalize Eqs.(3.12) and (3.53) to the case of dynamically varying sources. In
the next sections, we will explore various aspects of the physical contents of these equations.

4.5 Field energy and momentum

4.5.1 Field energy

In sections 3.2.2 and 4.1, we discussed the energy of static electric and magnetic fields. In
this section we will identify the results obtained for the electric and the magnetic field energy,
Eqs.(3.20) and (4.3), respectively, as building blocks of a larger picture.

We begin by performing a few basic operations on the Maxwell equations: multiplying
Eq.(2.2) by E· and Eq. (2.3) by −H·, and adding the results to each other, we obtain

E · (∇×H)−H · (∇× E)− 1

c
(E · ∂tD+H · ∂tB) =

4π

c
j · E.

Using that for general vector field v and w, (check!) ∇· (v×w) = w · (∇×v)−v · (∇×w),
as well as E · ∂tD = ∂t(E ·D)/2 and H · ∂tB = ∂t(H ·B)/2, this equation can be rewritten
as

1

8π
∂t(E ·D+B ·H) +

c

4π
∇ · (E×H) + j · E = 0. (4.27)

To understand the significance of Eq.(4.31), let us integrate it over a test volume V :

dt

∫
V

d3x
1

8π
(E ·D+B ·H) = −

∫
S(V )

dσ n · c

4π
(E×H)−

∫
V

d3x j · E, (4.28)
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where use of Gauß’s theorem has been made. The first term is the sum over the electric and
the magnetic field energy density, as derived earlier for static field configurations. We now
interpret this term as the energy stored in general electromagnetic field configurations and

w ≡ 1

8π
(E ·D+B ·H) (4.29)

as the electromagnetic energy density. What is new in electrodynamics is that the field
energy may change in time. The r.h.s. of the equation tells us that there are two mechanisms
whereby the eletromagnetic field energy may be altered. First, there is a surface integral over
the so–called Poynting vector field

S ≡ c

4π
E×H. (4.30)

We interpret the integral over this vector as the energy current passing through the surface S
and the Poynting vector field as the energy current density. Thus, the pair (energy density,
w)/(Poynting vector S) plays a role similar to the pair (charge density, ρ)/(current density,
j) for the matter field. However, unlike with matter, the energy of the electromagnetic field
is not conserved. Rather, the balance equation of electromagnetic field energy above
states that

∂tw +∇ · S = −j · E. (4.31)

The r.h.s. of this equation contains the matter field j which suggests that it describes the
conversion of electromagnetic into mechanical energy. Indeed, the temporal change of the
energy of a charged point particle in an electromagnetic field (cf. section 4.1 for a similar line
of reasoning) is given by dtU(x(t)) = −F · ẋ = −q(E+ c−1v×B) · v = −qE · v, where we
observed that the magnetic component of the Lorentz force is perpendicular to the velocity
and, therefore, does not do work on the particle. Recalling that the current density of a point
particle is given by j = qδ(x−x(t))v, this expression may be rewritten as dtU = −

∫
d3x j ·E.

However, the energy change of the partilce is provided by the electromagnetic energy, so the
latter changes by +

∫
d3xj ·E. The r.h.s. of Eq. (4.30) is the generalization of this expression

to arbitrary current densities.
Energy conservation implies that the work done on a current of charged particles has to be

taken from the electromagnetic field. This explains the appearance of the mechanical energy
on the r.h.s. of the balance equation (4.31).

4.5.2 Field momentum

Unllike in previous sections on conservation laws, we here identify B = H, D = E, i.e. we
consider the vacuum case.5

5The discussion of the field momentum in matter (cf. ??) turns out to be a delicate matter, wherefore we
prefer to stay on the safe ground of the vaccum theory.
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As a second example of a physical quantity that can be exchanged between matter and
electromagnetic fields, we consider momentum. According to Newtons equations, the change
of the total mechanical momentum Pmech carried by the particles inside a volume B is given
by the integrated force density, i.e.

dtPmech =

∫
B

d3x f =

∫
B

d3x

(
ρE+

1

c
j×B

)
,

where in the second equality we inserted the Lorentz force density. Using Eqs. (2.1) and (2.2)
to eliminate the sources we obtain

dtPmech =
1

4π

∫
B

d3x
(
(∇ · E)E−B× (∇×B) + c−1B× Ė

)
.

Now, using that B × Ė = dt(B × E) − Ḃ × E = dt(B × E) − cE × (∇ × E) and adding
0 = B(∇ ·B) to the r.h.s., we obtain the symmetric expression

dtPmech =
1

4π

∫
B

d3x
(
(∇ · E)E− E× (∇× E) +B(∇ ·B)−B× (∇×B) + c−1dt(B× E)

)
,

which may be reorganized as

dt

(
Pmech −

1

4πc

∫
B

d3xB× E

)
=

=
1

4π

∫
B

d3x ((∇ · E)E− E× (∇× E) + (∇ ·B)B−B× (∇×B)) .

This equation is of the form dt(something) = (something else). Comparing to our earlier
discussion of conservation laws, we are led to interpret the ‘something’ on the l.h.s. as a
conserved quantity. Presently, this quantity is the sum of the total mechanical momentum
density Pmech and the integral

Pfield =

∫
d3xg, g ≡ 1

4πc
E×B =

S

c2
. (4.32)

The structure of this expression suggests to interpret Pfield as the momentum carried by
the electromagnetic field and g as the momentum density (which happens to be given
by c−2× the Poynting vector.) If our tentative interpretation of the equation above as a
conservation law is to make sense, we must be able to identify its r.h.s. as a surface integral.
This in turn requires that the components of the (vector valued) integrand be representable
as a Xj ≡ ∂iTij i.e. as the divergence of a vector–field Tj with components Tij. (Here,
j = 1, 2, 3 plays the role of a spectator index.) If this is the case, we may, indeed, transform
the integral to a surface integral,

∫
B
d3xXj =

∫
B
d3x ∂iTij =

∫
∂B
dσ n ·Tj. Indeed, it is not

difficult to verify that

[(∇ ·X)−X× (∇×X)]j = ∂i

[
XiXj −

δij
2
X ·X

]
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Identifiyng X = E,B and introducing the components of the Maxwell stress tensor as

Tij =
1

4π

[
EiEj +BiBj −

δij
2
(E · E+B ·B)

]
, (4.33)

The r.h.s. of the conservation law assumes the form
∫
B
d3x ∂iTij =

∫
∂B
dσ niTij, where ni

are the components of the normal vector field of the system boundary. The law of the
conservation of momentum thus assumes the final form

dt(Pmech +Pfield)j =

∫
∂B

dσ niTij. (4.34)

Physically, dtdσniTij is the (jth component of the) momentum that gets pushed through dσ
in time dt. Thus, dσniTij is the momentum per time, or force excerted on dσ and niTij the
force per area or radiation pressure due to the change of linear momentum in the system.

It is straightforward to generalize the discussion above to the conservation of angular
momentum: The angular momentum carried by a mechanical system of charged particles
may be converted into angular momentum of the electromagnetic field. It is evident from
Eq. (4.32) that the angular momentum density of the field is given by

l = x× g =
1

4πc
x× (E×B).

However, in this course we will not discuss angular momentum conservation any further.

4.5.3 Energy and momentum of plane electromagnetic waves

Consider a plane wave in vacuum. Assuming that the wave propagates in 3–direction, the
physical electric field, Ephys is given by

Ephys.(x, t) = ReE(x, t) = Re
(
(E1e1 + E2e2)e

ikx3−iωt
)
= r1u1(x3, t)e1 + r2u2(x3, t)e2,

where ui(x3, t) = cos(ϕi + kx3 − ωt) and we defined Ei = ri exp(iϕ1) with real ri. Similarly,
the magnetic field Bphys. is given by

Bphys.(x, t) = Re (e3 × E(x, t)) = r1u1(x3, t)e2 − r2u2(x, t)e1.

From these relations we obtain the energy density and Poynting vector as

w(x, t) =
1

8π
(E2 +B2) =

1

4π
((r1u1)

2 + (r2u2)
2)(x3, t)

S(x, t) = cw(x, t)e3,

where we omitted the subscript ’phys.’ for notational simplicity.

▷ Exercise. Check that w and S above comply with the conservation law (4.31).
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4.6 Electromagnetic radiation

To better understand the physics of the expressions (4.24), let us consider sources confined
within a region in space of typical extension d. Without loss of generality, we assume the
time dependence of the sources to be harmonic, with a certain characteristic frequency ω,
jµ(x) = jµ(x) exp(−iωt). (The signal generated by sources of more general time dependence
can always be obtained by superposition of harmonic signals.) As we shall see, all other
quantities of relevance to us (potentials, fields, etc.) will inherit the same time dependence,
i.e. X(x, t) = X(x) exp(−iωt). Specifically, Eq. (4.24) then implies that the electromagnetic
potentials, too, oscillate in time, Aµ(x) = Aµ(x) exp(−iωt). Substituting this ansatz into

Eq. (4.24), we obtain Aµ(x) =
1
c

∫
d3x′ jµ(x

′)eik|x−x′|

|x−x′| .
As in our earlier analyses of multipole fields, we assume that the observation point x is far

away from the source, r = |x| ≫ d. Under these circumstances, we may focus attention on
the spatial components of the vector potential,

A(x) =
1

c

∫
d3x′

j(x′)eik|x−x′|

|x− x′| , (4.35)

where we have substituted the time–oscillatory ansatz for sources and potential into (4.24)
and divided out the time dependent phases. From (4.35) the magnetic and electric fields are
obtained as

B = ∇×A, E = ik−1∇× (∇×A), (4.36)

where in the second identity we used the source–free variant of the law of magnetic circulation,
c−1∂tE = −ikE = ∇×B.

We may now use the smallness of the ratio d/r to expand |x−x′| ≃ r−n ·x′+ . . . , where
n is the unit vector in x–direction. Substituting this expansion into (4.35) and expanding
the result in powers of r−1, we obtain a series similar in spirit to the electric and magnetic
multipole series discussed above. For simplicity, we here focus attention on the dominant
contribution to the series, obtained by approximating |x − x′| ≃ r. For reasons to become
clear momentarily, this term,

A(x) ≃ eikr

cr

∫
d3x′ j(x′), (4.37)

generates electric dipole radiation. In section 3.3.2 we have seen that for a static current
distribution, the integral

∫
j vanishes. However, for a dynamic distribution, we may engage

the Fourier transform of the continuity relation, iωρ = ∇ · j to obtain∫
d3x ji =

∫
d3x∇xi · j = −

∫
d3x′ xi(∇ · j) = −iω

∫
d3x′ xiρ.

Substituting this result into (4.37) and recalling the definition of the electric dipole moment
of a charge distribution, d ≡

∫
d3xx · ρ, we conclude that

A(x) ≃ −ikde
ikr

r
, (4.38)
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d r

Figure 4.3: Three qualitatively distinct regimes of the radiation field. Discussion, see text.

is indeed controlled by the electric dipole moment.
Besides d and r another characteristic length scale in the problem is the characteristic

wave length λ ≡ 2π/k = 2πc/ω. For simplicity, we assume that the wave length λ ≫ d is
much larger than the extent of the source.

▷ Info. This latter condition is usually met in practice. E.g. for radiation in the MHz range,

ω ∼ 106 s−1 the wave length is given by λ = 3 · 108ms−1/106 s−1 ≃ 300m much larger than the

extension of typical antennae.

——————————————–

We then need to distinguish between three different regimes (see Fig. 4.3): the near zone,
d ≪ r ≪ λ, the intermediate zone, d ≪ λ ∼ r, and the far zone, d ≪ λ ≪ r. We next
discuss these regions in turn.

Near zone

For r ≪ λ or kr ≪ 1, the exponential in (4.37) may be approximated by unity and we obtain

A(x, t) ≃ −ik
r
d e−iωt,

where we have re–introduced the time dependence of the sources. Using Eq.(4.36) to compute
the electric and magnetic field, we get

B(x, t) = i
k

r2
n× de−iωt, E =

n(n · d)− d

r3
e−iωt.

The electric field equals the dipole field (3.16) created by a dipole with time dependent moment
d exp(iωt). This motivates the denotation ‘electric dipole radiation’. The magnetic field is by
a factor kr ≪ 1 smaller than the electric field, i.e. in the near zone, the electromagnetic field
is dominantly electric. In the limit k → 0 the magnetic field vanishes and the electric field
reduces to that of a static dipole.
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The analysis of the intermediate zone, kr ∼ 1 is complicated in as much as all powers
in an expansion of the exponential in (4.37) in kr must be retained. For a discussion of the
resulting field distribution, we refer to[1].

Far zone

For kr ≫ 1, it suffices to let the derivative operations on the argument kr of the exponential
function. Carrying out the derivatives, we obtain

B = k2n× d
ei(kr−ωt)

r
, E = −n×B. (4.39)

These asymptotic field distributions have much in common with the vacuum electromagnetic
fields above. Indeed, one would expect that far away from the source (i.e. many wavelengths
away from the source), the electromagnetic field resembles a spherical wave (by which we
mean that the surfaces of constant phase form spheres.) For observation points sufficiently
far from the center of the wave, its curvature will be nearly invisible and we the wave will look
approximately planar. These expectations are met by the field distributions (4.39): neglecting
all derivatives other than those acting on the combination kr (i.e. neglecting corrections of
O(kr)−1), the components of E and B obey the wave equation (the Maxwell equations in
vacuum.6 The wave fronts are spheres, outwardly propagating at a speed c. The vectors
n ⊥ E ⊥ B ⊥ n form an orthogonal set, as we saw is characteristic for a vacuum plane wave.

Finally, it is instructive to compute the energy current carried by the wave. To this end,
we recall that the physically realized values of the electromagnetic field obtain by taking the
real part of (4.39). We may then compute the Poynting vector (4.30) as

S =
ck4

4πr2
n (d2 − (n · d)2) cos2(kr − ωt)

⟨... ⟩t−→ ck4

8πr2
n (d2 − (n · d)2),

Where the last expression is the energy current temporally averaged over several oscillation
periods ω−1. The energy current is maximal in the plane perpendicular to the dipole moment of
the source and decays according to an inverse square law. It is also instructive to compute the
total power radiated by the source, i.e. the energy current integrated over spheres of constant
radius r. (Recall that the integrated energy current accounts for the change of energy inside
the reference volume per time, i.e. the power radiated by the source.) Choosing the z–axis of
the coordinate system to be colinear with the dipole moment, we have d2−(n ·d)2 = d2 sin2 θ
and

P ≡
∫
S

dσn · S =
ck4d2

8πr2
r2

∫ π

0

sin θdθ

∫ 2π

0

dϕ sin2 θ =
ck4d2

3
.

Notice that the radiated power does not depend on the radius of the reference sphere, i.e.
the work done by the source is entirely converted into radiation and not, say, in a steadily
increasing density of vacuum field energy.

6Indeed, one may verify (do it!) that the characteristic factors r−1ei(kr−ωt) are exact solutions of the wave
equations; they describe the space–time profile of a spherical wave.
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▷ Info. As a concrete example of a radiation source, let us consider a center–fed linear antenna,
i.a. a piece of wire of length a carrying an AC current that is maximal at the center of the wire. We
model the current flow by the prototypical distribution I(z) = I0(1−2|z|a−1)Θ(a−2|z|) exp(−iωt),
where we a ≪ λ = c/ω and alignment with the z–axis has been assumed. Using the continuity
equation, ∂zI(z, t) + ∂tρ(z, t), we obtain the charge density (charge per unit length) in the wire as
ρ(z) = iI02(ωa)

−1 sgn (z)Θ(2|z| − a) exp(−iωt). The dipole moment of the source is thus given by

d = ez
∫ a/2
−a/2 dz zρ(z, t) = iI0(a/2ω) exp(−iωt), and the radiated power by

P =
(ka)2

12c
I20 .

The coefficient Rrad ≡ (ka)2/12c of the factor I20 is called radiation resistance of the antenna.

To understand the origin of this denotation, notice that [Rrad] = [c−1] has indeed the dimension of

resistivity (exercise.) Next recall that the power required to drive a current through a conventional

resistor R is given by P = UI = RI2. Comparison with the expression above suggests to interpret

Rrad as the ‘resistance’ of the antenna. However, this resistance has nothing to do with dissipative

energy losses inside the antenna. (I.e. those losses that hold responsible for the DC resistivity of

metals.) Rather, work has to be done to feed energy into electromagnetic radiation. This work

determines the radiation resistance. Also notice that Rrad ∼ k2 ∼ ω2, i.e. the radiation losses

increase quadratic in frequency. This latter fact is of immanent technological importance.

——————————————–

Our results above relied on a first order expansion in the ratio d/r between the extent
of the sources and the distance of the observation point. We saw that at this order of the
expansion, the source coupled to the electromagnetic field by its electric dipole moment. A
more sophisticated description of the field may be obtained by driving the expansion in d/r
to higher order. E.g. at next order, the electric quadrupole moment and the magnetic dipole
moment enter the stage. This leads to the generation of electric quadrupole radiation and
magnetic dipole radiation. For an in–depth discussion of these types of radiation we refer
to [1].
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5.0 Macroscopic electrodynamics

5.1 Macroscopic Maxwell equations

Suppose we want to understand the electromagnetic fields in an environment where extended
pieces of matter are present. From a purist point of view, we would need to regard the O(1023)
carriers of electric and magnetic moments — electrons, protons, neutrons — comprising the
medium as sources. Throughout, we will denote the fields e, . . . ,h created by this system
of sources as microscopic fields. (Small characters are used to distinguish the microscopic
fields from the effective macroscopic fields to be introduced momentarily.) The ‘microscopic
Maxwell equations’ read as

∇ · e = 4πρ,

∇× b− 1

c

∂

∂t
e =

4π

c
j,

∇× e+
1

c

∂

∂t
b = 0,

∇ · b = 0.

Now, for several reasons, it does not make much sense to consider these equations as such:
First, it is clear that any attempts to get a system of O(1023) highly dynamical sources under
control are bound to fail. Second, as a matter of principle, the dynamics of the microscopic
sources is governed by quantum effects, i.e. we must not describe them in terms of a classical
vector field j. Finally, we aren’t even interested in knowing the microscopic fields. Rather, (in
classical electrodynamics) we want to understand the behavior of fields on ‘classical’ length
scales which generally exceed the atomic scales by far.1 Let us, then, introduce macroscopic
fields by averaging the microscopic fields as

E ≡ ⟨e⟩, B ≡ ⟨b⟩,

where the averaging procedure is defined by ⟨g(x)⟩ ≡
∫
d3x′ g(x−x′)f(x′), and f is a weight

function that is unit normalized,
∫
d3x′f(x′) = 1 and decays over sufficiently large regions in

1For example, the wave–length of visible light is about 600 nm, whilst the typical extension of a molecule
is O(1 nm). Thus, ‘classical’ length scales of interest are about two to three orders of magnitude larger than
the microscopic scales.

83
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space. Since the averaging procedure commutes with taking derivatives w.r.t. both space and
time, ∂t,xE = ⟨∂t,xe⟩ (and the same for B), the averaged Maxwell equations read as

∇ · E = 4π⟨ρ⟩,

∇×B− 1

c

∂

∂t
E =

4π

c
⟨j⟩,

∇× E+
1

c

∂

∂t
B = 0,

∇ ·B = 0.

f

x

xn

xn + dn,i

xj

Figure 5.1: Schematic on the spatially averaged system of sources. A typical solid contains spatially
localized molecules (indicated by the pattern of spheres) and (optionally) mobile electrons (the tiny
inter–atomic dots.) The former can be polarized by external fields. Solid line: Cartoon of the
averaging weight function f , centered around a reference point x.

5.1.1 Averaged sources

To better understand the effect of the averaging on the sources, we need to take an (ever
so superficial) look into the atomic structure of a typical solid. Generally, two different types
of charges in solids have to be distinguished: first, there are charges — nuclei and valence
electrons — that are by no more than a vector am,j off the center coordinate of a molecule (or
atom for that matter) xm. Second, (in metallic systems) there are free conduction electrons
which may abide at arbitrary coordinates xi(t) in the system. Denoting the two contributions
by ρb and ρf , respectively, we have ρb(x, t) =

∑
m,j qm,jδ(x − xm(t) − am,j(t)) and ρf =

qe
∑

i δ(x−xi(t)), where qm,j is the charge of the ith molecular constituent and qe the electron
charge.
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Averaged charge density and electric susceptibility

The density of the bound charges, averaged over macroscopic proportions, is given by

⟨ρb(x)⟩ =
∫
dx′ f(x′)

∑
m,j

qm,jδ(x− x′ − xm − am,j) =

=
∑
m,j

f(x− xm − am,j)qm,j ≃

≃
∑
m

qmf(x− xm)−∇
∑
m

f(x− xm) ·
∑
j

am,jqm,j︸ ︷︷ ︸
dm

=

=
∑
m

qm⟨δ(x− xm)⟩ − ∇ ·P(x).

In the second line, we used the fact that the range over which the weight function f changes
exceeds atomic extensions by far to Taylor expand to first order in the offsets a. The zeroth
order term of the expansion is oblivious to the molecular structure, i.e. it contains only the
total charge qm =

∑
j qm,j of the molecules and their center positions. The first order term

contains the molecular dipole moments, dm ≡ ∑
j am,jqm,j. By the symbol

P(x, t) ≡
〈∑

m

δ(x− xm(t))dm(t)

〉
, (5.1)

we denote the average polarization of the medium. Evidently, P is a measure of the density
of the dipole moments carried by the molecules in the system.

The average density of the mobile carriers in the system is given by ⟨ρf (x, t)⟩ = ⟨qe
∑

i δ(x−
xi(t))⟩, so that we obtain the average charge density as

⟨ρ(x, t)⟩ = ρ(x, t)−∇ ·P(x, t) (5.2)

where we defined

ρ(x, t) ≡
〈∑

m

qmδ(x− xm(t)) + qe
∑
i

δ(x− xi(t))

〉

to be the effective or macroscopic charge density in the system. Notice that the molecules/atoms
present in the medium enter the quantity ρ(x, t) as point–like entities. Their finite polarizabil-
ity is accounted for by the second term contributing to ⟨ρ⟩. Also notice that most solids are
electrically neutral on average. I.e. in most cases, ρ will vanish, unless (a) external charges or
charged impurities are present in the system, or (b) the charge distribution exhibits large scale
collective oscillations.

Substituting Eq. (5.2) into the inhomogeneous Maxwell equations and rearranging terms,
we obtain

∇ · (E+ 4πP) = 4πρ.
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This equation suggests introducing a field

D ≡ E+ 4πP. (5.3)

The sources of this displacement field is the net average charge density,

∇ ·D = 4πρ, (5.4)

(while the electric field has the spatial average of the full microscopic charge system as its
source, ∇ · E = 4π⟨ρ⟩.)

An obvious question to ask is where the medium polarization P that makes the electric
and the displacement field distinct actually comes from. The answer is that in most cases, a
finite polarization is induced by the presence of an electric field, i.e. P = P[E]. (Notice the
feedback mechanism: an electric leads to polarization which in turn acts as a source for the
electric field.)

▷ Info. On a microscopic level, at least two different mechanisms causing field–induced

polarization need to be distinguished: Firstly, a finite electric field may cause a distortion of the

electron clouds surrounding otherwise unpolarized atoms or molecules. The relative shift of the

electron clouds against the nuclear centers causes a finite molecular dipole moment which integrates

to a macroscopic polarization P. Second, in many substances (mostly of organic chemical origin),

the molecules (a) carry a permanent intrinsic dipole moment and (b) are free to move. A finite

electric field will cause spatial alignment of the otherwise dis–oriented molecules. This leads to a

polarization of the medium as a whole.

——————————————–

Now, external electric fields triggering a non–vanishing polarization are ususally much
weaker than the intrinsic microscopic fields keeping the constituents of a solid together. In
practice, this means that the polarization may usually be approximated by a linear functional
of the electric field. The most general form of a linear functional reads as2

P(x, t) =

∫
d3x′

∫
dt′ χ(x, t;x′, t′)E(x′, t′), (5.5)

where the integral kernel χ is called the electric susceptibility of the medium . The sus-
ceptibility χ(x, t;x′, t′) describes how an electric field amplitude at x′ and t′ < t affects the
polarization at (x, t).3 Notice that the polarization obtains by convolution of χ and E. In
Fourier space, the equation assumes the simpler form P(q) = χ(q)E(q), where q = (ω/c,q)

2Yet more generally, one might allow for a non co–linear dependence of the polarization on the field vector:

Pi(x, t) =

∫
d3x′

∫
dt′ χij(x, t;x

′, t′)Ej(x
′, t′),

where χ = {χij} is a 3× 3–matrix field.
3By causality, χ(x, t;x′, t′) ∝ Θ(t− t′).
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as usual. Accordingly, the electric field and the displacement field are connected by the linear
relation

D(q) = ϵ(q)E(q), ϵ(q) = 1 + 4πχ(q), (5.6)

where the function ϵ(q) is known as the dielectric function.

Information on the frequency/momentum dependence of the dielectric function
has to be inferred from outside electrodynamics, typically from condensed matter physics, or
plasma physics.4 In many cases of physical interest — e.g. in the physics of plasmas or the
physics of metallic systems — the dependence of ϵ on both q and ω has to be taken seriously.
Sometimes, only the frequency dependence, or the dependence on the spatial components
of momentum is of importance. However, the crudest approximation at all (often adopted
in this course) is to approximate the function ϵ(q) ≃ ϵ by a constant. (Which amounts to
approximating χ(x, t;x′, t′) ∝ δ(x− x′)δ(t− t′) by a function infinitely short ranged in space
and time.) If not mentioned otherwise, we will thus assume

D = ϵE,

where ϵ is a material constant.

Averaged current density and magnetic susceptibility

Averaging the current density proceeds in much the same way as the charge density procedure
outlined above. As a result of a calculation (see the info block below) that is somewhat more
laborious than the one above we obtain

⟨j⟩ ≃ j+ Ṗ+ c∇×M, (5.7)

where

j ≡
〈
qe
∑

ẋiδ(x− xi)
〉
+

〈∑
m

qmẋmδ(x− xm)

〉
is the current carried by the free charge carriers and the point–like approximated molecules,
respectively, and

M(x) =

〈∑
m

δ(x− xm)
1

2c

∑
j

qm,jam,j × ȧm,j

〉
(5.8)

is the average density of magnetic dipole moments in the system.

▷ Info. To compute the average of the microscopic current density, we we decompose
j = jb + jf the current density into a bound and a free part. With jb(x) =

∑
m,j(ẋm + ȧm,j)δ(x−

4A plasma is a gas of charged particles.
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xm − am,j), the former is averaged as

⟨jb(x)⟩ =
∫
dx′ f(x′)

∑
m,j

qm,j(ẋm + ȧm,j) δ(x− x′ − xm − am,j) =

=
∑
m,j

f(x− xm − am,j)(ẋm + ȧm,j)qm,j ≃

≃
∑
m,j

qm,j

[
f(x− xm)−

∑
m

∇f(x− xm) · am,j

]
(ẋm + ȧm,j).

We next consider the different orders in a contributing to this expansion in turn. At zeroth order,
we obtain

⟨jb(x)⟩(0) =
∑
m

qmf(x− xm)ẋm =

〈∑
m

qmẋmδ(x− xm)

〉
,

i.e. the current carried by the molecules in a point–like approximation. The first order term is given
by

⟨jb(x)⟩(1) =
∑
m

[
f(x− xm) ḋm − (∇f(x− xm) · dm) ẋm

]
.

The form of this expression suggests to compare it with the time derivative of the polarization vector,

Ṗ = dt
∑
m

f(x− xm)dm =
∑
m

[
f(x− xm) ḋm − (∇f(x− xm) · ẋm)dm

]
.

The difference of these two expressions is given by X ≡ ⟨jb(x)⟩(1) − Ṗ =
∑

m∇f(x−xm)× (dm×
ẋm). By a dimensional argument, one may show that this quantity is negligibly small: the magnitude
|ẋm| ∼ v is of the order of the typical velocity of the atomic or electronic compounds inside the
solid. We thus obtain the rough estimate |X(q, ω)| ∼ v(∇P)(q, ω)| ∼ vq|P|, where in the second
step we generously neglected the differences in the vectorial structure of P and X, resp. However,
|(Ṗ)(q, ω)| = ω|P(q, ω)|. This means that |X|/|Ṗ| ∼ vq/ω ∼ v/c is of the order of the ratio
of typical velocities of non–relativistic matter and the speed of light. This ratio is so small that it
(a) over–compensates the crudeness of our estimates above by far and (b) justifies to neglect the
difference X. We thus conclude that

⟨jb⟩(1) ≃ Ṗ.

The second order term contributing to the average current density is given by

⟨jb⟩(2) = −
∑
m,j

qm,jam,j (ȧm,j · ∇f(x− xm))

This expression is related to the density of magnetic dipole moments carried by the molecules.
The latter is given by (cf. Eq. (3.61) and Eq. (5.8))

M =
1

2c

∑
m,j

qm,jam,j × ȧm,jf(x− xm).

As a result of a straightforward calculation, we find that the curl of this expression is given by

∇×M =
1

c
⟨jb⟩(2) + dt

1

2c

∑
m,j

qm,jam,j (am,j · ∇f(x− xm)).
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The second term on the r.h.s. of this expression engages the time derivative of the electric quadrupole
moments ∼ ∑

qaaab, a, b = 1, 2, 3 carried by the molecules. The fields generated by these terms
are arguably very weak so that

⟨jb⟩(2) ≃ c∇×M.

Adding to the results above the contribution of the free carriers ⟨jf (x)⟩ = qe ⟨
∑

i ẋiδ(x− xi)⟩, we
arrive at Eq. (5.7).

——————————————–

Substituting Eq. (5.7) into the second inhomogeneous Maxwell equation, we obtain

∇× (B− 4πM)− 1

c
∂t(E+ 4πP) =

4π

c
j.

The form of this equation motivates the definition of the magnetic field

H = B− 4πM. (5.9)

Expressed in terms of this quantity, the Maxwell equation assumes the form

∇×H− 1

c
∂tD =

4π

c
j. (5.10)

According to this equation, the averaged (or macroscopic) current density acts as a source
of the magnetic field. As with the electric sector of the theory, the magnetic fields created
by externally imposed macroscopic current distributions (a) ‘magnetize’ solids, i.e. generate
finite fields M, and (b) are generally much weaker than the intrinsic microscopic fields inside
a solid. This means that we can write B = H + 4πM[H], where M[H] may be assumed to
be linear in H. In analogy to Eq. (5.5) we thus define

M(x, t) =

∫
d3x′

∫
dt′ χm(x, t;x

′, t′)H(x′, t′), (5.11)

where the function χ is called the magnetic susceptibility of the system. The magnetic sus-
ceptibility describes how a magnetic field at (x′, t′) causes magnetization at (x, t). Everything
we said above about the electric susceptibility applies similarly to the magnetic susceptibility.
Specifically, we have the Fourier space relation M(q) = χm(q)H(q) and

B(q) = µ(q)H(q), µ(q) = 1 + 4πχm(q), (5.12)

where µ(q) is called the magnetic permeability. In cases where the momentum dependence
of the susceptibility is negligible, we obtain the simplified relation

B = µH, (5.13)

where µ is a constant. As in the electric case, a number of different microscopic mechanisms
causing deviations of µ off unity can be distinguished. Specifically, for molecules carrying no
intrinsic magnetic moment, the presence of an external magnetic field may induce molecular
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currents and, thus, a non–vanishing magnetization. This magnetization is generally directed
opposite to the external field, i.e. µ < 1. Substances of this type are called diamagnetic.
(Even for the most diamagnetic substance known, bismuth, 1 − µ = O(10−4), i.e. diamag-
netism is a very weak effect.) For molecules carrying a non–vanishing magnetic moment, an
external field will cause alignment of the latter and, thus, an effective amplification of the
field, µ > 1. Materials of this type are called paramagnetic. Typical values of paramagnetic
permeabilities are of the order of µ− 1 = O(10−5)−O(10−2).

Before leaving this section, it is worthwhile to take a final look at the general structure
of the Maxwell equations in matter, We note that

▷ The averaged charge densities and currents are sources of the electric displacement field
D and the magnetic field H, respectively.

▷ These fields are related to the electric field E and the magnetic induction B by Eqs. (5.6)
and (5.12), respectively.

▷ The actual fields one would measure in an experiment are E andB; these fields determine
the coupling (fields ; matter) as described by the Lorentz force law.

▷ Similarly, the (matter un–related) homogeneous Maxwell equations contain the fields E
and B.

▷ Notice a certain asymmetry in the definition of the electric and magnetic susceptibility, χ
and χm, respectively. While the former is considered describes a linear relation P = χE
between polarization and the fundamental electric field, E, the latter describes one
M = χmH between the magnetic moment and the external field H. These relations
induce the likewise asymmetric ones, D = ϵE and B = µH. To the best of the author’s
knowledge, the reasons for this difference are historical.

5.2 Applications of macroscopic electrodynamics

In this sections, we will explore a number of phenomena caused by the joint presence of matter
and electromagnetic fields. The organization of the section parallels that of the vacuum part
of the course, i.e. we will begin by studying static electric phenomena, then advance to the
static magnetic case and finally discuss a few applications in electrodynamics.

5.2.1 Electrostatics in the presence of matter

Generalities

Consider the macroscopic Maxwell equations of electrostatics

∇ ·D = 4πρ,

∇× E = 0,

D = ϵE, (5.14)



5.2. APPLICATIONS OF MACROSCOPIC ELECTRODYNAMICS 91

where in the last equation we assumed a dielectric constant for simplicity. Now assume that
we wish to explore the fields in the vicinity of a boundary separating two regions containing
types of matter. In general, the dielectric constants characterizing the two domains will be
different, i.e. we have D = ϵE in region #1 and D = ϵ′E in region #2. (For ϵ′ = 1, we
describe the limiting case of a matter/vacuum interface.) Optionally, the system boundary
may carry a finite surface charge density η.

Arguing as in section 3.2.2, we find that the first and the second of the Maxwell equations
imply, respectively,

(D(x)−D′(x)) · n(x) = 4πη(x),

(E(x)− E′(x))× n(x) = 0, (5.15)

where the unprimed/primed quantities refer to the fields in regions #1 and #2, respectively.
Thus, the tangential component of the electric field is continuous, while the normal component
of the displacement field jumps by an amount set by the charge density.

Example: Dielectric sphere in a homogeneous electric field

To illustrate the computation of electric fields in static environments with matter, consider the
example of a massive sphere of radius R and dielectric constant ϵ placed in an homogeneous
external displacement field D0. We wish to compute the electric field E in the entire medium.

Since there are no charges present, the electric potential inside and outside the sphere
obeys the Laplace equation ∆ϕ = 0. Further, choosing polar coordinates such that the z–axis
is aligned with the orientation of the external field, we expect the potential to be azimuthally
symmetric, ϕ(r, θ, ϕ) = ϕ(r, θ). Expressed in terms of this potential, the boundary equations
(5.15) assume the form

ϵ∂rϕ
∣∣
r=R−0

= ∂rϕ
∣∣
r=R+0

, (5.16)

∂θϕ
∣∣
r=R−0

= ∂θϕ
∣∣
r=R+0

, (5.17)

ϕ
∣∣
r=R−0

= ϕ
∣∣
r=R+0

, (5.18)

where R±0 ≡ limη→0R±η. To evaluate these conditions, we expand the potential inside and
outside the sphere in a series of spherical harmonics, (3.43). Due to the azimuthal symmetry

of the problem, only ϕ–independent functions Yl,0 =
√

2l+1
4π
Pl contribute, i.e.

ϕ(r, θ) =
∑
l

Pl(cos θ)×
{
Alr

l , r < R,

Blr
l + Clr

−(l+1) , r ≥ R,
,

where we have absorbed the normalization factors (2l+1/4π)1/2 in the expansion coefficients
Al, Bl, Cl.

At spatial infinity, the potential must approach the potential ϕ = −Dz = −Dr cos θ =
−DrP1(cos θ) of the uniform external field D0 = Dez. Comparison with the series above
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shows that B1 = −D and Bl ̸=1 = 0. To determine the as yet unknown coefficients Al and Cl,
we consider the boundary conditions above. Specifically, Eq. (5.16) translates to the condition∑

l

Pl(cos θ)
(
ϵlAlR

l−1 + (l + 1)ClR
−(l+2) +Dδl,1

)
= 0.

Now, the Legendre polynomials are a complete set of functions, i.e. the vanishing of the l.h.s.
of the equation implies that all series coefficients must vanish individually:

C0 = 0,

ϵA1 + 2R−3C1 +D = 0,

ϵlAlR
l−1 + (l + 1)ClR

−(l+2) = 0, l > 1.

A second set of equations is obtained from Eq. (5.17): ∂θ
∑

l Pl(cos θ)((Al−Bl)R
l−ClR

−(l+1)) =
0 or

∑
l>0 Pl(cos θ)((Al −Bl)R

l −ClR
−(l+1)) = const. . The second condition implies (think

why!) (Al −Bl)R
l − ClR

−(l+1) = 0 for all l > 0:

(A1 −B1)R +R−2C1 = 0,

AlR
l − ClR

−(l+1) = 0, l > 1.

The simultaneous solution of the two sets of l > 1 equations is possible only for Al = Cl = 0,
l > 1. The two l = 1 equations are solved by

C1 = DR3 ϵ− 1

ϵ+ 2
, A1 = − 3

ϵ+ 2
D.

Finally, the continuity of the potential requires A0 = 0. Summarizing, the potential distorted
by the presence of the sphere is given by

ϕ(r, θ) = −rD cos θ ×


3

ϵ+ 2
, r < R

1− ϵ− 1

ϵ+ 2

(
R

r

)3

, r ≥ R,
(5.19)

The result (5.19) affords a very intuitive physical interpretation:

▷ Inside the sphere the electric field E = −∇ϕ = ∇Dz 3
ϵ+2

= D 3
ϵ+2

ez is parallel to the
external electric field, but weaker in magnitude (as long as ϵ > 1 which usually is the
case.) This indicates the buildup of a polarization P = ϵ−1

4π
E = 3

4π
ϵ−1
ϵ+2

D0.

Outside the sphere, the electric field is given by a superposition of the external field and
the field generated by a dipole potential ϕ = d · x/r3 = d cos θ/r2, where the dipole
moment is given by d = VP and V = 4πR3/3 is the volume of the sphere.

To understand the origin of this dipole moment, notice that in a polarizable medium, and
in the absence of external charges, 0 = ∇·D = ∇·E+4π∇·P, while the microscopic
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Figure 5.2: Polarization of a sphere by an external electric field.

charge density ∇ · E = 4πρmic need not necessarily vanish. In exceptional cases where
ρmic does not vanish upon averaging, we denote ⟨ρmic⟩ = ρpol the polarization charge.
The polarization charge is determined by the condition

∇ ·P = −ρpol.

Turning back to the sphere, the equation 0 = ∇ · D = ϵ
χ
∇ · P tells us that there is

no polarization charge in the bulk of the sphere (nor, of course, outside the sphere.)
However, arguing as in section 3.2.2, we find that the sphere (or any boundary between
two media with different dielectric constants) carries a surface polarization charge

−ηpol = Pout − Pin.

Specifically, in our problem, Pout = 0 so that ηin = Pin = 3
4π

ϵ−1
ϵ+2

E0 cos θ. Qualitatively,
the origin of this charge is easy enough to understand: while in the bulk of the sphere,
the induced dipole moments cancel each other upon spatial averaging (see the figure),
uncompensated charges remain at the surface of the medium. These surface charges
induce a finite and quite macroscopic dipole moment which is aligned opposite to E0

and acts as a source of the electric field (but not of the displacement field).

5.2.2 Magnetostatics in the presence of matter

Generalities

The derivation of ‘magnetic boundary conditions’ in the presence of materials with a finite
permeability largely parallels the electric case: the macroscopic equations of magnetostatics
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read as

∇×H =
4π

c
j,

∇ ·B = 0,

H = µ−1B. (5.20)

Again, we wish to explore the behaviour of the fields in the vicinity of a boundary between
two media with different permeabilities. Proceeding in the usual manner, i.e. by application
of infinitesimal variants of Gauß’ and Stokes law, respectively, we derive the equations

(B(x)−B′(x)) · n = 0,

(H(x)−H′(x))× n =
4π

c
js, (5.21)

where js is an optional surface current.

Example: paramagnetic sphere in a homogeneous magnetic field

Consider a sphere of radius R and permeability µ > 1 in the presence of an external magnetic
field H. We wish to compute the magnetic induction B inside and outside the sphere. In
principle, this can be done as in the analogous problem on the dielectric sphere, i.e. by
Legendre polynomial series expansion. However, comparing the magnetic Maxwell equations
to electric Maxwell equations considered earlier,

∇ ·B = 0 ↔ ∇ ·D = 0,

∇×H = 0 ↔ ∇× E = 0,

B = µH ↔ D = ϵE,

P =
ϵ− 1

4π
E ↔ M =

µ− 1

4π
H,

we notice that there is actually no need to do so: Formally identifying B ↔ D,H ↔ E, µ↔
ϵ,M ↔ P, the two sets of equation become equivalent, and we may just copy the solution
obtained above. Thus (i) the magnetic field outside the sphere is a superposition of the
external field and a magnetic dipole field, where (ii) the dipole moment M = 3

4π
µ−1
µ+2

H is
parallel to the external field. This magnetic moment is caused by the orientation of the
intrinsic moments along the external field axis; consequently, the actually felt magnetic field
(the magnetic induction) B = H+ 4πM exceeds the external field.

5.3 Wave propagation in media

What happens if an electromagnetic wave impinges upon a medium characterized by a non–
trivial dielectric function ϵ?5 And how does the propagation behavior of waves relate to actual

5We emphasize dielectric function because, as shall be seen below, the magnetic permeability has a much
lesser impact on electromagnetic wave propagation.
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physical processes inside the medium? To prepare the discussion of these questions, we will
first introduce a physically motivated model for the dependence of the dielectric function on
its arguments. This modeling will establish a concrete link between the amplitude of the
electromagnetic waves and the dynamics of the charge carriers inside the medium.

5.3.1 Model dielectric function

In Fourier space, the dielectric function, ϵ(q, ω) is a function of both wave vector and fre-
quency. It owes its frequency dependence to the fact that a wave in matter may prompt the
creation of excitations of the molecular degrees of freedom. The feedback of these excitations
to the electromagnetic wave is described by the frequency dependence of the function ϵ. To
get an idea of the relevant frequency scales, notice that typical excitation energies in solids
are of the order ℏω < 1 eV. Noting that Planck’s constant ℏ ≃ 0.6× 10−15 eVs, we find that
the characteristic frequencies at which solids dominantly respond to electromagnetic waves
are of the order ω < 1015s−1. However, the wave lengths corresponding to these frequencies,
λ = 2π/|q| ∼ 2πc/ω ∼ 10−6m are much larger than the range of a few interatomic spacings
over which we expect the non–local feedback of the external field into the polarization to
be ‘screened’ (the range of the susceptibility χ.) This means (think why!) that the func-
tion ϵ(q, ω) ≃ ϵ(ω) is largely momentum–independent at the momentum scales of physical
relevance.

To obtain a crude model for the function ϵ(ω), we imagine that the electrons surrounding
the molecules inside the solid are harmonically bound to the nuclear center coordinates. An
individual electron at spatial coordinate a (measured w.r.t. a nuclear position) will then be
subject to the equation of motion

m
(
d2t + ω2

0 + γdt
)
a(t) = eE(t), (5.22)

where ω0 is the characteristic frequency of the oscillator motion of the electron, γ a relaxation
constant, and the variation of the external field over the extent of the molecule has been
neglected (cf. the discussion above.) Fourier transforming this equation, we obtain d ≡
ea(ω) = e2E(ω)m−1/(ω2

0 − ω2 − iγω). The dipole moment dm(ω) of an entire molecule
with Z electrons fi of which oscillate with frequency ωi and damping rate γi (

∑
i fi = Z) is

given by dm(ω) =
∑

i fid(ω0→ωi,γ→γi). Denoting the density of molecules in the by n, we thus
obtain (cf. Eqs. (5.1), (5.3), and (5.6))

ϵ(ω) = 1 +
4πne2

m

∑
i

fi
ω2
i − ω2 − iγiω

. (5.23)

With suitable quantum mechanical definitions of the material constants fi, ωi and γi, the
model dielectric function (5.23) provides an accurate description of the molecular contri-
bution to the dielectric behaviour of solids. A schematic of the typical behaviour of real and
imaginary part of the dielectric function is shown in Fig. 5.3. A few remarks on the profile of
these functions:
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▷ The material constant ϵ employed in the ‘static’ sections of this chapter is given by
ϵ = ϵ(0). The imaginary part of the zero frequency dielectric function is negligible.

▷ For reasons to become clear later on, we call the function

α(ω) =
2ω

c
Im

√
µϵ(ω) (5.24)

the (frequency dependent) absorption coefficient and

n(ω) = Re
√
µϵ(ω) (5.25)

the (frequency dependent) refraction coefficient of the system.

▷ For most frequencies, i.e. everywhere except for the immediate vicinity of a resonant
frequency ωi, the absorption coefficient is negligibly small. In these regions, dω Re ϵ(ω) >
0. The positivity of this derivative defines a region of normal dispersion.

▷ In the immediate vicinity of a resonant frequency, |ω − ωi| < γi/2, the absorption
coefficient shoots up while the derivative dω Re ϵ(ω) < 0 changes sign. As we shall
discuss momentarily, the physics of these frequency windows of anomalous dispersion
is governed by resonant absorption processes.

ε

ω

γi

ωi

Im ε

Re ε

Figure 5.3: Schematic of the functional profile of the function ϵ(ω). Each resonance frequency ωi

is center of a peak in the imaginary part of ϵ and of a resonant swing of in the real part. The width
of these structures is determined by the damping rate γi.
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5.3.2 Plane waves in matter

To study the impact of the non–uniform dielectric function on the behaviour of electromagnetic
waves in matter, we consider the spatio–temporal Fourier transform of the Maxwell equations
in a medium free of extraneous sources, ρ = 0, j = 0. Using that D(k) = ϵ(k)E(k) and
H(k) = µ−1(k)B(k), where k = (ω/c,k), we have

k · (ϵE) = 0,

k× (µ−1B) +
ω

c
(ϵE) = 0,

k× E− ω

c
B = 0,

k ·B = 0,

where we omitted momentum arguments for notational clarity. We next compute k×(third
equation) + (ωµ/c)×(second equation) and (ω/c)×(third equation) − µk×(second equation)
to obtain the Fourier representation of the wave equation(

k2 − ω2

c2(ω)

)
×
{

E(k, ω)
B(k, ω)

= 0, (5.26)

where

c(ω) =
c√
µϵ(ω)

, (5.27)

is the effective velocity of light in matter.
Comparing with our discussion of section 4.3, we conclude that a plane electric wave in

a matter is mathematically described by the function

E(x, t) = E0 exp(i(k · x− ωt)),

where k = kn and k = ω/c(ω) is a (generally complex) function of the wave frequency.
Specifically, for Im (k · x) > 0, the wave is will be exponentially damped. Splitting the wave
number k into its real and imaginary part, we have

k = Re k + i Im k =
ω

c
n(ω) +

i

2
α(ω),

where n and α are the refraction and absorption coefficient, respectively. To better under-
stand the meaning of the absorption coefficient, let us compute the Poynting vector of the
electromagnetic wave. As in section 4.3, the Maxwell equation ∇·D = ϵ∇·E ∝ k ·E0 implies
transversality of the electric field. (Here we rely on the approximate x–independence of the
dielectric function.) Choosing coordinates such that n = e3 and assuming planar polarization
for simplicity, we set E0 = E0e1 with a real coefficient E0. The — physically relevant — real
part of the electric field is thus given by

ReE = E0e1 cos(ω(zn/c− t))e−αz/2.
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From the Maxwell equations ∇ · B = 0 and ∇ × E + c−1∂tB, we further obtain (exercise)
ReB ≃ E0

c
Re c(ω)

e2 cos(ω(zn/c − t))e−αz/2. Assuming that c(ω) is approximately real6 and
that the permeability is close to unity, µ ≃ 1 or B ≃ H, we obtain for the magnitude of the
Poynting vector

|S| = c

4π
|E×H| ∼ cos2(ω(zn/c− t))e−αz ⟨... ⟩t−→ e−αz,

where in the last step we have averaged over several intervals of the oscillation period 2π/ω.
According to this result,

The electromagnetic energy current inside a medium decays at a rate
set by the absorption coefficient.

This phenomenon is easy enough to interpret: according to our semi–phenomenological
model of the dielectric function above, the absorption coefficient is non–vanishing in the
immediate vicinity of a resonant frequency ωi, i.e. a frequency where molecular degrees of
freedom oscillate. The energy stored in an electromagnetic wave of this frequency may thus
get converted into mechanical oscillator energy. This goes along with a loss of field intensity,
i.e. a diminishing of the Poynting vector or, equivalently, a loss of electromagnetic energy
density, w.

5.3.3 Dispersion

In the previous section we have focused on the imaginary part of the dielectric function and
on its attenuating impact on individual plane waves propagating in matter. We next turn
to the discussion of the — equally important — role played by the real part. To introduce
the relevant physical principles in a maximally simple environment, we will focus on a one–
dimensional model of wave propagation throughout. Consider, thus, the one–dimensional
variant of the wave equations (5.26),(

k2 − ω2

c2(ω)

)
ψ(k, ω) = 0, (5.28)

where k is a one–dimensional wave ’vector’ and c(ω) = c/
√
ϵ(ω) as before. (For simplicity,

we set µ = 1 from the outset.) Plane wave solutions to this equation are given by ψ(x, t) =
ψ0 exp(ik(ω)x − iωt), where k(ω) = ω/c(ω).7 Notice that an alternative representation of
the plane wave configurations reads as ψ(x, t) = ψ0 exp(ikx− iω(k)t), where ω(k) is defined
implicitly, viz. as a solution of the equation ω/c(ω) = k.

6If this assumption is violated, E and B are no longer in phase, i.e. the cos-time dependence of B picks
up a phase relative to that of E. However, this generalization does not change the essence of the argument.

7There is also the ‘left moving’ solution, ψ(x, t) = ψ0 exp(ik(ω)x + iωt), but for our purposes it will be
sufficient to consider right moving waves.
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To understand the consequences of frequency dependent variations in the real part of the
dielectric function, we need, however, to go beyond the level of isolated plane wave. Rather,
let us consider a superposition of plane waves (cf. Eq. (4.13)),

ψ(x, t) =

∫
dk ψ0(k)e

+i(kx−ω(k)t), (5.29)

where ψ0(k) is an arbitrary function. (Exercise: check that this superposition solves the wave
equations.)

Specifically, let us chose the function ψ0(k) such that, at initial time t = 0, the distribution
ψ(x, t = 0) is localized in a finite region in space. Configurations of this type are called
wave packets. While there is a lot of freedom in choosing such spatially localizing envelope
functions, a convenient (and for our purposes sufficiently general) choice of the weight function
ψ0 is a Gaussian,

ψ0(k) = ψ0 exp

(
−(k − k0)

2 ξ
2

4

)
,

where ψ0 ∈ C is a amplitude coefficient fixed and ξ a coefficient of dimensionality ‘length’
that determines the spatial extent of the wave package (at time t = 0.) To check that latter
assertion, let us compute the spatial profile ψ(x, 0) of the wave package at the initial time:

ψ(x, 0) = ψ0

∫
dk e−(k−k0)2

ξ2

4
+ikx = ψ0e

ik0x

∫
dk e−k2 ξ2

4
+ikx =

= ψ0e
ik0x

∫
dk e−k2 ξ2

4
−(x/ξ)2 =

2
√
π

ξ
ψ0 e

ik0xe−(x/ξ)2 .

The function ψ(x, 0) is concentrated in a volume of extension ξ; it describes the profile of a
small wave ‘packet’ at initial time t = 0. What will happen to this wave packet as time goes
on?

To answer this question, let us assume that the scales over which the function ω(k) varies
are much larger than the extension of the wave package in wave number space, k. It is, then,
a good idea to expand ω(k) around k0:

ω(k) = ω0 + vg(k − k0) +
a

2
(k − k0)

2 + . . . ,

where we introduced the abbreviations ω0 ≡ ω(k0), vg ≡ ω′(k0) and a ≡ ω′′(k0). Substituting
this expansion into Eq. (5.29) and doing the Gaussian integral over wave numbers we obtain

ψ(x, t) = ψ0

∫
dk e−(k−k0)2ξ2/4+i(kx−ω(k)t) ≃

≃ ψ0e
ik0(x−vpt)

∫
dk e−(ξ2+2iat)(k−k0)2/4+i(k−k0)(x−vgt) =

≃ 2
√
πψ0

ξ(t)
eik0(x−vpt)e−((x−vgt)/ξ(t))2 ,

where we introduced the function ξ(t) =
√
ξ2 + 2iat, and the abbreviation vp ≡ ω(k0)/k0

Let us try to understand the main characteristics of this result:
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ξ

ψ

x

vgt

Figure 5.4: Left: Dispersive propagation of an initially sharply focused wave package. Right: A
more shallow wave package suffers less drastically from dispersive deformation.

▷ The center of the wave package moves with a characteristic velocity vg = ∂kω(k0) to
the right. In as much as vg determines the effective center velocity of a superposition of
a continuum or ‘group’ of plain waves, vg is called the group velocity of the system.
Only in vacuum where c(ω) = c is independent of frequency we have ω = ck and the
group velocity vg = ∂kω = c coincides with the vacuum velocity of light.

A customary yet far less useful notion is that of a phase velocity: an individual plane
wave behaves as ∼ exp(i(kx − ω(k)t)) = exp(ik(x − (ω(k)/k)t)). In view of the
structure of the exponent, one may call vp ≡ ω(k)/k the ‘velocity’ of the wave. Since,
however, the wave extends over the entire system anyway, the phase velocity is not of
direct physical relevance. Notice that the phase velocity vp = ω(k)/k = c(k) = c/n(ω),
where the refraction coefficient has been introduced in (5.25). For most frequencies
and in almost all substances, n > 1 ⇒ vp < c. In principle, however, the phase
velocity may become larger than the speed of light.8 The group velocity vg = ∂kω(k) =
(∂ωk(ω))

−1 = (∂ωωn(ω))
−1c = (n(ω)+ω∂ωn(ω))

−1c = vp(1+n
−1ω∂ωn)

−1. In regions
of normal dispersion, ∂ωn > 0 implying that vg < vp. For the discussion of anomalous
cases, where vg may exceed the phase velocity or even the vacuum velocity of light,
see [1].

▷ The width of the wave package, ∆x changes in time. Inspection of the Gaussian fac-
tor controlling the envelope of the packet shows that Reψ ∼ e(x−vgt)2(ξ−2+ξ∗−2)/2, where
the symbol ’∼’ indicates that only the exponential dependence of the package is taken
into account. Thus, the width of the package is given by ξ(t) = ξ(1 + (2at/ξ2)2)1/2.

According to this formula, the rate at which ξ(t) increases (the wave package flows
apart) is the larger, the sharper the spatial concentration of the initial wave package

8However, there is no need to worry that such anomalies conflict with Einsteins principle of relativity to be
discussed in chapter 6 below: the dynamics of a uniform wave train is not linked to the transport of energy
or other observable physical quantities, i.e. there is no actual physical entity that is transported at a velocity
larger than the speed of light.
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was (cf. Fig. 5.4). For large times, t ≫ ξ2/a, the width of the wave package increases
as ∆x ∼ t. The disintegration of the wave package is caused by a phenomenon called
dispersion: The form of the package at t = 0 is obtained by (Fourier) superposition
of a large number of plane waves. If all these plane waves propagated with the same
phase velocity (i.e. if ω(k) was k–independent), the form of the wave package would
remain un–changed. However, due to the fact that in a medium plane waves of different
wave number k generally propagate at different velocities, the Fourier spectrum of the
package at non–zero times differs from that at time zero. Which in turn means that the
integrity of the form of the wave package gets gradually lost.

The dispersive spreading of electromagnetic wave packages is a phenomenon of immense
applied importance. For example, dispersive deformation is one of the main factors limiting
the information load that can be pushed through fiber optical cables. (For too high loads,
the ’wave packets’ constituting the bit stream through such fibers begin to overlap thus loosing
their identity. The construction of ever more sophisticated counter measures optimizing the
data capacity of optical fibers represents a major stream of applied research.

5.3.4 Electric conductivity

As a last phenomenon relating to macroscopic electrodynamics, we discuss the electric con-
duction properties of metallic systems.

Empirically, we know that in a metal, a finite electric field will cause current flow. In
its most general form, the relation between field and current assumes a form similar to that
between field and polarization discussed above:

ji(x, t) =

∫
d3x′

∫ t

−∞
dt′ σij(x− x′, t− t′)Ej(x

′, t′), (5.30)

where σ = {σij(x, t)} is called the conductivity tensor. This equation states that a field may
cause current flow at different spatial locations in time. Equally, a field may cause current flow
in directions different from the field vector. (For example, in a system subject to a magnetic
field in z–direction, an electric field in x–direction will cause current flow in both x– and
y–direction, why?) As with the electric susceptibility, the non–local space dependence of the
conductivity may often be neglected, σ(x, t) ∝ δ(x), or σ(q, ω) = σ(ω) in Fourier space.
However, except for very low frequencies, the ω–dependence is generally important. Generally,
one calls the finite–frequency conductivity ’AC conductivity’, where ’AC’ stands for ’alternating
current’. For ω → 0, the conductivity crosses over to the ’DC conductivity’, where ’DC’ stands
for ’directed current’. In the DC limit, and for an isotropic medium, the field–current relation
assumes the form of Ohm’s law

j = σE. (5.31)

In the following, we wish to understand how the phenomenon of electrical conduction can be
explained from our previous considerations.
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There are two different ways to specify the dynamical response of a metal to external
fields: We may either postulate a current–field relation in the spirit of Ohms law. Or we
may determine a dielectric function which (in a more microscopic way) describes the response
of the mobile charge carriers in the system to the presence of a field. However, since that
response generally implies current flow, the simultaneous specification of both a frequency
dependent9 dielectric function and a current–field relation would over–determine the problem.
In the following, we discuss the two alternatives in more detail.

The phenomenological route

Let us impose Eq. (5.31) as a condition extraneous to the Maxwell equations; We simply
postulate that an electric field drives a current whose temporal and spatial profile is rigidly
locked to the electric field. As indiciated above, this postulate largely determines the dynamical
response of the system to the external field, i.e. the dielectric function ϵ(ω) = ϵ has to be
chosen constant. Substitution of this ansatz into the temporal Fourier transform of the Maxwell
equation (2.2) obtains

∇×H(x, ω) =
1

c
(−iϵω + 4πσ)E(x, ω), (5.32)

For the moment, we leave this result as it is and turn to

The microscopic route

We want to describe the electromagnetic response of a metal in terms of a model dielectric
function. The dielectric function (5.23) constructed above describes the response of charge
carriers harmonically bound to molecular center coordinates by a harmonic potential ∼ miω

2
i /2

and subject to an effective damping or friction mechanism. Now, the conduction electrons of a
metal mey be thought of as charge carriers whose confining potential is infinitely weak, ωi = 0,
so that their motion is not tied to a reference coordinate. Still, the conduction electrons will
be subject to friction mechanisms. (E.g., scattering off atomic imperfections will impede their
ballistic motion through the solid.) We thus model the dielectric function of a metal as

ϵ(ω) = 1− 4πnee
2

mω(ω + i
τ
)
+

4πne2

m

∑
i

fi
ω2
i − ω2 − iγiω

ω≪ωi≃ ϵ− 4πnee
2

mω(ω + i
τ
)
, (5.33)

where ne ≡ Nf0 is a measure of the concentration of conduction electrons, the friction
coefficient of the electrons has been denoted by τ−1,10 and in the last step we noted that
for frequencies well below the oscillator frequencies ωi of the valence electrons, the frequency
dependence of the second contribution to the dielectric function may be neglected; We thus
lump that contribution into an effective material constant ϵ. Keep in mind that the free electron

9As we shall see below, a dielectric constant does not lead to current flow.
10... alluding to the fact that the attenuation of the electrons is due to collisions of impurities which take

place at a rate denoted by τ .
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contribution to the dielectric function exhaustingly describes the acceleration of charge carriers
by the field (the onset of current), i.e. no extraneous current–field relations must be imposed.

Substitution of Eq. (5.33) into the Maxwell equation (2.2) obtains the result

∇×H(x, ω) = −iωϵ(ω)
c

E(x, ω) =
1

c

(
−iωϵ+ 4πnee

2

m(−iω + 1
τ
)

)
E(x, ω), (5.34)

Comparison to the phenomenological result (5.32) yields the identification

σ(ω) =
nee

2

m(−iω + 1
τ
)
, (5.35)

i.e. a formula for the AC conductivity in terms of electron density and mass, and the impurity
collision rate.

Eq. (5.35) affords a very intuitive physical interpretations:

▷ For high frequencies, ω ≫ τ−1, we may approximate σ ∼ (iω)−1, or ωj ∼ E. In
time space, this means ∂tj ∼ ρv̇ ∼ E. This formula describes the ballistic acceleration
of electrons by an electric field: On time scales t ≪ τ , which, in a Fourier sense,
correspond to large frequencies ω ≫ τ−1 the motion of electrons is not hindered by
impurity collisions and they accelarate as free particles.

▷ For low frequencies, ω ≪ τ−1, the conductivity may be approximated by a constant,
σ ∼ τ . In this regime, the motion of the electrons is impeded by repeated impurity
collisions. As a result they diffuse with a constant drift induced by the electric field.
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6.0 Relativistic invariance

6.1 Introduction

6.1.1 Galilei invariance and its limitations

The laws of mechanics are the same in two coordinate systems K and K ′ moving at a con-
stant velocity relative to one another. Within classical Newtonian mechanics, the space time
coordinates (t,x) and (t′,x′) of two such systems are related by a Galilei transformation,

t′ = t

x′ = x− vt.

Substituting this transformation into Newton’s equations of motion as formulated in system
K,

K :
d2xi

dt2
= −∇xi

∑
j

Vij(xi − xj)

(xi are particle coordinates in system K and Vij is a pair potential which, crucially, depends
only on the differences between particle coordinates and not, say, on any distinguished reference
point in universe.) we find that

K ′ :
d2x′

i

dt′2
= −∇x′

i

∑
j

Vij(x
′
i − x′

j),

i.e. the equations remain form invariant. This is what is meant when we say that classical
mechanics is Galilei invariant.1

Now, suppose a certain physical phenomenon in K (the dynamics of a water surface, say)
is effectively described by a wave equation,

K :

(
∆− 1

c2
∂2t

)
f(x, t) = 0.

1More precisely, Galilei invariance implies invariance under all transformations of the Galilei group, the
uniform motions above, rotations of space, and translations of space.
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Now apply the chain rule

∂xi =
∂xj′

∂xi
∂xj′ +

∂t′

∂xi
∂t = ∂xi′ ,

∂t =
∂xi′

∂t
∂xi′ +

∂t′

∂t
∂t′ = vi∂xi′ + ∂t′ ,

to obtain the transformed equation

K ′ :

(
∆′ − 1

c2
∂2t′ −

2

c2
v · ∇′∂t′ −

1

c2
(v · ∇′)2

)
f(x′, t′) = 0,

where f(x′, t′) = f(x(x′, t′), t). The equation has changed form. At first sight this result may
look worrysome. After all, many waves (water waves, sound waves, etc.) are of pure mechan-
ical origin which means that wave propagation ought to be a Galilei invariant phenomenon.
The resolution to this problem lies with the fact, that matter waves generally propagate in
a host medium (water, say.) While in K this medium is at rest, it isn’t in K ′. But a wave
propagating in a non–stationary medium must be controlled by a different equation of motion,
i.e. there is no a priori contradiction to the principle of Galilei invariance. Equivalently, one
may observe that a wave emitted by a point source stationary in K will propagate with veloc-
ity c (in K.) However, an observer in K ′ will observe wave fronts propagating with different
velocities.2 Mathematically, this distortion of the wave pattern is described by K ′’s ‘wave
equation’.

But what about electromagnetic waves? So far, we have never talked about a ‘host
medium’ supporting the propagation of electromagnetic radiation. The lack of Galilean invari-
ance of Maxwells equations then leaves us with three possibilities:

1. Nature is Galilean invariant, but Maxwells equations are incorrect (or, to put it more
mildly, incomplete.)

2. An electromagnetic host medium (let’s call it the ether) does, indeed, exist.

3. Nature is invariant under a group of space–time transformations different from Galilei.
If so, Newton’s equations of motion are in need of modification.

These questions became pressing in the second half of the 19th century, after Maxwell had
brought the theory of electromagnetism to completion, and the exploration of all kinds of elec-
tromagnetic wave equation represented a focal point of theoretical and experimental research.
In view of the sensational success of Maxwells theory the first answer was not really considered
an option.

Since Newtonian mechanics wasn’t a concept to be sacrificed lightly either, the existence
of an ether was postulated. However, it was soon realized that the ether medium would
have to have quite eccentric physical properties. Since no one had ever actually observed an

2The actually measured velocity depends on the distance of the observation point to the point of origin of
the wave.
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ether, this medium would have to be infinitely light and fully non–interacting with matter. (Its
presumed etheric properties actually gave it its name.) Equally problematic, electromagnetic
waves would uniformly propagate with the speed of light, c, only in the distinguished ether
rest frame. I.e., the ether postulate was tantamount to the abandonment of the idea of ‘no
preferential intertial frames in nature’ a concept close at heart to the development of modern
physics. Towards the end of the nineteenth century, experimental evidence was mounting that
the vacuum velocity of light was, independent of the observation frame, given by c; the idea
of an ether became increasingly difficult to sustain.

6.1.2 Einsteins postulates

In essence, this summarizes the state of affairs before Einstein entered the debate. In view
of the arguments outlined above, Einstein decided that 3. had to be the correct option.
Specifically, he put forward two fundamental postulates

Figure 6.1: Measurement of Newtons law of gravitational attraction (any other law would be just as
good) in two frames that are relatively inertial. The equations describing the force between masses
will be the same in both frames

▷ The postulate of relativity: This postulate is best formulated in a negative form:
there is no such thing like ‘absolute rest’ or an ’absolute velocity’, or an ‘absolute point
in space’. No absolute frame exists in which the laws of nature assume a distinguished
form.

To formulate this principle in a positive form, we define two coordinate frames to be
inertial with respect to each other if one is related to the other by a translation in
space and/or time, a constant rotation, a uniform motion, or a combination of these
operations. The postulate then states that the laws of nature will assume the same form
(be expressed by identical fundamental equations) in both systems.

As a corollary, this implies that physical laws must never make reference to absolute
coordinates, times, angles, etc.
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▷ The postulate of the constancy of the speed
of light: the speed of light is independent of the
motion of its source.

What makes this postulate — which superficially
might seem to be no more than an innocent tribute

to experimental observation3 — so revolutionary is that it implies the abandonment of
‘absolute time’. For example, two events that are simultaneous in one inertial frame
will in general no longer be simultaneous in other inertial frames. While, more than one
hundred years later, we have grown used to its implications the revolutionary character
of Einsteins second postulate cannot be exaggerated.

6.1.3 First consequences

As we shall see below, the notion of an ’absolute time’ — which makes perfect sense in
Newtonian mechanics4 — becomes meaningless in Einsteins theory of relativity. When we
monitor physical processes we must be careful to assign to each physical event its own space
and time coordinate x = (ct,x) (where the factor of c has been included for later convenience.)
An event is canonical in that it can be observed in all frames (no matter whether they are
relatively inertial or not). However, both its space and time coordinates are non–canonical,
i.e. when observed from a different frame K ′ it will have coordinates x′ = (ct′,x′), where t′

may be different from t.

ct

x

When we talk of a ’body’ or a ’particle’ in relativity, what
we actually mean is the continuous sequence of events x =
(ct,x) defined by its instantaneous position x at time t (both
monitored in a specific frame). The assembly of these events
obtains the world line of the body, a (directed) curve in a
space–time coordinate frame (cf. the figure for a schematic of
the (1+1)–dimensional world lines of a body in uniform motion
(left) and an accelerated body (right).)

The most important characteristic of the relative motion of inertial frames is that no
acceleration is involved. This implies, in particular, that a uniform motion in one frame will stay
uniform in the other; straight world lines transform into straight world lines. Parameterizing
a general uniform motion in system K by x = (ct,wt + b), where w is the velocity and b
an offset vector, we must require that the coordinate representation x′ in any inertial system
K ′ is again a straight line. Now, the most general family of transformations mapping straight
lines onto straight lines are the affine transformations

x′ = Λx+ a, (6.1)

3... although the constancy of the speed of light had not yet been fully established experimentally when
Einstein made his postulate.

4Two events that occur simultaneously in one frame will remain simultaneous under Galilei transformations.
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where Λ : Rd+1 → Rd+1 is an arbitrary invertible linear map from (d+ 1)–dimensional5 space
time into itself and a ∈ Rd+1 a vector describing the displacement of the origin of coordinate
systems in space and or time. For a = 0, we speak of a homogeneous coordinate trans-
formation. Since any transformation may be represented as a succession of a homogeneous
transformation and a trivial translation, we will focus on the former class throughout.

What conditions will the transformation matrix Λ have to fulfill in order to qualify as a
transformation between inertial frames? Referring for a rigorous discussion of this question to
Ref. [2], we here merely note that symmetry conditions implied by the principle of relativity
nearly but not completely specify the class of permissible transformations. However, they do
exclude the Galilei transformations featuring as the relevant transformation class in classical
mechanics.

To see why, consider Einstein’s second postulate: Let K and K ′ be two intertial frames
related to each other by a homogeneous coordinate transformation. At time t = 0 the origins
of the two systems coalesce. Let us assume, however, the K ′ moves with relatively to K at
some constant velocity v. Now consider the event: at time t = 0 a light source at x = 0
emits a signal. In K, the wave fronts of the light signal then trace out world lines propagating
at the vacuum speed of light, i.e. the spatial coordinates x of a wave front obey the relation

x2 − c2t2 = 0.

The crucial point now is that in spite of its motion relative to the point of emanation of the
light signal, an observer in K ′, too, will observe a light signal moving with velocity c in all
directions. (Notice the difference to, say, a sound wave. From K ′’s point of view, fronts
moving in parallel to v would be slowed down while those moving in the opposite direction
would propagate at higher speed, v′

sound = vsound − v.) This means that the light front
coordinates in x′ obey the same relation

x′2 − c2t′2 = 0.

This additional condition unambiguously fixes the set of permissible transformations. To
formulate it in the language of linear coordinate transformations (which, in view of the linearity
of transformations between inertial frames is the adequate one), let us define the matrix

g = {gµν} ≡


1

−1
−1

−1

 , (6.2)

where all non–diagonal entries are zero. The constancy of the speed of light may then be
expressed in concise form as xTgx = 0 ⇒ x′Tgx′ = 0. This condition suggests to focus on

5Although our primary interest is in d = 3, it is occasionally useful to generalize to other dimensions.
Specifically, space–time diagrams are easiest to draw/imagine in (1+ 1)–dimensions. Why do we require Λ to
be invertible?
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coordinate transformations for which the bilinear form xTgx is conserved,6

xTgx = x′Tgx′. (6.3)

Substituting x′ = Λx, we find that Λ must obey the condition

ΛTgΛ = g (6.4)

Linear coordinate transformations satisfying this condition are called Lorentz transforma-
tions. We thus postulate that

All laws of nature must be invariant under affine coordinate transformations (6.1)
where the homogeneous part of the transformation obeys the Lorentz condition (6.4).

While this statement ’implicitly’ characterizes the set of legitimate transformations, our
discussion below will require a much more explicit description. The purely mathematical task
of obtaining this description will be tackled in the next section.

6.2 The mathematics of special relativity I: Lorentz group

In this section, we will develop the mathematical framework required to describe transforma-
tions between inertial frames. We will show that these transformations form a continuous
group, the Lorentz group.

6.2.1 Background

The bilinear form introduced above defines a scalar product of R4:7

g : R4 × R4 → R, (6.5)

(x, y) 7→ xTgy ≡ xµgµνy
ν . (6.6)

A crucial feature of this scalar product is that it is not positive definite. For reasons to be
discussed below, we call vectors whose norm is positive, xTgx = (ct)2 − x2 > 0, time like
vectors. Vectors with negative norm will be called space like and vectors of vanishing norm
light like.

6Notice the gap in the logics of the argument. Einsteins second postulate requires Eq. (6.3) only for those
space time vectors for which xT gx = 0 vanishes; We now suggest to declare it as a universal condition, i.e.
one that holds irrespective of the value of xT gx. To show that the weaker condition implies the stronger, one
may first prove (cf. Ref. [2]) that relatively straightforward symmetry considerations suffice to fix the class of
allowed transformations up to one undetermined scalar constant. The value of that constant is then fixed by
the ‘weak condition’ above. Once it has been fixed, one finds that Eq. (6.3) holds in general.

7We here use covariant notation in which vector components are labeled with superscript indices, xµ,
µ = 0, 1, 2, 3. For further discussion of this notation, see section 6.4.1.
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ct

x

forward light conetime like

space like

backward light cone

Figure 6.2: Schematic of the decomposition of space time into a time like region and a space like
region. The two regions are separated by a ‘light cone’ of light–like vectors. (A ’cone’ because in
space dimensions d > 1 it acquires a conical structure.) The forward/backward part of the light cone
extends to positive/negative times

We are interested in Lorentz transformations, i.e. linear transformations Λ : R4 → R4, x 7→
Λx that leave the scalar product g invariant, ΛTgΛ = g. (Similarly to, say, the orthogonal
transformations which leave the standard scalar product invariant.) Before exploring the struc-
ture of these transformations in detail, let us observe a number of general properties. First
notice that the set of Lorentz transformations forms a group, the Lorentz group, L. For if
Λ and Λ′ are Lorentz transformations, so is the composition ΛΛ′. The identity transformation
obviously obeys the Lorentz condition. Finally, the equation ΛTgΛ = g implies that Λ is
non–singular (why?), i.e. it possesses an inverse, Λ−1. We have thus shown that the Lorentz
transformations form a group.

Global considerations on the Lorentz group

What more can be said about this group? Taking the determinant of the invariance relation,
we find that det(ΛTgΛ) = det(Λ)2 det(g) = det(g), i.e. det(Λ)2 = 1 which means that
det(Λ) ∈ {−1, 1}. (Λ is a real matrix, i.e. det(Λ) ∈ R.) We may further observe that the
absolute value of the component Λ0

0 is always larger than unity. This is shown by inspection
of the 00–element of the invariance relation: 1 = g00 = (ΛTgΛ)00 = (Λ0

0)
2 − ∑

i(Λ
0
i)
2.

Since the subtracted term is positive (or zero), we have |Λ0
0| ≥ 1. We thus conclude that L

contains four components defined by

L↑
+ : detλ = +1, Λ0

0 ≥ +1,

L↓
+ : det Λ = +1, Λ0

0 ≤ −1,

L↑
− : det Λ = −1, Λ0

0 > +1,

L↓
− : det Λ = −1, Λ0

0 ≤ −1.

(6.7)
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Transformations belonging to any one of these subsets cannot be continuously deformed into a
transformation of a different subset (why?), i.e. the subsets are truly disjoint. In the following,
we introduce a few distinguished transformations belonging to the different components of the
Lorentz group.

Space reflection, or parity, P : (ct,x) → (ct,−x) is a Lorentz transformation. It belongs
to the component L↑

−. Time inversion, T : (ct,x) → (−ct,x) belongs to the component

L↓
−. The product of space reflection and time inversion, PT : (ct,x) → (−ct,−x) belongs

to the component L↓
+. Generally, the product of two transformations belonging to a given

component no longer belongs to that component, i.e. the subsets do not for subgroups of the
Lorentz group. However, the component L↑

+ is exceptional in that it is a subgroup. It is called
the proper orthochronous Lorentz group, or restricted Lorentz group. The attribute
’proper’ indicates that it does not contain exceptional transformations (such as parity and time
inversion) which cannot be continuously deformed back to the identity transform. It is called
‘orthochronous’ because it maps the positive light cone into itself, i.e. it respects the ‘direction’
of time. To see that L↑

+ is a group, notice that it contains the identity transformation. Further,
its elements can be continuously contracted to unity; however, if this property holds for two
elements Λ,Λ′ ∈ L↑

+, then so for the product ΛΛ′, i.e. the product is again in L↑
+.

▷ Info. The (Lorentz) group of transformations respecting the Minkowski metric as ΛT ηΛ = η

is also denoted as O(1, 3). The notation underlines the analogy to the orthogonal group O(4) whose

elements satisfy, OT14O = 14, and the fact that the Minkowski metric has signature (1, 3), i.e. one

positive and three negative eigenvalues. (Discuss why the signature of a metric can’t change under

basis transformations.) Much as SO(4) is the subgroup of the orthogonal group containing matrices

of unit determinant (and hence the unit transformation), the proper Lorentz group is denoted as

SO+(1, 3), where the +-superscript indicates the Λ0
0 > 1 condition.

——————————————–

The restricted Lorentz group

x3

x3

x2

x2

x1

x1

x′3

x′3

x′2

x′2

x′1

x′1

vt

vt

K K ′

K ′

K

The restricted Lorentz group contains transformations
which we associate with coordinate transformations be-
tween inertial frames. These tranformations fall into two
large categories. The first are rotations of space,

ΛR ≡
(
1

R

)
,

where R is a three–dimensional rotation matrix. The sec-
ond we associate with uniform motions between inertial
frames.

To represent these in terms of Lorentz transforma-
tions, consider two inertial frames K and K ′ whose ori-

gins at time t = 0 coalesce (which means that the affine coordinate transformation (6.1)
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will be homogeneous, a = 0. We assume that K ′ moves at constant velocity v relative to
K. Lorentz transformations of this type, Λv, are called special Lorentz transformations.
Physically, they describe what is sometimes called a Lorentz boost, i.e. the passage from a
stationary to a moving frame. (Although we are talking about a mere coordinate transforma-
tion, i.e. no accelerated physical process is described.) We wish to explore the mathematical
and physical properties of these transformations.

Without loss of generality, we assume that the vector v describing the motion is parallel to
the e1 direction of K (and hence to the e′1–direction of K ′: Any general velocity vector v may
be rotated to v ∥ e1 by a space like rotation R. This means that a generic special Lorentz
transformation Λv may be obtained from the prototypical one Λve1 by a spatial rotation,
Λv = ΛRΛve1Λ

−1
R (cf. the figure.)

A special transformation in e1–direction will leave the coordinates x2 = x′2 and x3 = x′3
unchanged.8 The sought for transformation thus assumes the form

Λve1 =

Av

1
1

 ,

where the 2× 2 matrix Av operates in (ct, x1)–space.
There are many ways to determine the matrix Av. We here use a group theory inspired

method which may come across as somewhat abstract but has the advantage of straightfor-
ward applicability to many other physical problems. Being element of a continuous group of
transformations (a Lie group), the matrix Av ≡ exp(

∑
i λiTi) can be written in an exponential

parameterization. Here, λi are real parameters and Ti two–dimensional fixed ‘generator ma-
trices’ (Cf. with the conventional rotation group; the Ti’s play the role of angular momentum
generator matrices, and the λi’s are generalized real–valued ‘angles’.) To determine the group
generators, we consider the transformation Av for infinitesimal angles λi. Substituting the
matrix Av into the defining equation of the Lorentz group, using that the restriction of the
metric to (ct, x) space assumes the form g → σ3 ≡ diag(1,−1), and expanding to first order
in λi, we obtain

AT
v σ3Av ≃ (1 +

∑
i

λiT
T
i )σ3(1 +

∑
i

λiTi) ≃ σ3 +
∑
i

λi(T
T
i σ3 + σ3Ti)

!
= σ3.

This relation must hold regardless of the value of λi, i.e. the matrices Ti must obey the
condition T T

i σ3 = −σ3Ti. Up to normalization, there is only one matrix that meets this

condition, viz Ti = σ1 ≡
(
0 1
1 0

)
. The most general form of the matrix Av is thus given by

Av = exp

(
λ

(
0 1
1 0

))
=

(
coshλ sinhλ
sinhλ coshλ

)
,

8To actually prove this, notice that from the point of view of an observer in K ′ we consider a special trans-
formation with velocity −ve′1. Then apply symmetry arguments (notably the condition of parity invariance; a
mirrored universe should not differ in an observable manner in its transformation behavior from our one.) to
show that any change in these coordinates would lead to a contradiction.



114 CHAPTER 6. RELATIVISTIC INVARIANCE

where we denoted the single remaining parameter by λ and in the second equality expanded
the exponential in a power series. We now must determine the parameter λ = λ(v) in such
a way that it actually describes our v–dependent transformation. Substituting Av into the
transformation law x′ = Λvx, or (

x0′

x1′

)
= Av

(
x0

x1

)
.

Now, the origin of K ′ (having coordinate x1′ = 0) is at coordinate x1 = vt. Substituting this
condition into the equation above, we obtain the condition

tanhλ = −v/c.
Using this result and introducing the (standard) notation

β = |v|/c, γ ≡ (1− β2)−1/2, (6.8)

the special Lorentz transformation assumes the form

Λve1 =


γ −γβ

−γβ γ
1

1

 (6.9)

▷ Exercise. Repeat the argument above for the full transformation group, i.e. not just the

set of special Lorentz transformations along a certain axis. To this end, introduce an exponential

representation Λ = exp(
∑

i λiTi) for general elements of the restricted Lorentz group. Use the

defining condition of the group to identify six linearly independent matrix generators.9 Among the

matrices Ti, identify three as the generators Ji of the spatial rotation group, Ti = Ji. Three others

generate special Lorentz transformations along the three coordinate axes of K. (Linear combinations

of these generators can be used to describe arbitrary special Lorentz transformations.)

A few more remarks on the transformations of the restricted Lorentz group:

▷ In the limit of small β, the transformation Λve1 asymptotes to the Galilei transformation,
t′ = t and x′1 = x1 − vt.

▷ We repeat that a general special Lorentz transformation can be obtained from the
transformation along e1 by a space–like rotation, Λv = ΛRΛve1ΛR−1 , where R is a
rotation mapping e1 onto the unit vector in v–direction.

▷ Without proof (However, the proof is by and large implied by the exercise above.) we
mention that a general restricted Lorentz transformation can always be represented as

Λ = ΛRΛv,

i.e. as the product of a rotation and a special Lorentz transformation.
9Matrices are elements of a certain vector space (the space of linear transformations of a given vector

space.) As A set of matrices A1, . . . Ak is linearly independent if no linear combination exists such that∑
i xiAi = 0 vanishes.
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6.3 Aspects of relativistic dynamics

In this section we explore a few of the physical consequences deriving from Einsteins postulates.
The discussion remains on a superficial level and key topics of the theory of relativity are not
mentioned at all. Instead, the prime objective of this section is to to provide the background
required to discuss the relativistic invariance of electrodynamics below.

6.3.1 Proper time

ct

x

ct′

x′

Consider the world line of a particle moving in space in a
(not necessarily uniform manner.) At any instance of time, t,
the particle will be at rest in an inertial system K ′ whose origin
coincides with x(t) and whose instantaneous velocity w.r.t. K
is given by dtx(t). At this point, it is important to avoid con-
fusion. Of course, the coordinate system whose origin globally
coincides with x(t) is not inertial w.r.t. K (unless the motion
is uniform.) Put differently, the origin of the inertial system K ′

defined by the instantaneous position x(t) and the instanta-
neous velocity dtx(t) coincides with the particles position only
at the very instant t. The t′ axis of K ′ is parallel to the vector

dtx(t). Also, we know that the t′ axis cannot be tilted w.r.t. the t axis by more than an angle
π/4, i.e. it must stay within the instantaneous light cone attached to the reference coordinate
x.

Now, imagine an observer traveling along the world line x(t) and carrying a watch. We
assume that at t = t′ = 0, the observer passes through the origin of the system K (see the
figure). We wish to identify the time coordinates of the event ‘watch in the moving system
K ′ shows (infinitesimal) time dτ ’. In K’ the answer to this question is formulated easily
enough, the event has coordinates (cdτ, 0), where we noted that, due to the orthogonality of
the space–like coordinate axes to the world line, the watch will remain at coordinate x′ = 0.
In K the event will take place at an as yet undetermined time dt. From K’s perspective,
the watch is in motion and at dt will be at the spatial coordinate dtv, where is the velocity
of K ′ relative to K at the time of passage and we assumed that this velocity changes only
imperceptibly during the small time window dt. Comparing the coordinate representations in
K and K ′, we conclude that (cdτ, 0) in K ′ and (cdt,vdt) in K describe the same event, and
hence must be related by a Lorentz transformation. Specifically, (cdτ)2 = (cdt)2 − (vdt)2, or

dτ = dt
√

1− v2/c2.

To time between events of finite duration may be obtained by integration,

τ =

∫
dt
√

1− v2/c2.
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This equation expresses the famous phenomenon of the relativity of time: For a moving ob-
server time proceeds slower than for an observer at rest. The time measured by the propagating
watch, τ , is called proper time. The attribute ‘proper’ indicates that τ is defined with refer-
ence to a coordinate system (the instantaneous rest frame) that can be canonically defined.
I.e. while the time t associated to a given point on the world line x(t) = (ct,x(t)) will change
from system to system (as we just saw), the proper time remains the same; the proper time can
be used to parameterize the space–time curve in an invariant manner as x(τ) = (ct(τ),x(τ)).

▷ Info. The relativity of time implies the distortion of other metric quantities, notably the

contraction of length. An easy way to see this is by the following Gedanken experiment. Suppose

you have an object of length L in your own rest frame. How long will this object be in a frame moving

with velocity v parallel to the extension L? From the perspective of an observer in the moving frame,

the object appears to be moving with velocity −v. One thing the two observers will agree upon is the

magnitude v of their relative velocity. From the perspective of the rest frame observer, the moving

one will need time t = L/v to progress from one end of the object to the other. However, during

that time, only t′ = t/γ has passed in the moving frame. So, the object appears to have length

L′ = vt′ < L in K ′.

——————————————–

6.3.2 Relativistic mechanics

Relativistic energy momentum relation

In section 6.1.2 we argued that Einstein solved the puzzle posed by the Lorentz invariance of
electrodynamics by postulating that Newtonian mechanics was in need of generalization. We
will begin our discussion of the physical ramifications of Lorentz invariance by developing this
extended picture. Again, we start from postulates motivated by physical reasoning:

▷ The extended variant of Newtonian mechanics (lets call it relativistic mechanics) ought to
be invariant under Lorentz transformations, i.e. the generalization of Newtons equations
should assume the same form in all inertial frames.

▷ In the rest frame of a particle subject to mechanical forces, or in frames moving at low
velocity v/c≪ 1 relatively to the rest frame, the equations must asymptote to Newtons
equations.

Newton’s equations in the rest frame K are of course given by

m
d2

dτ 2
x = f ,

where m is the particle’s mass (in its rest frame — as we shall see, the mass is not an invariant
quantity. We thus better speak of a particle rest mass), and f is the force. As always in
relativity, a spatial vector (such as x or f) must be interpreted as the space–like component
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of a four–vector. The zeroth component of x is given by x0 = cτ , so that the rest frame
generalization of the Newton equation reads as md2τx

µ = fµ, where f = (0, f) and we noted
that for the zeroth component md2τx

0 = 0, so that f 0 = 0. It is useful to define the four–
momentum of the particle by pµ = mdτx

µ. (Notice that both τ and the rest mass m are
Lorentz invariant, i.e. the transformation behaviour of p is determined by that of x.) The
zeroth component of the momentum, mdτx

0 = mc carries the dimension [energy]/[velocity].
This suggests to define10

p =

(
E/c
p

)
,

where E is some characteristic energy. (In the instantaneous rest frame of the particle,
E = mc2 and p = 0.)

Expressed in terms of the four–momentum, the Newton equation assumes the simple form

dτp = f.

Let us explore what happens to the four momentum as we boost the particle from its rest frame
to a frame moving with velocity vector v = ve1. Qualitatively, one will expect that in the
moving frame the particle does carry a finite space–like momentum (which will be proportional
to the velocity of the boost, v), and some renormalization of its energy. (From the point of
view of the moving frame, the particle has acquired kinetic energy.)

Focusing on the 0 and 1 component of the momentum (the others won’t change), Eq.
(6.9) implies (

mc2/c
0

)
→

(
E ′/c
p′1

)
≡

(
γmc2/c
−(γm)v

)
.

This equation may be interpreted in two different ways Substituting the explicit formula E =
mc2, we find E ′ = (γm)c2 and p′1 = −(γm)v. In Newtonian mechanics, we would have
expected that a particle at rest in K carries momentum p′1 = −mv in K ′. The difference to
the relativistic result is the renormalization of the mass factor: A particle that has mass m in
its rest frame appears to carry a velocity dependent mass

m(v) = γm =
m√

1− (v/c)2

in K ′. For v → c, it becomes infinitely heavy and its further acceleration will become progres-
sively more difficult:

Particles of finite rest frame mass cannot move faster than with the speed of light.

The energy in K ′ is given by (mγ)c2, and is again affected by mass renormalization. However,
a more useful representation is obtained by noting that pTgp is a conserved quantity. In

10Momentum frequently appears with the coordinate vector in the Lorentz invariant combination xµp
µ =

x0p0 − x · p. Since x0 = ct contains time with a factor c scaled out, it is natural to define p0 = E/c with a
factor c−1 scaled out. Energy, E, and time, t, then appear as partners much as momentum p and coordinates,
x.
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K, pTgp = (E/c)2 = (mc)2. Comparing with the bilinear form in K ′, we find (mc)2 =
(E ′/c)2 − p′2 or

E ′ =
√

(mc2)2 + (pc)2 , (6.10)

where we used the standard notation p = |p′| for the modulus of the momentum.11 This
relativistic energy–momentum relation determines the relation between energy and mo-
mentum of a free particle.

It most important implication is that even a free particle at rest carries energy E = mc2,
Einsteins world–famous result. However, this energy is usually not observable (unless it gets
released in nuclear processes of mass fragmentation, with all the known consequences.) What
we do observe in daily life are the changes in energy as we observe the particle in different
frames. This suggests to define the kinetic energy of a particle by

T ≡ E ′ −mc2 =
√
(mc2)2 + (pc)2 −mc2,

For velocities v ≪ c, the kinetic energy T ≃ p2/2m indeed reduces to the familiar non–
relativistic result. Deviations from this relation become sizeable at velocities comparable to
the speed of light.

Particle subject to a Lorentz force

We next turn back to the discussion of the relativistically invariant Newton equation dτp
µ =

fµ. Both, pµ and the components of the force, fµ, transform as vectors under Lorentz
transformations. Specifically, we wish to explore this transformation behavior on an example
of relevance to electrodynamics, the Newton equation of a particle of velocity v subject to
an electric and a magnetic field. Unlike in much of our previous discussion our observer
frame K is not the rest frame of the particle. The four–momentum of the particle is thus
given by p = (mγc,mγv). A stationary observer will find that the spatial components of
this momentum change according to the Lorentz force, dt(mγv) = q(E + (v/c) ×B). The
differentiation in the time, t, measured by the stationary observer is related via dt = γ−1dτ
to one in the proper time of the moving particle, so that dτ (mγv) = γq(E + (v/c) × B).
Comparison with dτp = f shows that the space like components of force acting on the particle
are given by, f = qγ(E+ (v/c)×B).

To complete our derivation of the Newton equation in K, we need to identify the zeroth
component of the force, f0. The zeroth component of the left hand side of the Newton
equation is given by c−1dτE = γc−1dtE, i.e. (γ/c)× the rate at which the kinetic energy of
the particle changes. However, we have seen before that this rate of potential energy change is
given by dtU = −f ·v = −qE ·v. Energy conservation implies that this energy gets converted
into the kinetic energy, dtT = dtE = +qE·v. This implies the identification f 0 = (γq/c)E·v.
Finally, using that p0 = E/c = mγc, we obtain the generalized form of Newtons equations

mdτ

(
γc
γv

)
=
q

c

(
E · (γv)

γcE+ (γv)×B

)
.

11This is not to be confused with the four-momentum. Also note, that p will be the kinematic momentum
of the moving particle observed from the perspective of an observer at rest in the moving frame.
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The form of these equations suggests to introduce the four–velocity vector

v ≡
(
γc
γv

)
(in terms of which the four–momentum is given by p = mv, i.e. by multiplication by the rest
mass.) The equations of motion can then be expressed as

mdτv
µ =

q

c
F µνvν , (6.11)

where we used the index raising and lowering convention originally introduced in chapter 4,
i.e. v0 = v0 and vi = −vi, and the matrix F is defined by

F = {F µν} =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (6.12)

The significance of Eq. (6.11) goes much beyond that of a mere reformulation of Newton’s
equations: The electromagnetic field enters the equation through a matrix, the so–called
field strength tensor. This signals that the transformation behavior of the electromagnetic
field will be different from that of vectors. Throughout much of the course, we treated the
electric field as if it was a (space–like) vector. Naively, one might have expected that in the
theory of relativity, this field gets augmented by a fourth component to become a four–vector.
However, a moment’s thought shows that this picture cannot be correct. Consider, say, a
charged particle at rest in K. This particle will create a Coulomb electric field. However, in
a frame K ′ moving relative to K, the charge will be in motion. Thus, an observer in K ′ will
see an electric current plus the corresponding magnetic field. This tells us that under inertial
transformations, electric and magnetic fields get transformed into one another. We thus need
to find a relativistically invariant object accommodating the six components of the electric and
magnetic field ’vectors’. Eq. (6.12) provides a tentative answer to that problem. The idea is
that the fields enter the theory as a matrix and, therefore, transform in a way fundamentally
different from that of vectors.

6.4 Mathematics of special relativity II: Co– and Con-
travariance

So far, we have focused on the Lorentz transformation behaviour of vectors in R4. However, our
observations made in the end of the previous section suggest to include other objects (such
as matrices) into our discussion. We will begin by providing some essential mathematical
background and then, finally, turn to the discussion of Lorentz invariance of electrodynamics.
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6.4.1 Covariant and Contravariant vectors

Generalities

Let x = {xµ} be a four component object that transforms under homogeneous Lorentz trans-
formations as x → Λx or xµ → x′µ = Λµ

νx
ν in components. (By Λµ

ν we denote the
components of the Lorentz transformation matrix. For the up/down arrangement of indices,
see the disucssion below.) Quantities of this transformation behaviour are called contravari-
ant vectors (or contravariant tensors of first rank). In this notation, the Lorentz invariance
condition assumes the form x′µgµνy

′ν = (Λµ
ρx

ρ)gµν(Λ
ν
σy

σ) = xρgρσy
σ, or Λµ

ρgµνΛ
ν
σ = gρσ.

Multiplication by the matrix Λ−1 brings this into the form12

gµνΛ
ν
σ = (Λ−1)τµgτσ. (6.13)

Now, let us define another four–component object, xµ ≡ gµνx
ν . Under a Lorentz transforma-

tion, xµ → gµνΛ
ν
σx

σ = (Λ−1)τµgτσx
σ = xτ (Λ

−1)τµ, where we used Eq. (6.13). Quantities
of this transformation behavior will be denoted as covariant vectors (or covariant vectors of
first rank). We now upgrade co- and contravariance to a general principle by postulating

Contravariant index: X ...µ
...

Λ−→ Λµ
νX

...ν
... ,

Convariant index: X ...
...µ

Λ−→ X ...
...ν(Λ

−1)νµ, (6.14)

where the . . . ’s refer to arbitrary other indices. In this way, co- and contravariance are defined
via their behavior under transformations. Notice that the placement of the matrix elements
Λµ

ν and (Λ−1)νµ (numbers) to the left or right of the transformed objects is irrelevant. The
summation over a contravariant and a covariant index is called a contraction. For example,
vµwµ ≡ ϕ is the contraction of a contravariant and a covariant vector. It yields a Lorentz
scalar, i.e. an object that does not change under Lorentz transformations. More generally, the
number of co- and contravariant indices carried by an object defines its degree as a tensor,
(Rµ

νρσ is contravariant of first and covariant of third degree), and the contraction of two indices
lowers the index, or ‘tensor’ degree of an expression by two. For example the contraction of
a mixed tensor of degree two and a contravariant tensor of degree one, Aµ

νv
ν ≡ wµ yields

a contravariant tensor of degree one, etc. This is because the definitions above are designed
so as to leave contractions X ...

...µY
...µ
... → X ...

...ν(Λ
−1)νµΛ

µ
ρY

...ρ
... = X ...

...µY
...µ
... invariant under

transformations.
For example, we define gµν to be the inverse metric. This object is naturally contravari-

ant. In this way, the product gµνgνρ = δµρ contains an invariant contraction and yields the
Kronecker-δ. Given contravariantX ...µ

... , a covariant index may be produced asX ...
...µ ≡ gµνX

...µ
... ,

conversely, a contravariant X ...µ
... is obtained as X ...µ

... = gµνX ...
...ν . These operations are called

the lowering and raising of indices, respectively.

12Although this looks more clumsy than the component free relation ΛT gΛ = g ⇒ gΛ = (ΛT )−1g, working
the the matrix transpose, T , often leads to confusion in the context of relativity. It is generally safer to use
explicit index contractions as in Eq. (6.13).
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Critical readers may find these ’definitions’ unsatisfactory. Formulated in a given basis,
one may actually wonder whether they are definitions at all. For a discussion of the basis
invariant meaning behind the notions of co- and contravariance, we refer to the info block
below. However, we here proceed in a pragmatic way and continue to explore the consequences
of the definitions above.

▷ Info. Consider a general real vector space V . Recall that the dual space V ∗ is the linear space
of all mappings ṽ : V → R,v 7→ ṽ(v). (This space is a vector space by itself which is why we denote
its elements by vector–like symbols, ṽ.) For a given basis {eµ} of V , a dual basis {ẽµ} of V ∗ may
be defined by the condition ẽµ(eν) = δµν . With the expansions v =

∑
µ v

µeµ and ṽ =
∑

µ ṽµẽµ,
respectively, we have ṽ(v) = ṽµv

µ. (Notice that components of objects in dual space will be indexed
by superscripts throughout.) In the literature of relativity, elements of the vector space — then to
be identified with space–time, see below — are usually called contravariant vectors while their
partners in dual space are called covariant vectors.

▷ Exercise. Let A : V → V be a linear map defining a basis change in V , i.e. eµ = A ν
µ e′ν ,

where {A ν
µ } are the matrix elements of A. Show that

▷ The components of a contravariant vector v transform as vµ → v′µ = (AT )µνvν .

▷ The components of a covariant vector, w̃ transform as w̃µ → w̃′
µ = (A−1) ν

µ w̃ν .

▷ The action of w̃ on v remains invariant, i.e. w̃(v) = w̃µv
µ = w̃′

µv
′ν does not change. (Of

course, the action of the linear map w̃ on vectors must not depend on the choice of a particular
basis.)

In physics it is widespread (if somewhat tautological) practice to define co– or contravariant vectors
by their transformation behaviour. For example, a set of d–components {wµ} is denoted a covariant
vector if these components change under linear transformations as wµ → A ν

µ wν .

Now, let us assume that V is a vector space with scalar product g : V × V → R, (v,w) 7→
vT gw ≡ ⟨v, w⟩. A special feature of vector spaces with scalar product is the existence of a canonical
mapping V → V ∗,v 7→ ṽ, i.e. a mapping that to all vectors v canonically (without reference
to a specific basis) assigns a dual element v. The vector ṽ is implicitly defined by the condition

∀w ∈ V, ṽ(w)
!
= ⟨v,w⟩. For a given basis {eµ} of V the components of ṽ =

∑
µ ṽ

µẽµ may be
obtained as ṽµ = ṽ(eµ) = ⟨v, eµ⟩ = vνgνµ = gµνv

ν , where in the last step we used the symmetry
of g. With the so–called index lowering convention

vµ = gµνv
ν , (6.15)

we are led to the identification ṽµ = vµ and ṽ(w) = vµw
µ.

Consider a map A : V → V,v 7→ Av. In general the action of the canonical covariant vector Ãv
on transformed vectors Aw need not equal the original value ṽ(w). However, it is natural to focus

on those transformations that are compatible with the canonical assignment, i.e. Ãv(Aw) = ṽ(w).
In a component language, this condition translates to

(AT ) σ
µ gσρA

ρ
ν = gµν
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or AT gA = g. I.e. transformations compatible with the canonical identification (vector space) ↔
(dual space.) have to respect the metric. E.g., in the case of the Minkowski metric, the ’good’
transformations belong to the Lorentz group.

Summarizing, we have seen that the invariant meaning behind contra– and covariant vectors is

that of vectors and dual vectors resepectively. Under Lorentz transformations these objects behave

as is required by the component definitions given in the main text. A general tensor of degree (n,m)

is an element of (⊗n
1V )⊗ (⊗m

1 V
∗).

——————————————–

The number of indices carried by a certain object defines its degree as a tensor. For example, a
two component quantityW µν is called a contravariant tensor of second degree and it trans-
forms under Lorentz transformations as W µν → Λµ

µ′Λν
ν′W

µ′ν′ . Similiarly, a covariant tensor

of second degree transforms as Wµν → (Λ−1)µ
′
µ(Λ

−1)ν
′
νWµ′ν′ . Covariant and contravariant

tensors are related to each other by index raising/lowering, e.g. Wµν = gµµ′gνν′W
µ′ν′ . A

mixed second rank tensor W ν
µ transforms as W ν

µ → (Λ−1)µ
′
µΛ

ν
ν′W

ν′

µ′ . The generalization
of these definitions to tensors of higher degree should be obvious.

Finally, we define a contravariant vector field (as opposed to a fixed vector) as a field
vµ(x) that transforms under Lorentz transformations as vµ(x) → v′µ(x′) = Λµ

νv
ν(x). Here,

x = x(x′), i.e. on the r.h.s. the ‘old’ coordinate vector x is to be expressed as x = Λ−1x′ as a
function of the ‘new’ cooordinate vector x′. A Lorentz scalar (field), or tensor of degree zero
is one that does not actively transform under Lorentz transformations: ϕ(x) → ϕ′(x′) = ϕ(x).
Covariant vector fields, tensor fields, etc. are defined in an analogous manner.

6.5 Relativistic covariance of electrodynamics

We now have everything in store to prove the relativistic covariance of electrodynamics, i.e.
the form–invariance of its basic equations under Lorentz transformations. Basically, what we
need to do is assign a definite transformation behavior scalar, co–/contravariant tensor, etc.
to the building blocks of electrodynamics.

6.5.1 Covariant formulation of fields and currents

The coordinate vector xµ is a contravariant vector. In electrodynamics we frequently differen-
tiate w.r.t. the components xµ, i.e. the next question to ask is whether the four–dimensional
gradient {∂xµ} is co– or contravariant. According to the chain rule,

∂

∂x′µ′ =
∂xµ

∂x′µ′

∂

∂xµ
.

Using that xµ = (Λ−1)µµ′x′µ
′
, we find that

∂

∂x′µ′ = (Λ−1)µµ′
∂

∂xµ
,
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i.e. ∂xµ ≡ ∂µ transforms as a covariant vector. In components,

∂µ = (c−1∂t,∇), ∂µ = (c−1∂t,−∇).

The four–current vector

We begin by showing that the four–component object j = (cρ, j) is a Lorentz vector. Consider
the current density carried by a point particle at coordinate x(t) in some coordinate system
K. The four–current density carried by the particle is given by j(x) = q(c, dtx(t))δ(x−x(t)),
or jµ(x) = qdtx

µ(t)δ(x−x(t)), where xµ(t) = (ct,x(t)). To show that this is a contravariant
vector, we introduce a dummy integration,

jµ(x) = q

∫
dt̃
dxµ(t̃)

dt̃
δ(x− x(t̃))δ(t− t̃) = qc

∫
dτ

dxµ

dτ
δ4(x− x(τ)),

where in the last step we switched to an integration over the proper time τ = τ(t̃) uniquely
assigned to the world line parameterization x(t̃) = (ct̃,x(t̃)) in K. Now, the four–component
δ–distribution, δ4(x) = δ(x)δ(ct) is a Lorentz scalar (why?). The proper time, τ , also is a
Lorentz scalar. Thus, the transformation behaviour of jµ is dictated by that of xµ, i.e. jµ

defines a contravariant vector.
As an important corolary we note that the continuity equation — the contraction of the

covariant vector ∂µ and the contravariant vector jµ is Lorentz invariant, ∂µj
µ = 0 is a Lorentz

scalar.

Electric field strength tensor and vector potential

In section 6.3.2 we obtained Eq. (6.11) for the Lorentz invariant generalization of Newton’s
equations. Since vµ and vν transform a covariant and contravariant vectors, respectively, the
matrix F µν must transform as a contravariant tensor of rank two. Now, let us define the four
vector potential as {Aµ} = (ϕ,A). It is then a straightforward exercise to verify that the
field strength tensor is obtained from the vector potential as

F µν = ∂µAν − ∂νAµ. (6.16)

(Just work out the antisymmetric combination of derivatives and compare to the definitions
B = ∇×A, E = −∇ϕ− c−1∂tA.) This implies that the four–component object Aµ indeed
transforms as a contravariant vector.

Now, we have seen in chapter 4.2 that the Lorenz condition can be expressed as ∂µA
µ =

0, i.e. in a Lorentz invariant form. In the Lorenz gauge, the inhomogeneous wave equations
assume the form

2Aµ =
4π

c
jµ, (6.17)

where 2 = ∂µ∂
µ is the Lorentz invariant wave operator. Formally, this completes the proof

of the Lorentz invariance of the theory. The combination Lorenz condition/wave equations,
which we saw carries the same information as the Maxwell equations, has been proven to be
invariant. However, to stay in closer contact to the original formulation of the theory, we next
express Maxwells equations themselves in a manifestly invariant form.
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6.5.2 Invariant formulation of Maxwells equations

One may verify by direct inspection that the two inhomogeneous Maxwell equations can be
formulated in a covariant manner as

∂µF
µν =

4π

c
jµ. (6.18)

To obtain the covariant formulation of the homogeneous equations a bit of preparatory work
is required: Let us define the fourth rank antisymmetric tensor as

ϵµνρσ ≡


1, (µ, ν, ρ, σ) = (0, 1, 2, 3)or an even permutation
−1 for an odd permutation
0 else.

(6.19)

One may show (do it!) that ϵµνρσ transforms as a contravariant tensor of rank four (under
the transformations of the unit–determinant subgroup L+.) Contracting this object with the
covariant field strength tensor Fµν , we obtain a contravariant tensor of rank two,

Fµν ≡ 1

2
ϵµνρσFρσ,

known as the dual field strength tensor. Using (6.20), it is straightforward to verify that

F = {Fµν} =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 , (6.20)

i.e. that F is obtained from F by replacement E → B, B → −E. One also verifies that the
homogeneous equations assume the covariant form

∂µFµν = 0. (6.21)

This completes the invariance proof. Critical readers may find the definition of the dual tensor
somewhat un–motivated. Also, the excessive use of indices — something one normally tries
to avoid in physics — does not help to make the structure of the theory transparent. Indeed,
there exists a much more satisfactory, coordinate independent formulation of the theory in
terms of differential forms. However, as we do not assume familiarity of the reader with the
theory of forms, all we can do is encourage him/her to learn it and to study the truly invariant
formulation of electrodynamics not discussed in this text.

6.5.3 Electrodynamics from a variational principle

In classical mechanics, we learn that its equations of motion afford an interpretation as varia-
tional equations whose solution extremizes a certain functional — the Lagrangian or Hamilto-
nian action. Maxwell’s equations likewise are ‘equations of motion’, namely those describing



6.5. RELATIVISTIC COVARIANCE OF ELECTRODYNAMICS 125

the infinitely-many-degrees-of-freedom system ‘electromagnetic field’. Are they, too, varia-
tional equations of a functional? And if yes, how can we find it?

It turns out that the answer to the first question is affirmative, and that to the second
surprising. Up to constants which can be absorbed in changes of units, the ‘action’ of electro-
magnetism is fixed entirely by criteria of mathematical consistency. In other words, Maxwell’s
equations follow from mathematics, and not just need mathematics to write them down.

In classical mechanics, we start our discussion of actions with a choices of generalized
coordinates, in terms of which we define a Lagrangian function. Turning to electromagneticsm,
we have seen that a similar role is played by the components of the vector potential, Aµ. At
each point in space-time, x, they define four degrees of freedom Aµ(x), from which the fields
themselves may be obtained by differentiation. The Aµ-coordinates are designed so that the
fields satisfy the constraint imposed by the homogeneous equations. So, all is set, and the
action we need is one for Aµ and its derivatives ∂νAµ.

We also know that the equations of motion are linear in Aµ, and they are of second order in
derivatives. This implies (think about it. Compare to the situation with the harmonic oscillator
in classical mechanics), that our action must be quadratic in A, and contain two derivatives
acting on these fields. Turning to the r.h.s. of the equations of motion, they are of zeroth
order in Aµ and of first order in the currents jµ. Accordingly, the action must contain a piece
of first order in both A and j. Finally, the action must have the same invariance properties at
the theory itself, i.e. it must be Lorentz invariant, and gauge invariant.

We now reason, that there is a unique local functional satisfying these properties (up to
constants). The unique13 Lorentz invariant term of second order in A and derivatives satisfying
these criteria is given by

FµνF
µν = (∂µAν − ∂νAµ)(∂

µAν − ∂νAµ). (6.22)

Similarly, the unique invariant term linear in both A and j is Aµj
µ. We thus propose the

action

S[A] =

∫
dxL = −

∫
dx

(
1

16π
FµνF

µν +
1

c
Aµj

µ

)
(6.23)

where we use the shorthand notation
∫
dx ≡

∫
d4x and we have anticipated a choice of

constants that will lead to the correct equations of motion. Here, the Lagrangian density of
the theory is defined by the second equation. It is a ‘density’ in the sense that integration over
three-dimensional space produces a time dependent function L ≡

∫
d3xL which is analogous

to a classical Lagrangian function. (In practice, we never work with L, the density itself is a
more useful object to consider.)

To check that this action does the job, let’s compute its variation under infinitesimal
changes of the field, Aµ → Aµ+ϵµ. A short calculation using the antisymmetry F µν = −F νµ.
Shows that, to first order FµνF

µν → FµνF
µν + 4∂µϵνF

µν , and Aνj
ν → Aνj

ν + ϵνj
ν . So we

13Actually, this statement is not quite correct, the term ϵµνρσFµνFρσ likewise satisfies these criteria. How-
ever, it’s variation in Aµ yields only a total derivative which we ignore.
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obtain,

S[A+ ϵ] = S[A] +
1

4π

∫
dx

(
∂µϵνF

µν +
4π

c
ϵνj

ν

)
= S[A]− 1

4π

∫
dx ϵν

(
∂µF

µν − 4π

c
jν
)
.

The variation vanishes if ∂µF
µν − 4π

c
jν = 0, i.e. if the Maxwell equations hold. In this way,

we have established Eq. (6.23) as the action of the electromagnetic field.
More precisely, Eq. (6.23) defines the action in the Lagrangian formulation of the theory:

a functional containing second order time derivatives of the ‘generalized coordinates Aµ(x) =
Aµ(x, t)’. Is there a matching Hamiltonian formulation? To find out, we try to proceed as in
classical mechanics, and begin with the identification of a generalized momentum, defined as
the derivative of the Lagrangian in the time-derivative ∂0A

µ of the generalized coordinates.
Noting that ∂0A

µ = ∂0Aµ, we define

πµ =
∂L

∂(∂0Aµ)
, L = − 1

16π
FµνF

µν − 1

c
Aµj

µ,

From Eq. (6.22) we then obtain πµ = 1
4π
(∂µA0 − ∂0Aµ), or

π0 = 0, πi =
1

4π

(
1

c
∂tAi + ∂iA0

)
= − 1

4π
Ei.

Surprisingly, the canonical momentum associated to the spatial components of the vector
potential coordinates is the electric field!

Let’s take this observation seriously, and pass from the Lagrangian to the Hamiltonian
formulation of the theory. More precisely, we wish to consider the Hamiltonian of the pure
electromagnetic field, i.e. we consider jµ = 0. Judging from classical mechanics, we associate
‘energy’ to the concept of Hamiltonians, i.e. we expect to find an energy-like expression.
Continuing with our analogy building to mechanics, we start with a Legendre transform, i.e.
we define the Hamiltonian density

H = πµ∂
0Aµ − L,

To compute this in more explicit terms, note that

FµνF
µν = 2(∂0Ai − ∂iA0)(∂

0Ai − ∂iA0) + (∂iAj − ∂jAi)(∂
iAj − ∂jAi) = −2E · E+ 2B ·B,

and πi∂
0Ai = − 1

4π
E · c−1∂tA. With this, we obtain

H =
1

8π

(
−2E · 1

c
∂tA− E · E+B ·B

)
.

This expression looks unfinished. However, using that we are considering a source free sit-
uation, ∇ · E = 0, in infinite space, we may smuggle in the surface term − 1

4π
∇ · (Eϕ) =

− 1
4π
E ·∇ϕ, where ϕ is the scalar potential. Since the Hamiltonian density exclusively appears
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under an integral, the modification H → H − 1
4π
∇ · (Eϕ) is physically inconsequential, and

we obtain

H → 1

8π

2E ·
(
−c−1∂tA−∇ϕ

)︸ ︷︷ ︸
E

−E · E+B ·B

 =
1

8π
(E · E+B ·B).

This confirms the expectation that the Hamiltonian density of the electromagnetic field equals
its energy density, as obtained earlier in a first-hand construction.

6.5.4 Towards Quantum Electrodynamics

Classical electrodynamics is intrinsically consistent, but limited in scope. For example, the
energy density H of the electric generated by a point charge diverges in the charge center,
indicating a lack of regularization at short distance scales. By analogy with classical mechanics,
we indeed suspect that quantum effects should begin to play a role at sufficiently small scales.

To see how this may happen, further the analogies between electrodynamics and classical
mechanics, a discipline where we do have some understanding of how quantum generalizations.
We begin by considering the field action (6.23) in the absence of matter, j = 0. We impose
the Coulomb gauge, ∇ ·A = 0 and ϕ = 0.14 It is straightforward to show that in this gauge
the field action assumes the form (do it!)

S[A] =
1

8π

∫
dt

∫
d3x

(
c−2∂tA · ∂tA− (∇×A) · (∇×A)

)
=

=
1

8π

∫
dt

∫
d3x

(
c−2∂tA · ∂tA+A ·∆A

)
, (6.24)

where in the second equality we integrated by parts (∇× does not catch a minus sign under
integration by parts) and used that ∇× (∇×A) = ∇(∇ ·A)−∆A = −∆A.

The action (6.24) will be our gateway to understanding the emergence of quantum effects
in the theory. To make this discussion more concrete, we consider a rectangular wave guide
as physical reference system. An electromagnetic waveguide is a quasi-one-dimensional
cavity with metallic boundaries (see fig. 6.3). The practical use of waveguides is that they are
good at confining EM waves. At large frequencies, where the wavelengths are of order meters
or less, radiation loss in conventional conductors is high. In this frequency domain, hollow
conductors provide the only practical way of transmitting radiation.

Suppose we wanted to find nontrivial solutions of an electromagnetic field propagating
along the longitudinal direction of the wave guide. Remembering our earlier discussion of
vacuum electromagnetic waves we might anticipate the existence of plane-wave like solutions
with modifications due to the presence of confining metallic boundaries. To find them we

14In our present discussion, relativistic invariance will not be an issue, so we don’t lose anything by imposing
a non-relativistically invariant gauge. However, keep in mind that once it has been fixed, we cannot expect
our theory to be fully gauge invariant anymore.
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Figure 6.3: A wave guide with rectangular cross-section Ly × Lz and longitudinal extension Lx ≫
Ly,z. Discussion, see text.

would solve Maxwell’s equations, subject to the appropriate boundary conditions. Concep-
tually, this solution of ‘effective equations of motion’ is similar to the solution of Newton’s
equations in classical mechanics. Presently, we will take a somewhat different approach, which
is conceptually akin to the Lagrangian approach. We take the action principle seriously and
reason that any extremal configuration of the action functional represents a physical solution
of the problem. Thinking of A as ‘effective coordinates’ we turn the presence of boundary
conditions to an advantage and first restrict the set of arguments fields A(x, t) (we are not
talking about physical solution fields yet) to those respecting all boundary conditions. These
will define our good coordinates. We then seek for extremal configurations of A, thereby
identifying the physical fields E and B. Technically, this is jsut an alternative, and arguably
more efficient approach to a direct solution of Maxwell’s equations. However, as a crucially
important byproduct, it will contain the decisive hint as to where quantum mechanics should
enter the stage.

Now embarking on the first part of the program, think of the components of A(x, t) as
time dependent functions on the support set V = [0, Lx]× [0, Ly]× [0, Lz] of the guide. (We
will eventually consider the limit Lx → ∞, however, not just yet.) These functions play a role
similar to the curves q(t) entering as arguments in action functionals of classical mechanics.
Similarly to the presence of boundary conditions in mechanics, here, too, we need to consider
a number of constraints. First, the assumption that our guide is made of perfect conductors
means E∥ = 0 inside the metallic plates confining it: a field component parallel to the guide
boundaries would lead to an infinite current, which is unphysical. Second, B⊥ = 0 at the
boundaries: by assumption we have B = 0 immediately outside the box, so a finite B⊥ at the
boundary would be in violation of ∇ ·B = 0 (discuss this point.) All A we consider, must be
such that the fields E and B obtained from them by differentiation respect these conditions.
We wish to describe these functions in maximally economical ways.

At this point, we should turn our attention to the Laplace operator ∆ featuring in the
action. Since this operator acts on our A’s, it is tempting to expand the latter in a basis of
eigenfunctions of ∆.15 Denoting these functions by Ak(x), and their eigenvlaues by λk, i.e.

15Carefully think about this point. You have seen such situations before. Laplace operators are hermitian
operators and hence possess ‘complete stets of eigenfunctions’. It is generally a good idea to use them as basis
functions. The simplest example of these are the exponential functions exp(ikx), interpreted as eigenfunctions
of the ‘Laplace operator’ d2x and defining the Fourier basis.
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∆Ai
k = λkA

i
k, for each of the three vector component functions, we thus consider the ansatz

A(x, t) =
∑
k

αk(t)Ak(x),

where the precise identity of the vectors k is yet to be determined. It turns out that the
Laplace eigenfunctions relevant to the problem at hand are the configurations

Ak(x) =

c1 cos(kxx) sin(kyy) sin(kzz)c2 sin(kxx) cos(kyy) sin(kzz)
c3 sin(kxx) sin(kyy) cos(kzz)

 ,

where ki = niπ/Li with positive integer ni, and the constraint c1kx + c2ky + c3kz = 0
on the three real coefficients c1,2,3 secures the Coulomb gauge condition ∇ · A = 0. It
is straightforwardly verified (do it) that these functions satisfy the eigenfunction property
with eigenvalues λ2k = k2 ≡ k2x + k2y + k2z . Finally, we choose the coefficients ci such that∫
x,y,z

Ak ·Ak′ = δk,k′ holds. (Fill in the details.)
It is straightforward to check verify the functions Ak are eigenfunctions of the Laplace

operator, with eigenvalues λk = −k2:

∆Ak(x) = −k2Ak(x), k2 = k2x + k2y + k2z . (6.25)

A little more thought is required to verify the boundary conditions B⊥ = E∥ = 0. Concerning
the electric condition, note that in the Coulomb gauge, E = −∇ϕ− 1

c
∂tA = −1

c
∂tA. While

we have not yet talked about time dependence, the vanishing of components of A at the
boundary is sufficient to make the corresponding components of E vanish. On this basis,
check that all boundary conditions are satisfied.

After this preparation, the further solution of the problem is straightforward. We substitute
the ‘mode decomposition’ Eq. (6.25) into the action, and use the mode normalization to obtain

S[α] =
1

8π

∑
k

∫
dt

(
1

c2
α̇2
k − k2α2

k

)
.

This action reminds us of that of the classical harmonic oscillator

S[q] =

∫
dt

(
m

2
q̇2 − mω2

2
q2
)
.

More precisely, it equals the sum over k of harmonic oscillator actions of particles with mass
m = 1/(4πc2), and spring constant ω2 = c2k2. We notice another advantage of the La-
grangian approach: it reveals connections between physical systems which are less easy to see
in different ways. In hindsight, the harmonic oscillator analogy is rather natural. For each
value of k we select a specific oscillation mode of the wave guide. The dynamics of that mode
is oscillatory, and αk plays the role of its oscillation coordinate, as described by the corre-
sponding action. We may make this quantitative by varying the action to obtain the equations
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of motion α̈k = −ω2αk, whose solutions show harmonic time dependence with frequency ω
as we should expect from an electromagnetic wave solution.

As with the full action of the electromagnetic field, we may pass from the Lagrangian action
S[α] to a Hamiltonian formulation: define the canonical momentum πk ≡ δα̇k

L = mα̇k to
obtain the Hamiltonian action

S[α, π] =
∑
k

∫
dt

(
πkα̇k −

1

2m
π2
k −

mω2

2
α2
k

)
,

In terms of ‘coordinates and momenta’. At this point, we take a bold next step and quantize
the theory. As in classical mechanics, this is done by promoting the scalar coordinates αk, πk
to hermitian operators with proclaimed commutation relations [α̂k, π̂k] = iℏ. This will get us
from a system of classical to one of quantum harmonic oscillators, with energy spectra ℏω(n+
1/2), n = 0, 1, . . . . While the detailed discussion of the emerging quantum field is beyond
the scope of this text and the subject of quantum electrodynamics, we here just mention
two striking observations. First, already the ground state energy of the electromagnetic field
ℏ
∑

k
ωk

2
is non-vanishing. This is the famous zero point energy of the electromgagnetic field,

which is physically observable. Second, excitation on top of the ground state have signatures
of quantum particles, presently called photons. Their emergence has the striking consequence
that on action scales resolving the finiteness of ℏ, the electromagnetic field becomes ‘granular’
and particle like.

6.6 A glimpse of general relativity

We conclude this chapter with a brief outlook into general relativity. This extension generalizes
special relativity in that the focus moves beyond inertial frames. An inertial frame is one in
which bodies remain at rest or in states of uniform motion once initialized in such states.

Of course, there is no such thing as a genuine inertial frame in nature. Inertia is a state
that can be reached approximately, if gravitational bodies — in relativity, the focus is on
gravitational forces — are sufficiently far away. Newtonian mechanics posits that masses
generate an instantaneous force, which then acts upon bodies via acceleration, removing
inertia.

6.6.1 Strong equivalence principle
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? ?
? ?

? ?

Einstein’s path towards understanding the physics of
non-inertial frames arguably started with the attempt to
remove ‘force’ as a middle agent between gravitation and
acceleration. While we are accustomed to thinking of
‘force’ as the cause of acceleration, the concept of switch-
ing frames, practiced in relativity for inertial frames, sug-
gests alternative views. The links between gravity and
acceleration emerging in this way are subsumed under
the name equivalence principles. The so-called weak
equivalence principle states the equivalence of inertial and
gravitational mass: In Newton’s equation mẍ = −mg,

the same ‘m’ appears on the two sides of the equation. Masses accelerate in a gravitational
field with the same rate. We are so accustomed to this fact, that its non-triviality is easily
forgotten: why doesn’t a heavy rock accelerate differently from a light pebble? The strong(er)
equivalence principle posits that there is no way by which an observer in a uniformly accelerated
elevator cabin (no windows) can tell the difference to a cabin at rest in a uniform gravitational
field. Similarly, an observer inside a cabin falling in a gravitational field will find that she is in
an inertial frame: objects moving at constant velocity relative to her will remain in this state.

There are two classes of conclusions to be drawn from the strong equivalence principle.
The first is that effects commonly attributed to the action of forces can be equally described
by changes of the system of reference. (This concept is closely related to that of ‘fictitious
forces’.) We come back to this point momentarily. The other are concrete, and observable
predictions concerning the physics of light.

6.6.2 The bending of light and gravitational redshift

Imagine a light ray emitted in transverse direction inside a uniformly
accelerated cabin. During the time the light needs to travel between the
cabin walls, the latter will have moved upwards, i.e. the ray hits the other
side at a point lower than the point of emission. If we take the equivalence
principle seriously, we have to conclude that light gets attracted towards
gravitational centers. The effect was observed in 1919 in experiments

probing light propagating close to the outer rim of Sun.

A related but somewhat more involved effect is gravitational redshift. Recall the Doppler
effect, which is the shift in frequency by ∆ω = −ωv/c experienced by a receiver moving with
velocity v relative to an emitter of optical radiation of frequency ω.

▷ Info. To understand the Doppler effect, imagine a situation where a wave crest has just

passed the moving observer. What will be the time to when the next crest comes through? Light

travels with velocity c. During the time to, the observer will have moved by a distance vto. So

the light ray must actually travel a distaince λ + tov. It does so at speed c, which leads to the

equation λ + tov = cto, which we solve for to = λ/(c − v) ≡ 2π/ωo. With c/λ = ω, we conclude
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ωo = ω(1− v/c), which is the above result.

——————————————–

Assume that a light ray has been emitted from the bottom of the accel-
erated cabin towards the ceiling. Denoting the height of the cabin by h,
it will take a time t ≃ h/c to reach the ceiling. We write ‘≃’ because
the actual time is somewhat longer, in time t the cabin ceiling will have
moved a little away from the source. At that time, the upper wall will
have reached a velocity v = gt = gh/c, and hence we expect a Doppler

shift ∆ω = −ωv/c = −ωgh/c2. Being inversely proportional to the square of the speed of
light, gravitational redshift is a small effect, which however has been observed in astronomic
experiments. Also notice the proportionality to gh, a factor otherwise entering the potential
energy of heavy objects.

6.6.3 The idea behind general relativity

The phenomena discussed above rely on the equivalence principle and the constancy of light.
Otherwise, they do not go beyond the level of Newtonian mechanics. However, beyond these
predictions, the equivalence principle triggered a revolutionary development: it suggested a
conceptually novel way of thinking about motion under the influence of gravity. The equiv-
alence principle addresses motion in different ‘frames’. In inertial frames far detached from
gravitational fields, particles move along straight lines, which are lines of shortest distance,
or straight geodesics. If we move closer to gravitational centers or, equivalently, change into
an accelerated frame, the motion becomes curved. What if particles continue to move along
geodesics, only that these are no longer straight but curved, because gravity has changed the
intrinsic properties of ambient space? Metaphorically thinking of empty space as an infinite
sheet of rubber, and gravitational centers as masses immersed into the sheet to induce cur-
vature, the observable trajectories would be lines of shortest distance in this geometrically
distorted environment. What we commonly attribute to the acceleration due to gravitational
forces would be the departures from straight geodesics.

Much as Newton’s theory, such a picture cannot be proven from earlier principles. However,
it can be tested via the successful prediction of phenomena Newton mechanics cannot explain.
The actual execution of this geometric approach to gravity then has two parts to it: deriving
quantitative results for the curvature of space in the presence of mass or, equivalently, energy 16.
The second is the prediction of kinematic motion for a given curvature profile.

The first part of this program was by far the hardest, and it took Einstein more than ten
years to execute it. In short, Einstein proposed to describe the geometric properties of space-
time in terms of a local metric gµν(x), differing from the Minkowski metric ηµν in regions close
to gravitational centers, but sharing with it the signature: three eigenvalues are negative, one
positive. In this framework, gµν(x) is a tensor valued field, whose profile must be obtained

16The relation E = mc2 of special relativity implies that mass and energy stand more or less on the same
footing concerning the above argument.
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from field equations having a conceptual status similar to the Maxwell equations of electro-
magnetism. These Einstein equations contain mass and energy as sources. Otherwise, they
are of second order in space-time derivatives and nonlinear. This second feature makes them
much harder to solve than Maxwells equations, and it implies that there is no superposition
principle in gravity. (Only for weak sources can the equations be linearized, in which limit they
predict wave like solutions. These gravitational waves have been a center of much excitement
recently.)

The discussion of Einstein’s equations is at the heart of general relativity and a subject
beyond the scope of this text. Instead, we will restrict ourselves to a brief discussion of their
simplest nontrival solution the Schwarzschild metric17.

The Schwarzschild metric is an exact solution of Einstein’s equations, solving it outside a
spherical mass. (In this regard, its status is not so different from that of spherical wave solu-
tions of Maxwell’s equations outside rotationally symmetric sources.) In spherical coordinates
(r, θ, ϕ) of three-dimensional space, it is given by the invariant line element

c2dτ 2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2dΩ2, (6.26)

where dΩ2 = dθ2 + sin2 θdϕ2 is the metric of a unit sphere. In this way, the tensor gµν
specifying the metric is defined as g00 = 1 − rs/r, grr = −(1 − rs/r)

−1, gθθ = −r2 and
gϕϕ = −r2 sin2 θ, with all other elements vanishing.

The metric has a singularity at the origin r = 0 which corresponds to a center of infi-
nite intrinsic curvature. This singularity upon approaching the center of a mass distribution
should not be too surprising. However, there also is a second singularity at r = rs, the
Schwarzschild radius. Notice how weird this singularity is. Due to the vanishing of the

prefactor in
(
1− r

rs

)
c2dt2 a distant observer at r → ∞ will conclude that an in-falling object

can never reach the event horizon at r → rs. Conversely, no object can escape from there.
It takes infinite time to overcome the vanishing metric prefactor. This is one way of reasoning
that from the perspective of the outside world, the inside r < rs is barren. However, one can
show that there actually is no physical singularity at the event horizon, the singularity of the
metric above is due to a system of coordinates ill-suited to describe the vicinty of it. As a
case in point, consider the spherical metric sin θ2dϕ2 + dθ2 close to the north pole. It seems
to be singular, because infinitely many ϕ-coordinate lines are converging. However, a person
actually walking across the north-pole will find no singularity there. Similarly, an in-falling
observer will sense no singularity at the event horizon, and effortlessly pass it in finite time.
Trouble starts only, when he or she approaches the origin r → 0.

The Schwarzschild metric describes spherically symmetric mass distributions. This includes
black holes for which the event horizon marks a point of no return. For more benign mass
distributions the Schwarzschild radius is buried deep within the physical extension of the mass
density. For example, the Schwarzschild radius of Earth is at rs ≃ 9mm.

Before discussing this metric further, let us investigate how it will affect the motion of
bodies passing through it.

17Named in honor of Karl Schwarzschild who discovered it in 1915, a month after Einstein had published
his field equations, and shortly before his death due to an illness contracted in World War I.
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6.6.4 Geodesic motion

In this section, we discuss how a metric distorted away from the Minkowski limit affects the
motion of bodies. The working postulate is that physical motion will be along the geodesics,
i.e. curves of shortest length of a metric.

Geodesics are space-time curves x = x(τ) extremizing the length functional

L[x] =

∫
dτ (dτx

µ(τ)gµν(x(τ))dτx
ν(τ))1/2 . (6.27)

Notice that in the case of a trivial metric gµν , this expression reduces to the length of a curve
in an Euclidean setting. Also notice that in order to compute the length, we need to pick a
representation xµ(τ). However, the value of the functional is invariant with respect to this
choice (why?).

For all what follows, it will be convenient to parameterize the curve by its own length. To
this end, pick an arbitrary parameterization xµ(t), and define

cτ(t) =

∫ t

0

ds (dsx
µ(s)gµν(x(s))dsx

ν(s))1/2 .

We will not compute this function explicitly. All what matters is that it exists, and that it
satisfies the property (why?) dtτ(t) = c−1 (dtx

µgµνdtx
ν)1/2, where we simplified the notation

by omitting arguments. Also notice that in the length representation

dτx
µgµνdτx

ν = dtx
µgµνdtx

ν

(
dt

dτ

)2

= c2,

by the chain rule, i.e. the curve is traversed with uniform ‘velocity’. Finally, for infinitesimal
δt we can write δtdtx

µ = δxµ, leading to δτ 2 = δxµgµνδx
ν . This construction tells us that

geodesic ’length increments’ equal increments in the invariant metric distance δxµgµνδx
ν .

Specifically, in a frame co-moving with the curve, δxi = 0, the parameter τ becomes the
proper time of an observer moving along it. (All these statements are worth thinking about.)

Using the compactified notation dτx
µ(τ) = ẋµ, we vary the action to obtain

δL[x] = L[x+ ϵ]− L[x] =

∫
dτ

[
(ẋ+ ϵ̇)µgµν(x+ ϵ)(ẋ+ ϵ̇)ν)1/2 − (ẋµgµν(x)ẋ

ν)1/2
]
=

=

∫
dτ

1

2(ẋµgµν ẋν)1/2
(2ϵ̇µgµν ẋ

ν + ẋµ∂ρgµνϵ
ρẋν) +O(ϵ2).

At this point, the advantage of using the length parameterization becomes evident: the de-
nominator of the fraction upfront equals unity. Proceeding as in analogous calculations in
classical mechanics, we integrate by parts to remove the time derivative from ϵ and use the
chain rule dτgµν = ∂ρgµν ẋ

ρ to obtain

δL[x] =

∫
dτ ϵµ

(
−gµν ẍν − ∂ρgµν ẋ

ρẋν +
1

2
∂µgρν ẋ

ρẋν
)
+O(ϵ2).



6.6. A GLIMPSE OF GENERAL RELATIVITY 135

Stationarity requires the vanishing of the term in parentheses. Multiplying it with gλµ to
remove the metric multiplying the double time derivative: gλµgµν ẍ

ν = ẍλ and symmetrizing
the center term, we obtain the geodesic equation as

ẍλ + Γλ
ρν ẋ

ρẋν = 0, Γλ
ρν =

1

2
gλµ (∂ρgµν + ∂νgµρ − ∂µgρν) (6.28)

where the functions Γλ
ρν are known as the Christoffel symbols. These are important equa-

tions. They describe geodesic motion, i.e. motion along connections of extremal length for
arbitrary geometries.

▷ Exercise. Interpret the equations for an Euclidean metric gµν = δµν . Why are the solutions

of these equations geometrically straight curves?

▷ Exercise. Consider the metric of the sphere: gθθ = 1, gϕϕ = sin2 θ in spherical coordinates.
Show that in this case the geodesic equations assume the form:

θ̈ = sin θ cos θϕ̇2, ϕ̈ = 2
cos θ

sin θ
ϕ̇θ̇.

These are the equations one needs to solve if one wants to describe, e.g. optimal flight routes on

a globe with boundary conditions specified as (θ, ϕ)(τinitial) and (θ, ϕ)(τfinal). They simplify greatly

for specific choices of initial conditions. For example, it is evident that uniform (θ̇ = const.) motion

along a circle of constant polar angle ϕ = const. is a solution.

6.6.5 Newtonian limit of gravitational dynamics

In this section, to touch base with the familiar Newton dynamics, we consider motion in the
case where a metric is almost, but not quite Minkowski. This should give us a clue as to the
general workings of the theory. For concreteness, we consider the Schwarzschild metric at a
point r ≫ rs far away from the Schwarzschild radius. We aim for solutions describing motion
at velocities v ≪ c. This limit implies that parametric variations of the coordinates dx0 = cdt
will be way larger than those of spatial coordinates dxi. We can also use that dx0 = cdt ≈ cdτ ,
or dt

dτ
≈ 1: proper time and coordinate time are approximately equal. Similarly, in the line

element c2dτ 2 = c2dt2g00 + dxidxigii only deviations away from the Minkowski metric in the
component g00 are significant.

Using these simplifications, we write gµν = ηµν + hµν , where the weak distortion follows
from Eq. (6.26) as hµν ≈ −δµ0δν0(rs/r). Now consider the geodesic equation Eq. (6.28), and
let’s be maximally economoical. On the r.h.s. we have coordinate derivatives of the distortion
hµν . Since we are working to first order in h, we may approximate gµν = ηµν . We also
approximate ẋρ = δρ0cṫ ≈ cδρ0. On this basis we obtain

Γλ
00 ≈

1

2
ηλµ (0 + 0 + ∂µh00) ,
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where the first two 0 are due to the time independence of the metric ∂0gµν = 0. For the same
reason, ∂0h00 = 0 and Γ0

00 = 0. The first of our geodesic equations thus becomes ẍ0 = 0
consistent with x0 = ct. The spatial equations become

ẍi ≈ rsc
2

2
∂i
1

r
.

This is consistent with the Newton equation in a gravitational potential V = −MG/r, if we
identify the Schwarzschild radius as rs = 2MG/c2. In this case, the equation for a test body
of mass m assumes the form mẍi = −∂imV = Fi.

Notice what we have got: far away from gravitational centers, the geodesic equations
reduce to the Newton equations in a ‘fictitious’ force. The force is fictitious in the sense
that it represents an intrinsic geometric property of space (the metric). Also, the equivalence
principle is hardwired into our discussion, i.e. acceleration is independent of the mass, m,
of a test body. Finally, it is straightforward to include next to leading order corrections in
powers of c−1 into the analysis. As a result one obtains deviations from Newtonian dynamics
which naturally are strongest close to gravitational centers. The first prediction of this kind
has been a deviation of Mercur’s (the planet closest to Sun) orbit away from a Kepler ellipse.
While gravitational redshift and the distortion of light rays were relatively straightforward
consequences of the equivalence principle, this one required general relativity in its full form.
The successful comparison with experimental data (some going back to the mid 19th century)
marked the ultimate victory of this theory.



7.0 Hydrodynamics

We commonly distinguish three forms of macroscopic matter: gaseous, liquid, and solid.
Informally, a solid resists external deformation forces, a gas doesn’t, and it will fill any volume
available to it. The intermediate form of a liquid does not resist deformation forces, but
does not expand into available volumes either. One can be more educated concerning these
definitions, but for our purposes they are sufficient.

The subject of this chapter is a nutshell introduction into liquid- or hydrodynamics, the
theory describing the dynamics of liquids. Hydrodynamics is a prime example of a classical field
theory: it starts by lumping large numbers of molecular constituents of a liquid into effective
degrees of freedom. Following the general paradigm of field theory, hydrodynamics then
translates Newton’s equations for the liquid’s microscopic components to equations of motion
of these effective degrees of freedom. Many of the concepts applied in this construction will
be familiar from our earlier discussion of electromagnetic fields. However, there is one crucial
difference: hydrodynamics is not a linear theory, which makes its equations of motion way
harder to solve than Maxwell’s equations. We will put the emphasis in this chapter on the
construction of the fundamental equations of this theory, and for a discussion of the amazingly
rich phenomenology of hydrodynamics refer to specialized courses.

7.1 The concept of a fluid particle

Fluid particles are the minimal entities resolved by hydrodynamics. Think of them as assemblies
of a macroscopically large number of fluid molecules, but small enough that all effective
properties of the fluid — density, average velocity, effective forces, etc. — are uniform across
it. Importantly, fluid particles are large enough to have a surface (in view of their smallness, the
detailed form of the surface is of no relevance) which makes them geometric objects different
from, say, the point particles often considered in abstractions of classical mechanics.

There are two different approaches to describing the dynamics of fluid particles: the am-
bitious Lagrangian view considers all fluid particles present inside a macroscopic volume V0
at time t0. A particle initially at time x ∈ V0 will move to x(t) in time t, implying that the
whole volume will turn into

Vt ≡ {x(t)|x(0) ∈ V0}.
Knowledge of all maps V0 → Vt is equivalent to a complete characterization of the fluid’s
dynamics. However, it requires the tracking of all fluid particle trajectories, which in most

137
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cases of interest is excessive. The alternative and more practical Eulerian view reasons that
the state of the fluid is described by a field v(x, t) ≡ v(x) giving the instantaneous velocity
of fluid particles at space-time coordinate (x, t) ≡ x. Intuitively, this vector field describes the
current profile of the liquid, and its identification can be considered a solution of the problem.
We will adopt the Eulerian view throughout.

7.2 Evolution of integral quantities carried by a fluid

Assume that the vector field v(x, t) = v(x) was known and consider a physical property
f(x, t) attached to a fluid element at x. Examples include its mass, energy, or momentum, for
the time being, we need not be specific. We allow for explicit time dependence, e.g. f = T (t)
a temperature profile explicitly depending on time. A volume Vt at considered at some time t
will then include the integral amount of f ,

It ≡
∫
Vt

dV f(x, t),

where dV is the three-dimensional volume element. How will this quantity vary during an
infinitesimal instance of time, δt? Several things are time dependent here: a fluid element will
move from x → x+ vδt, where we write v(x, t) = v for simplicity. We thus have f(x, t) →
f(x+ vδt, t+ δt). However, the volume also changes to Vt+δt ≡ {y = x+ vδt|x ∈ Vt}. We
thus have

It+δt =

∫
Vt+δt

dV f(x+ vδt, t+ δt).

A good way to obtain a quantitative expression for the difference It+δt − It ≡ δt dtI +O(δt2)
is to think of the assignment y : Vt → Vt+δt,x → y(x) ≡ x+δtv as an invertible and smooth
(why?) map between Vt and the time evolved Vt+δt. The theorem for change of variables in
higher-dimensional integration then states that

It+δt =

∫
Vt+δt

d3y f(y, t+ δt) =

∫
Vt

d3x

∣∣∣∣∂y∂x
∣∣∣∣ f(y(x), t+ δt),

where J ≡ |∂y/∂x| is the Jacobi determinant of our map. The difference between Iδt and I0
is that in the latter we are integrating the original f(x, t) over Vt, instead of the time evolved
f(x(y), t+ δt). Thus

It+δt − It =

∫
Vt

d3r

(∣∣∣∣∂y∂x
∣∣∣∣ f(y(x), t+ δt)− f(x, t)

)
.

To obtain a more concrete expression, we approximate f(y(x), t+ δt) = f(x+vδt, t+ δt) ≈
(∂t + vi∂i)f(x, t)δt. This combination of derivatives occurs so frequently in hydrodynamics
that it is given its own name: the material derivative of a function is defined as

Df(x, t)

Dt
≡ (∂t + vi∂i)f(x, t).
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Note that the material derivative makes reference to a velocity vector field. We finally compute
the Jacobian of our map as

J =det

(
∂y

∂x

)
= exp tr ln

({
∂xi + viδt

∂xj

})
= exp tr ln

({
δij + δt∂jv

i
})

≈ exp(δt∂iv
i)

≈ 1 + δt∇ · v,
where we encounter the divergence of the vector field v(x). Combining everything, we obtain

dtI =

∫
Vt

dV

(
f(x)∇ · v(x) + Df(x)

Dt

)
(7.1)

a result that will play an important role in our further analysis of the liquid’s dynamics. Eq. 7.1
simplifies for the case of incompressible liquids. A liquid is incompressible if the volume
enclosed by it does not change in time. Many liquids satisfy this condition to a very good
approximation. To understand the consequences, consider the case f = 1, in which case
It = Vt is the enclosed volume. The equation

dtVt =

∫
Vt

dV∇ · v(x) = 0,

must hold for all Vt, requiring that

∇ · v = 0.

Intuitively the absenve of sources in the velocity field of an incompressible liquid means that
fluid elements neither expand nor contract.

7.3 Conservation laws

Let us apply the identity derived above to explore a number of conservation laws constraining
the motion of a liquid.

7.3.1 Mass conservation

One of the most basic properties of a liquid is its mass (distribution). We define ρ(x) to be
a mass density such that ρ(x)dV is the mass contained in a volume element dV . The mass
contained in a macroscopic volume Vt then is

Mt ≡
∫
Vt

dV ρ(x),

and mass conservation requires that it does not change in the course of time: dtMt = 0.
Application of our auxiliary relation to the case f = ρ then yields

0 =

∫
Vt

d3x

(
ρ(x)∇ · v(x) + Dρ(x)

Dt

)
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Holding for arbitrary Vt, this requires the vanishing of the integrand (cf. the same rationale
applied in passing from the integral to differential laws of electromagnetism), leading to the
condition

0 = ρ(∇ · v) + Dρ

Dt
= ρ(∇ · v) + v · ∇ρ+ ∂tρ = ∇ · (ρ(x)v(x)) + ∂tρ(x),

where in the last step, we used the product rule of differentiation. We have thus obtained the
important mass continuity equation,

∂tρ+∇ · (ρv) = 0. (7.2)

Comparison with the generic form of continuity equations: ∂t(density)+∇·(current)= 0, leads
to the identification of the mass current

j = ρv.

We may integrate Eq. (7.2) over an arbitrary volume V and apply Stokes theorem to obtain
a relation for the (generally time dependent) mass M contained in V :

dtM = dt

∫
V

dV ρ =

∫
V

dV ∂tρ = −
∫
V

dV∇ · j = −
∫
S

dS · j,

i.e. the mass change is due to the mass current flow through V ’s surface, as one would expect.
Finally, note that incompressibility (∇ · v = 0) does not necessarily imply constancy of the
mass density (∇ρ = 0). For an incompressible liquid, the mass continuity relation becomes
∂tρ + v · ∇ρ = 0. We may consider situations where the mass density of an incompressible
liquid changes in time, ∂tρ ̸= 0, e.g., due to changes in temperature. Such situations require
both, a non-vanishing gradient ∇ρ ̸= 0, and liquid flow, v ̸= 0, to be consistent with mass
conservation. (Think about this point.) Similarly, in equilibrium, ∂tρ = 0, an incompressible
liquid may admit density changes, ∇ρ ̸= 0, due to, e.g., spatial changes in the chemical
composition of a liquid, provided their gradients are perpendicular to velocity ∇ρ · v ̸= 0.

As a corollary, we note that numerous physical properties are tied to mass. For example,
the momentum carried by a fluid element with volume δV is δV ρv, making ρv a momentum
density. Let f = ρψ be any such quantity. Its change in relation to a volume Vt is given
by Eq. (7.1). However, by the product rule, the material derivate featuring in this equation
assumes the form

Df

Dt
=
Dρ

Dt
ψ + ρ

Dψ

Dt
.

Rewriting the mass continuity relation as ∂tρ+∇ · (ρv) = Dρ
Dt

+ ρ(∇ · v) = 0, we obtain the
nice result

dtI =

∫
Vt

d3x ρ
Dψ

Dt
. (7.3)
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7.3.2 Stress tensor

The next entry on our list of conserved quantities is momentum. We know that changes in
momentum are due to the action of forces, so we must take a closer look at the forces acting
on fluid elements. Consider a fluid element of small extension δ volume δV ∼ δ3 and surface
δS ∼ δ2. We may anticipate the presence of two types of forces: the first are ‘volumic forces’,
defined as external forces coupling to the masses inside our fluid element. The gravitational
force is an example of this type. The net volumic force is proportional to mass which in turn is
proportional to volume, i.e. ∼ δ3. In addition, the entirety of other fluid elements will exert a
force to our fluid element in the form of pressure and shear. Pressure is a force perpendicular
to the elements surface, and shear is the drag tangential to it arising when fluid elements are
in relative motion to each other. What both have in common is that they are proportional to
surface area and hence ∝ δ2.

The dynamics of our fluid element will be governed by an equation of motion of the
structure (mass) × (acceleration) = (forces). Since (mass)∝ δV ∼ δ3 the only way to make
this an equation in the limit of small δ is the vanishing of the total surface force, i.e. the terms
of O(δ2).

To explore this condition in more detail, consider a
volume of tetrahedron geometry, as indicated in the fig-
ure. The force acting on each of its surface elements,
will depend on the orientation of the surface, as de-
scribed by its normal vector n. It will also be propor-
tional to the surface area. Presently, the total surface
force Ftot =

∑3
a=1 F

a + F is the sum of three forces Fa

acting on the three areas inside the coordinate planes, and
the force F acting on the surface S. Defining n = niei

to be its normal vector, an elementary geometric construction shows that the surfaces Sj of
the coordinate plane areas are given by Si = niS. We need to make sure that |Ftot| = O(δ3),
i.e. that the forces proportional to areas mutually cancel out. To establish this property, we
postulate the existence of a stress tensor σ = {σij(x)} defined such that the ith component
of the force on an area element normal vector n is given by

Fi = σijn
jS.

In other words, σ encodes the vectorial orientation of the force per unit area in dependence of
the orientation of the surface element. With this ansatz, the cancellation property holds. To
see this, note that the normal vectors to Si are −ei, leading to

Ftot,i =
∑
j

F j
i + Fi = −σijSj + σijn

jS = −σijnjS + σijn
jS = 0.

Mathematically, the stress tensor is a covariant tensor of second degree. This is to say that it
requires a vector (a contravariant tensor of first degree) to produce a force, which is covariant,
first degree. The action of this force on an infinitesimal displacement vector, si then produces
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the work per unit area siσijn
i associated to the displacement of a surface element. Besides

these formalities, what else can we say about the stress tensor?

Isotropy of pressure: A fluid at rest does not support
any shear forces, i.e. forces tangential to surface ele-
ments. (If there were any, it would respond with a shear
motion, contradicting the condition of equilibrium.) This
means that the work associated to displacement in the
direction of any vector perpendicular to n, i.e. n× v for
arbitrary v vanishes: (n×v)iσijn

j = 0. Choosing v = el
a unit vector, we obtain the condition ϵikln

kσijn
j = 0.

This must be zero, regardless of the orientation of n, which requires σij ∝ δij. We con-
clude that for a static fluid the stress tensor reduces to the unit-tensor. Its diagonal elements
σij = −δijP define the magnitude of the pressure, P , acing on a fluid element: the force per
unit area is given by σijn

j = −niP , i.e. it is perpendicular to the normal vector, and inward
directed.

Absence of surface torque: The introduction of the stress tensor was based on the condi-
tion that the volumic and surface forces acting on a fluid element separately cancel out. Now
let us apply a similar consideration to the torque acting on a fluid element, as shown in the fig-
ure. Volume and surface torque again scale with different powers of δ. Torque causes changes
in angular momentum, which is of the same order as the volume torque (why?). We conclude
that the total surface torque must vanish. For definiteness, let us consider the three compo-
nent of the torques, N3 = (r1F2 − r2F1) acting on points (r1, r2, r3) relative to an arbitrary
point inside the fluid element. The tangential forces acting on the vertical surfaces indicated in
the figure yield the torque as (think why) N3 = (δxσ21(δyδz)− δyσ12(δxδz)) = (σ12 − σ21)δV .
The vanishing of this expression requires σ12 = σ21. Application of the same construction to
the other components of the angular momentum shows the symmetry of the stress tensor,

σij = σji.

7.3.3 Momentum conservation

Consider the total momentum carried by a co-moving volume, Pt =
∫
Vt
dV ρv. Thinking of

this quantity as the sum of microscopic momenta, each of which is governed by Newton’s law,
we conclude dtPt =(total force acting on Vt) ≡ Ft. This force is the sum of volumic forces
and surface forces, Ft = FVt+FSt (Recall that the total surface force vanishes only in the limit
of an infinitesimally small volume). By definition, the latter is obtained by integration over
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forces acting on surface element, which in turn is given by the stress tensor. In components

FVt,i =

∫
Vt

dV fi,

FSt,i =

∫
St

dSσijn
j =

∫
Vt

dV ∂jσij.

With the identification ψ = vi and Eq. (7.3) we thus obtain the balance

dtPi =

∫
Vt

d3x ρ
Dvi
Dt

=

∫
Vt

d3x (fi + ∂jσij) .

This equation holds regardless of the realization of Vt, leading to the condition

ρ∂tvi + ρvj∂jvi = fi + ∂jσij. (7.4)

This is one of several equivalent formulations of the Navier-Stokes equation. It describes
space and time dependent changes in the velocity field in response to external forces (such
as gravity), and internal forces described by the stress tensor. However, before applying the
equation as a tool to the prediction of physical properties of liquids, more specific assumptions
concerning their internal forces, i.e. the stress tensor must be made. Depending on the
model of the stress tensor, the Navier-Stokes equation is capable of describing the physical
properties of almost all static and dynamical properties of liquids. While a comprehensive
review of different model classes is beyond the scope of the present introduction, we mention
the relatively simple, yet practically relevant of incompressible liquids with constant viscosity,
ν. In this case, minimal further assumptions relying on Galilean invariance and isotropy of the
fluid motivate the ansatz

σij = −pδij + ρν(∂ivj + ∂jvi),

where ν defines the viscosity.(Note that due to the assumed incompressibility, the average over
diagonal elements

∑
i σii = −3p+2ρν∇·v = −3p contintues to be defined by the presssure.)

In this case, the stress tensor term is effectively replaced by

∂jσij = ρν∆vi − ∂ip, (7.5)

where we again used ∂ivi = 0. The Navier-Stokes equation then assumes the form

ρ∂tvi + ρvj∂jvi = fi − ∂ip+ ρν∆vi, (7.6)

of a coupled second order nonlinear differential equations.

7.4 Navier-Stokes equation: two simple examples

Even with the replacement Eq. (7.5), the Navier-Stokes equation is notoriously hard to solve
in practice. Analytical solutions are only possible in cases where a combination of symmetries
and simplifying assumptions provides an exceptionally high level of tailwind. We here discuss
two such simple models solutions as examples.
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7.4.1 Flow of ideal fluid around a spherical obstacle

Our first example is defined by a spherical obstacle placed into a fluid which far away from the
sphere shows uniform flow described by v = vex. We consider ‘moderate’ velocities implicitly
defined by the following two conditions. They should be fast enough to make viscous effects
negligible ν = 0. On the other hand, they should be slow enough to exclude the formation of
whirls, i.e. turbulent motion.

The first of these conditions, collapses the Navier-Stokes equation to the much simpler
Euler equation describing ideal (means non-viscous liquids)

ρ∂tvi + ρvj∂jvi = fi − ∂ip. (7.7)

However, the Euler equation remains a complex nonlinear equation whose solution requires
simplifying circumstances. Presently, we assume stationarity, ∂tvi = 0, the absence of external
forces fi = 0, and incompressibility, where we aim to resolve the latter condition in terms of a
constant density profile ρ = 0. We also have boundary conditions in the problem: for |x| ≫ a,
the radius of our sphere, we require v(x) → vx. We also know that v⊥(x) = 0 for |x| = a:
there is no velocity flow perpendicular to the spherical surface (why?). We then need to solve
the reduced equation

ρvj∂jvi = −∂ip. (7.8)

▷ Info. Multiply this equation with vi and sum over i, and note vi∂jvi =
1
2∂j |v|2, to obtain the

equation vi∂i
(
ρ|v|2
2 + p

)
= 0. This is an interesting result. It tells us that along streamlines of

the velocity (the directional derivative vi∂i) profile of a stationary fluid, the sum of pressure and

the kinetic energy density ρ|v|2/2 is constant. Larger velocity means smaller pressure, which is the

principle behind airfoils such the wings of aircraft and birds. These wings are formed in such a way

that the velocity stream along their upper surface exceeds that along the lower surface, resulting in

an effective upward pressure.

——————————————–

We now solve this problem, inspired by its analogies to electrostatics. Anticipating the absence
of vortical flow, we try to find a solution that is a gradient field v = ∇ · ϕ. The condition
of incompressibility, ∇ · v = ∆ϕ = 0, then becomes analogous to that describing an electric
potential in a medium without sources via the Laplace equation. We will solve this equation,
and then use Eq. (7.8) to define a scalar pressure field satisfying the static Euler equation.

Expressed in terms of ϕ, our boundary conditions read ϕ(x) = vx for |x| → ∞, and
∂⊥ϕ = ∂rϕ = 0 at the surface of the sphere, where r is the radial coordinate. The solution
of these equations can be found in various ways, we here proceed by educated guessing. In
view of the high level of symmetry of the field, one may hope that its multipole expansion,
will terminate after dipole order. We thus consider an ansatz superimposing the potentials of
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Figure 7.1: Static velocity field of a non-viscous fluid streaming around a sphere. The corresponding
pressure profile is indiciated by shading where lighter/darker regions correspond to low/high pressure,
i.e. high/low velocity.

a constant field, a monopole, and a dipole potential (cf. Eq. (3.15))

ϕ(x) = vx+
ξ

r
+ η

ex · x
r3

= vr cos θ +
ξ

r
+ η

cos θ

r2
,

with constants η, ξ, and θ the polar angle relative to the x-axis. Computing the radial derivative
at r = a, we obtain the condition

v cos θ − ξ

a2
− 2η

cos θ

a3
.

This needs to be satisfied for all angles θ, requiring ξ = 0, and η = va3

2
. We have thus found

the solution

ϕ(x) = vx

(
1 +

a3

2r3

)
.

From here, it is straightforward to compute the velocity profile by forming gradients, and the
pressure from Eq. (7.8), cf. Fig. 7.1.

7.4.2 Steady viscous flow through cylindrical pipe

Consider an infinitely long cylindrical pipe of radius R, and subject to a pressure gradient
dzp = c = const.. Compared to this pressure gradient, other forces are negligibile, fi = 0.
We wish to determine the stationary fluid velocity distribution. In essence, this is an exercise
in eliminating terms in the Navier-Stokes equation, now containing its viscous contribution
∝ ν. Stationarity means ∂tvi = 0. Working in cylindrical coordinates (r, θ, z), we assume
translational and rotational symmetry of the velocity field vi = vi(r). Also, it is natural to
assume flow parallel to the cylinder axis, v = vez.
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We start by writing the equation in a vectorial form as

ρv · ∇v = −ρ∇p+ ρν∆v.

Under the stated assumptions, the term on the left-hand-side drops out, and on the right hand
side, the only contribution to the Laplace operator is the one differentiating in r-direction:
∆ = 1

r
∂rr∂r + . . . . The equation thus collapses to

−c+ ν
1

r
∂rr∂rv(r) = 0.

The best way to go from here is to determine the general solution of the differential equation
and to obtain a specific solution by matching boundary conditions. We multiply the equation
by r and integrate once to obtain c

2ν
r2 = r∂rv(r) + C1. Division by r followed by another

integration yields

v(r) =
c

4ν
r2 − C1 ln r + C2.

The constants can now be fixed by requiring ∂rv(r) = 0 at the cylinder axis r = 0, requiring
C1 = 0, and v(R) = 0, i.e. absence of flow at the cylinder boundary. This second condition
leads to C2 = − c

4ν
R2, and hence the final result

v(r) =
c

4ν
(r2 −R2).

We observe a quadratically increasing velocity profile reaching the maximum value − c
4ν

=
dzpR

2/4νR2 on the cylinder axis.
For the discussion of more complex use cases of the Navier-Stokes equation, we refer to

the literature.



8.0 Appendix

8.1 Vector calculus in curvilinear coordinates

In analytical electrodynamics we often think about problems with an exceptionally high degree
of symmetry — rotational symmetry, axial symmetry, etc. These problems are conveniently
formulated in non–cartesian coordinates; To solve them we need to express all analytical
operations of vector calculus in such coordinates.

8.1.1 Curvelinear orthogonal systems

Focusing on the case of three dimensional space, let r(u1, u2, u3) be the parameterization of
a point in space in terms of three coordinates ui. (By way of example, you may think of
spherical coordinates, u1 = r, u2 = θ, u3 = ϕ. Consider the three vectors vi ≡ ∂ui

r(u). In
general, these vectors will not be normalized, so let us consider their normalized descendants
ei ≡ g−1

i vi, where gi ≡ |vi|. For any point r, the three vectors {ei} form a system of
coordinate vectors pointing in the direction of the coordinate lines of the coordinate system,
i.e. those lines along which two of the coordinates are kept constant (see the figure.)

▷ Example: Specifically, for spherical coordinates, r = (r sin θ cosϕ, r sin θ cosϕ, r cos θ)T . It is

then straightforward to verify that (er, eθ, eϕ) form the familiar triple of spherical coordinate vectors

and that the normalization factors are given by gr = 1, gθ = r, gϕ = r sin θ.

Now, most coordinate systems of practical relevance are orthogonal in the sense that
⟨ei, ej⟩ = δij, i.e. the coordinate vectors form an orthonormal system. An arbitrary vector
field v can be expanded in this coordinate system as v(r) =

∑
i vi(r)ei(r), where vi(r) =

⟨v(r), ei(r)⟩ and the notation indicates that both the coefficient functions and the coordinate
vectors may depend on r.

8.1.2 Vector differential operations in curvelinear coordinates

147
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(u1, u2) = const.

(u3, u1) = const.

(u2, u3) = const.

e1

e2

(u1, u2 + δu2, u3)

(u1, u2, u3 + δu3)

g2δu2

(u1 + δu1, u2, u3)
n

g1δu1

(u1, u2, u3)

g3δu3
e3

γ

Figure 8.1: On the definition of an infinitesimal reference volume in an orthogonal curvelinear
coordinate system.

Gradient

Let f(r) be a differentiable function. The gradient of f , ∇f is a vector that points in the
direction of maximal variation of f . Put differently, the of overlap of ∇f with an arbitrary
reference vector v equals the directional derivative of f with respect to v:

∀v : ⟨∇f,v⟩ ≡ ∂vf. (8.1)

We now use this definition to compute the components of ∇f in an arbitrary orthogonal
coordinate system: ∇fi ≡ ⟨∇f, ei⟩ = ∂eif = (gi)

−1∂gieif = (gi)
−1∂vi

f . Now, recall that to
compute a directional derivative ∂vf , we need a curve γ(s) whose velocity at s = u, equals
v: du

∣∣
u=u0

γ(u) = v(γ(u0)). Then, ∂vf = du
∣∣
u=u0

f(γ(u)). Presently, a curve that does the

job is r(u1, u2, u3): by definition ∂ui
r = vi, i.e. r(u1, u2, u3) is a suitable parameter curve and

∂vi
f = ∂ui

f . Summarizing we have found that ∇fi = gi∂ui
f , or

∇f =
∑
i

1

gi
(∂ui

f) ei. (8.2)

▷ Example: For spherical coordinates,

∇f = ∂rf +
1

r
∂θf +

1

r sin θ
∂ϕf.
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Divergence

To obtain generalizations of the cartesian variant ∇ · v = ∂xi
vi of the divergence, we first

need to give this vector differentiation operation a coordinate–independent meaning. Indeed,
the ‘true’ meaning of the divergence — a measure of the source contents of a vector field
— is expressed by Gauß’s theorem (2.23). Specifically, for an infinitesimally small reference
volume Gauß’s theorem assumes the form

∇ · v =
1

V (S)

∫
S

dσ v · n,

where V (S) denotes the volume of the area enclosed by S and we have assumed continuity
of v, i.e.

∫
V (S)

d3x∇ · v ≃ V (S)∇ · v. Now, let us assume that V (S) is the cuboid spanned

by the three vectors gieiδui, where the three parameters δui are infinitesimal (see Fig. 8.1.)
Notice that these vectors describe the change of the position vector r under changes of the
coordinates, e.g. r(u1, u2, u3+ δu3)− r(u1, u2, u3) ≃ ∂u3rδu3 = g3e3δu3. Clearly, the volume
of V (S) (also denoted by V (S) for brevity) is given by V (S) =

∏
i giδui. The integral

of v over the surface S obtains by adding the product of the areas of the faces of V (S)
times the components of v normal to these faces. For example, the area of the bottom face
(cf. Fig. 8.1) is given by δu1δu2 (g1g2)(u1, u2, u3), where the argument (u1, u2, u3) indicates
that the metric factors gi depend on the coordinate data. The unit vector normal to that
surface is given by −e3, i.e. the normal component of v is −v3(u1, u2, u3), where vi are the
components in the coordinate system {ei}. The opposite (top) face of the box has an area
δu1δu2 (g1g2)(u1, u2, u3 + δu3), and the normal component of v is given by +v3(u1, u2, u3 +
δu3). Adding the contribution of the top and the bottom face to the surface integral, we obtain
δu1δu2[(g1g2v3)(u1, u2, u3 + δu3) − (g1g2v3)(u1, u2, u3)] ≃ δu1δu2δu3 ∂u3(g1g2v3). Adding
the contribution of the other faces and dividing by V (S), we thus obtain

∇ · v =
1

g1g2g3
[∂u1(g2g3v1) + ∂u2(g3g1v2) + ∂u3(g1g2v3)] . (8.3)

For cartesian coordinates this expression reduces to the familiar form given above.

▷ Example: For spherical coordinates,

(∇ · v) = 1

r2
∂r(r

2vr) +
1

r
∂θ(vθ) +

1

r sin θ
∂ϕ(sin θvϕ),

where vr = v · er, etc.
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Curl

As with Gauß’s theorem above, we consider an infinitesimal variant of Stoke’s theorem:

v × n =
1

S

∫
γ

ds · v,

where S is the area of an infinitesimal surface element (also denoted by S) bounded by a curve
γ and n is the normal unit vector to S. Specifically, let us consider the example S=(bottom
face of the cuboid volume above). Then S = δu1δu2 g1g2 and n = −e3. Keeping in mind that
the orientation of the contour γ must be chosen so as to conform with the ‘right hand rule’,
the line integral around the rectangular contour surrounding S evaluates to (see the figure)∫

γ

ds · v ≃ δu2(v · e2g2)(u1, u2, u3) + δu1(v · e1g1)(u1, u2 + δu2, u3)−

−δu2(v · e2g2)(u1 + δu1, u2, u3)− δu1(v · e1g1)(u1 + δu1, u2, u3) ≃
≃ −δu1δu2(∂u1(g2v2)− ∂u2(g1v1)),

where vi = v·ei are the components of v in the coordinate system and the coordinate reference
points are evaluated at the corners of the rectangle sitting at the beginning of the outgoing
line–stretches. (To first order in the parameters δui, the choice of the coordinate convention
is immaterial, provided one sticks to a consistent rule.) Substituting this result into the r.h.s.
of the infinitesimal variant of Stokes theorem, we obtain (∇ × v)3 = (g1g2)

−1(∂u1(g2v2) −
∂u2(g1v1)). Analogous results are obtained for the two other components of the curl. Expressed
in terms of the Levi–Civita symbol,

(∇× v)i =
∑
jk

ϵijk
gjgk

∂uj
(gkvk). (8.4)

For Cartesian coordinates we rediscover the standard formula (∇× v)i = ϵijk∂jvk.

▷ Example: For spherical coordinates,

∇× v =
1

r sin θ
[∂θ(sin θvϕ)− ∂ϕvθ] er +

[
1

r sin θ
∂ϕvr −

1

r
∂r(rvϕ)

]
eθ +

1

r
[∂r(rvθ)− ∂θvr] eϕ.

Laplace operator

A generalized expression for the Laplace operator ∆ = ∇ · ∇ is obtained by substituting
Eq.(8.2) into Eq.(8.3):

∆ =
1

g1g2g3

[
∂u1

g2g3
g1

∂u1 + ∂u2

g3g1
g2

∂u2 + ∂u3

g1g2
g3

∂u3

]
. (8.5)
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▷ Example: For spherical coordinates,

∆ =
1

r2
∂rr

2∂r +
1

r2 sin θ
∂θ sin θ∂θ +

1

r2 sin2 θ
∂2ϕ.

For the convenience of the reader, the basic operations of vector calculus in spherical and
cylindrical coordinates are summarized in the table below.

Cylindrical ∇f = (∂ρf)eρ + ρ−1(∂ϕf)eϕ + (∂zf)ez,

(ρ, ϕ, z) ∇ · v = ρ−1∂ρ(ρvρ) + ρ−1∂ϕvϕ + ∂zvz,

∇× v = [ρ−1∂ϕvz − ∂zvϕ] eρ + [∂zvρ − ∂ρvz] eϕ + ρ−1 [∂ρ(ρvϕ)− ∂ϕvρ] ez,

∆f = ρ−1∂ρρ∂ρf + ρ−2∂2ϕf + ∂2zf.

Spherical ∇f = ∂rf + r−1∂θf + (r sin θ)−1∂ϕf ,

(ρ, ϕ, z) (∇ · v) = r−2∂r(r
2vr) + (r sin θ)−1∂θ(sin θvθ) + (r sin θ)−1∂ϕvϕ,

∇× v = (r sin θ)−1 [∂θ(sin θvϕ)− ∂ϕvθ] er + [(r sin θ)−1∂ϕvr − r−1∂r(rvϕ)] eθ+

+r−1 [∂r(rvθ)− ∂θvr] eϕ.

∆f = r−2∂rr
2∂rf + (r2 sin θ)−1∂θ sin θ∂θf + (r2 sin2 θ)−1∂2ϕf.

Table 8.1: The basic operations of vector calculus in spherical and in cylindrical coordinates
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