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Preface

“The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a

wonderful gift which we neither understand nor deserve.

— Eugene Paul Wigner
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Chapter 1

Newtonian Mechanics

1.1 Foundations

1.1.1 Galiean space

We start our discussion of classical mechanics by introducing the ‘arena’ in which it takes
place: classical space-time. Mathematically, space time, E4 = E × E3 is a four-dimensional
euclidean space (→ TP0) . The second factor in the decomposition E×E3 accommodates
all points of three-dimensional space, and the first factor all values of time. Points R in
space time are often called events, or world points. We notice three important points about
space-time:

▷ Being an euclidean space, space-time does not have a canonical origin, no point is
special.

▷ In the statement above reflects the fact that space-time is not a vector space. (In
a vector space, the null-vector plays a distinguished role, which point in the universe
would be a null-point?). However, we are free to choose any point we like as origin, O.
For example, we might say that the center of sun, at this very moment is our space-
time origin. The differences R − O ≡ r ∈ R4 = R × R3 are then four-dimensional
vectors, sometimes called four-vectors. One often uses sloppy notation, which does
not distinguish between a point, R, and a vector, r. However, the definition of the
latter requires the choice of some origin, which is implicitly assumed. Recall from the
definition of euclidean space that the vector representation r of a point R changes
upon change of the origin (cf. Fig. 1.1.) Also recall, that the difference R − Q =
(R−O)− (Q−O) = r− q ∈ R4 between two points is a vector which does not depend
on the choice of origin. We denote space-time vectors as r = (t, r).

1
Once a basis {ei}

of the vector space R3 has been chosen, each vector r = riei may be described in terms
of its expansion coefficients relative in that basis. We refer to the four components,

1

For completeness, we note that the assignment of a numerical value t to the time-like component requires
a choice of unit. For example, t = 5sec.

3



4 CHAPTER 1. NEWTONIAN MECHANICS

Figure 1.1: Schematic illustrating the role of reference systems in Euclidean space. Discussion, see
text.

(t, ri) identifying r as rµ, µ = 0, 1, 2, 3 where r0 = t, and ri = (r)i, i = 1, 2, 3 are space
like components.

2
We call the choice (O, {ei}) of an origin, O, and of a vector space

basis {ei} a reference system, K. See Fig. 1.1 for an illustration of two systems of
reference in a two-dimensional cartoon of euclidean space.

Think of some examples of choice-of-origins, points, and vectors to make yourself com-
fortable with these statements.

▷ In classical mechanics the decomposition E4 = E × E3 of space-time into time and
space is rigid. There is an absolute time, and an absolute space, and these two exist
independently of each other. This view was later abandoned by relativity.

For two events R,Q, we call (r − q)0 the time that passed between them. If (r − q)0 = 0,
the events are called simultaneous events. For two simultaneous events, R−Q = (0, r−q)
can be identified with a three-dimensional space-like vector, and we call d(R,Q) ≡ |r −
q| =

√
⟨r− q, r− q⟩ the distance between the events. Here, ⟨v,w⟩ =

∑
i v

iwi is the
standard scalar product of R3. Notice that it does not make sense to talk about the distance
between non-simultaneous events. Also notice that simultaneousness of events and distance
are quantities independent of the choice of origin.

Euclidean space E4 equipped with the above notions of time and distance is called Galilean
space. Galilean space is the ‘arena’ in which classical mechanics takes place. We will usually
refer to its points R in terms of four-vectors x, i.e. assuming that a point of reference has
been chosen.

2

Following a standard convention, the space-like components of a space-time point are denoted by Latin
indices, i = 1, 2, 3. It is also standard to denote space-time vectors, by non-bold face symbols (r vs. r.)
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1.1.2 Galilei transformation

In linear algebra, we learn that linear maps are the ‘natural maps’ compatible with the structure
of a vector space. Let us try to identify, purely by mathematical reasoning, a similar set of
maps for Galilean space. Later on, we will see that these maps play an important role in the
formulation of the laws of classical mechanics.

Much like euclidean space is extends the definition of a vector space (euclidean space =
(vector space)+(point of origin)), the ‘natural maps’ of euclidean space extend the definition
of linear maps: we call a map A : Ed → Ed, R → AR an affine map, if there exists a linear
map T : Rd → Rd such that

∀R,Q ∈ E4 : AR− AQ = T (R−Q). (1.1)

First notice that the definition makes mathematical sense: AR, and AQ are points, but
AR−AQ is a vector. So are R−Q, and T (R−Q). The definition requires that for arbitrary
R,Q the difference vector between the image points, AR − AQ be representable as a linear
map T acting on the difference vector between the original points. In other words, an affine
map is ‘almost’ a linear map. To give the definition more concrete meaning, let us consider
the particular choice Q = O. According to our convention we denote R − Q = R − O = r,
where the symbol on the r.h.s. now denotes the vector connecting the point r to the origin
O. Our definition now requires that

AR = AO + Tr, (1.2)

i.e. the image point AR is obtained by adding the vector Tr to a generally shifted origin AO.
The information describing an affine transform is contained in the shift vector AO − O, and
in the linear transformation T .

Once an origin, O, has been fixed, and
hence a bijection E4 → R4, R 7→ r = R −
O been fixed, we may define an affine map
A : R4 → R4, induced by the affine map
A : E4 → E4 (and conveniently denoted by
the same symbol). It is defined as Ar =
AR−O = AO−O+Tr ≡ a+Tr where we
denote the displacement of the origin as,
by a ≡ AO − O. The affine transformation
therefore acts on the vector space associated
to E4 as

A : R4 → R4,

r 7→ Ar ≡ a+ Tr. (1.3)

We will mostly describe affine transformations in this vector space language. Keep in mind,
that an affine transformation differs from a linear transformation in that it may contain a finite
displacement, a.
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Figure 1.2: The three types of Galilei transformation: translation of origin, rotation of space, homo-
geneous motion. Discussion, see text.

Of particular interest to classical mechanics
are affine maps leaving the Galilei structure of a
Galilean space invariant. Affine maps of this type
are called Galilei transformations. The defin-
ing feature of a Galilei transformation is that the
time between events does not change, and that the
distance between simultaneous events remains the
same. In formulas (cf. the figure): ∀R,Q ∈ E4:

(R−Q)0 = (AR− AQ)0,

(R−Q)0 = 0 ⇒ d(R,Q) = d(AR,AQ).

It turns out that there are only three distinct fam-
ilies of Galilei transformations. (cf. Fig. 1.2)

▷ Translations in space and time: R 7→ AR = R + a, or r 7→ Ar = r + a, where
a = (s,q) is a fixed displacement vector which may represent a translation in both, time
s and space q. In a vector coordinate representation, r = (t, r)T

r =

(
t
r

)
7→
(
t+ s
r+ q

)
. (1.4)

▷ Rotations of space, R 7→ AR = O +Rr, or r 7→ Rr, such that

r =

(
t
r

)
7→
(

t
Or

)
, (1.5)

where O ∈ O(3) is a rotation matrix (→ TP0) .

▷ Uniform motion, R 7→ AR = O + Tr, or r 7→ Tr ≡ r + av(t), such that

r =

(
t
r

)
7→ Tr =

(
t

r+ vt

)
. (1.6)

Convince yourself that all three families satisfy the criteria formulated above, and that there
are no more Galilei transformations. The composition of two Galilei transformations is again a
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Galilei transformation, and each transformation has an inverse, i.e. the set of Galilei transfor-
mations forms a group, the Galilei group. We finally note that Galilei transformations afford
an active and a passive interpretation: in the active transformation, you imagine points
of space times actually being transformed, for example space being rotated, or translated.
In the passive view we leave space untouched. Instead, we imagine a change of coordinate
systems, which may include a change of the orthonormal coordinate basis and/or a change of
origin O. For example, the third transformation family relates the coordinate systems of two
observers in space moving with velocity v relative to each other, such that at time t = 0 their
chosen points of origin coincide (think about this statement.) Within the passive framework,
coordinate vectors change as indicated in the displayed equations above; points R ∈ E4 remain
invariant.

The passive interpretation suggests that a Galilei transformation establishes another way of
‘looking’ at Euclidean space, a rotated perspective, or a translated one. We wouldn’t expect
the basic laws of physics to depend on the chosen perspectives, e.g. two observers rotated
relative to each other by a fixed angle would find that mechanical bodies move according to
the same fundamental laws. We will return to this point after we have introduced the laws of
classical mechanics in the next section.

INFO It is instructive to count the number of free parameters of the Galilei group: a

translation in space and time (∆t,∆r) is described by four parameters (the first family), rotations

of space, O, are described by three parameters (second family), and a uniform motion is described

by the three parameters of the velocity vector v. A general Galilei transformation is therefore

describable in terms of 4 + 3 + 3 = 10 real parameters.

1.2 Newton axioms

Classical mechanics addresses the problem of describing the motion of ‘bodies’ in the space
time introduced above. Newton made a great contribution to science by exhaustively describing
mechanical motion in terms of only three laws. Before translating Newton’s laws to formulas,
we here quote them in their original prosaic form, as formulated in 1687:

▷ Law I: Every body persists in its state of being at rest or of moving uniformly straight
forward, except insofar as it is compelled to change its state by force impress’d.

3

▷ Law II: The alteration of motion is ever proportional to the motive force impress’d; and
is made in the direction of the right line in which that force is impress’d.

▷ Law III: To every action there is always opposed an equal reaction: or the mutual
actions of two bodies upon each other are always equal, and directed to contrary parts.

3

Isaac Newton, The Principia, A new translation by I.B. Cohen and A. Whitman, University of California
press, Berkeley 1999.
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From todays perspective, the revolutionary character of these statements may no longer be
apparent. However, Newton’s key innovation was a breaking of the tradition to empirically
describe nature phenomena, e.g. to track the motion of each planet individually. Rather he
made a successful attempt at describing all possible motions in one go, a hitherto unknown
degree of powerful abstraction.

In the following we will give the key terms appearing in Newton’s laws (body, force, etc.)
a precise meaning and formulate the laws in a mathematical language. A body is a point–like
object, i.e. the position of a body in space and time is specified by an event R of space time.
After fixation of an origin, we may specify it by a four-vector r = (t, r). We attribute to each
body a scalar quantity m called its mass.

INFO At first sight, the idealization of point-like bodies may look strange. However, it is less

of an abstraction than one might think: we will learn later that to each (rigid) extended body we

may associate a special point, called its ‘center of mass’. In the presence of external forces, the

body at large moves as if all its mass was concentrated in the center of mass. For example, when

viewed from earth the motion of the quite extended planet Mars approximates the motion of a

point particle of Mars’ mass.

The motion of a body is described by a curve (→ TP0) in three-dimensional (!) affine
space:

γ : I → E3,

t 7→ R(t). (1.7)

If a point of origin has been chosen, we may equally describe the motion by a curve in R3 as
γ : I → R3, t 7→ r(t). The velocity of the body is given by

v(t) = dtr(t), (1.8)

and the product of mass and velocity, mv ≡ p defines its momentum. We further define the
body’s instantaneous acceleration as

a(t) = dtv(t) = d2t r(t). (1.9)

A non-accelerated body, a = 0, moves at constant velocity v = const., i.e. it performs a
‘constant’ motion. Newton’s first and second law state that changes in the motion of a body are
due to the action of a force, F. A Force is a vector field, F : E4 → R3, R → F(R) assigning
to space time points a vector F(R) quantifying direction and magnitude of what we call ‘force’.
Force is an instance that changes motion in the following way: during an infinitesimally short
time window ∆t, the velocity of a body changes as v(t + ∆t) − v(t) = ∆tm−1F, i.e. the
change in velocity is proportional to the acting force, inversely proportional to the body’s
mass m, and proportional to the duration of action ∆t. Dividing by ∆t and taking the limit
lim∆t→0∆t−1(v(t+∆t)− v(t)) = a(t), we express the statement as

F = ma, (1.10)
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Figure 1.3: Left: a system of particles interacting via pair forces. Right: an ‘external’ forces generated
by a remote system of particles. Discussion, see text.

which is the quantitative formulation of Newton’s first and second law. Within New-
tonian mechanics, neither force nor mass can be reasoned out of deeper principles. Rather,
they are defined by the second law as instances causing (F) or inhibiting (m) the acceleration
of bodies.

Eq. (1.10) implements Newtons first and second law, but not the third one. The equation
assumes the presence of an ‘extraneous’ force, F, but does not tell us where this force came
from. Ultimately, however, the force must be due to the presence of other bodies, interacting
with our given test body. A more self contained representation of the theory is obtained if
we consider an assembly of N bodies of mass mi at space time vectors ri. We assume that
the jth body exerts a force Fij(ri − rj) on the ith body, which (i) depends on the vector
ri − rj between the two bodies,

4
(ii) acts along the line connecting them, Fij ∝ ri − rj, at

a strength |Fij| depending on the distance |ri − rj|, and (iii) is opposite to the force exerted
by i on j, Fij = −Fji. These properties, too, are axiomatic and cannot be proven from more
fundamental principles. Point (iii) implements Newton’s third law.

The total force acting on body no. i is given by the sum Fi ≡
∑

j ̸=i Fij. Substituting this
into the Newton equation (1.10), Fi = miai, we obtain the set of N coupled equations

mir̈i =
∑
j ̸=i

Fij(ri − rj). (1.11)

The Newton equation (1.10) with its presumed ‘external’ force can be interpreted as a special
case of Eqs. (1.11). To see this, assume that the bodies j ̸= i are spatially separated from i
acting on it via a net force Fi (Fig. 1.3, right panel) which we interpret as an external force.

To summarize, Newton’s equations (1.11) provide the mathematical formulation of all
three Newton’s laws formulated in prosaic form above: if the total force Fi acting on particle
no. i vanishes, its velocity remains constant, dtvi = 0 (first law). In the presence of force, the
velocity changes dtvi ∝ Fi in a direction set by the force (second law), and the force exerted
by body i on j is opposite to the force of j on i, Fij = −Fji (third law).

4

This is not the most general conceivably force: Fij = Fij(ri − rj , ṙi − ṙj) might depend on coordinates
and velocities. Instead of two-body forces Fij , we might consider three body forces Fi,jk(ri, rj , rk) describing
the correlated action of j and k on i, or even more complicated types of forces. However, for the purposes of
our introductory discussion, the ansatz above is general enough.
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Finally notice that the Eqs. (1.11) imply methods to measure forces and masses. Con-
sider, for example a two-body system N = 2. From F12 = −F21, we obtain the equation
m1r̈1 = −m2r̈2, or

m1

m2

=
|r̈1|
|r̈2|

. (1.12)

The ratio of the two participating masses can be determined from the ratio of their acceleration.
You may introduce a ‘test body’ to define the unit of mass (much like the kilogram stored in
Paris defines the reference mass of our system of units.) The mass of any other body may
then be fixed in relation to the test body by a measurement of acceleration. Similarly, you may
subject the test body to different forces. Measuring its response acceleration, r̈ then defines
the magnitude of the acting force |F| = m|r̈| as a function of measurable quantities.

The Newton equations (1.11) describe how massive bodies move in response to the presence
of forces. However, as with any physics law the scope of Newtonian mechanics is limited: it
describes motion at velocities |ṙ| ≪ c much smaller than the speed of light, c. And it is limited
to ‘macroscopic bodies’ large enough that the effects of quantum mechanics remain negligibly
small. Within the confines imposed by these conditions, Newtonian mechanics remains an
integral part of physics to this date.

INFO Newton’s equations refer to quantities carrying a physical dimension, time, length, mass,
etc. We will write

[X] = L, T,M, . . . (1.13)

to indicate that a physical quantity carries the dimension of length, time, mass,. . . . For example,
[ṙ] = L/T . To quantify dimensionful variables, we need to decide on a system of units. In
our discussion of classical mechanics, we will employ the SI system, in which time is measured
in seconds (s), mass in kilogram (kg), and length in meters, (m). These three units are
fundamental, and all others derive from them. For example, the unit of velocity is m/s, etc. The
canonical unit of force is the Newton,

1N = 1kg × 1m

1s2
.

Occasionally, we will discuss the mechanics of electrically charged bodies, and this will require

a fourth fundamental unit of the SI system, the Ampere (A), which is a unit for the strength

of electric current. (1A is the strength of current flowing through two idealized infinitely long

parallel straight wires separated by a distance of 1m if they exert a force of 2 × 10−7N on each

other.) An important derived unit is that of electric charge, the Coulomb 1C = 1A× 1s.

1.3 Fundamental aspects of Newtonian mechanics

In this section we discuss various fundamental structures inherent to Newtonian mechanics.
This will prepare our later discussion of more concrete problems and solution strategies.
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1.3.1 Newton equations as differential equations

Technically, Newton’s equations (1.24) are second order ordinary differential equations for
the f = 3N functions xi

j(t), j = 1, . . . , N . To obtain a definite solution of these equations,
we need to provide initial conditions. Being second order, each equation has to be supplied
with two initial conditions, i.e. we need 6N conditions in total. A common choice is to fix
all initial coordinates, ri(0) = ri0, and all initial velocities, dtr

i(0) = vi0. This conforms with
our intuition that, say, the motion of a flying ball can be predicted once you know it’s point
of origin and the intial velocity. Another frequent choice is to fix the initial and the finital
coordinates, ri(0) = rii , r

i(t) = rif . However, with this choice, the solution is not, in general
unique:

EXAMPLE Consider the Newton equation of a single particle in a constant force in 3-direction:

d2t r = ce3, where c is a constant. The general solution of this equation reads r(t) = u+tv+c t
2

2 e3,
with constant vectors u,v. One may now choose an initial coordinate and velocity, r0,v0 and
compare: r0 = r(0) = u and v0 = dtr(0) = v to fix the constants. Alternatively, we may fix
r(0) = ri and r(tf) = rf . To obtain ri = u, rf = u+ tfv + c tf2 e3.

To understand why fixation of ri,f does not in general fix a unique solution, consider a particle

confined to a move on a ring, in the absence of external forces. Now fix ri = rf = r0, where

r0 is arbitrary on the ring. The problem is solved by the trivial trajectory r(t) = r0, but also by

trajectories spinning around the ring an integer number of times, before returning to the point of

origin.

NOTATION Our so far discussion assumed the usage of cartesian coordinates xj . When ex-

pressed in generalized coordinates – think of spherical coordinates for concreteness – the math-

ematical form of the equations may change. (We will see examples below.) However, several of

the concepts introduced below retain validity. We therefore follow the widespread convention to

denote the position coordinates describing a mechanical system by qj , and in the follwing discuss

a number of these invariant concepts of the theory.

Newton’s equations for an N -particle system,

miq̈
j
i = F j

i ({q, q̇}) (1.14)

are 3N ordinary differential equations of second order for the coordinate functions qji , i =
1, . . . , N , j = 1, 2, 3. The number of variables required to specify the problem is commonly
called the number of degrees of freedom, f . For a Newton equation describing the uncon-
strained

5
motion of particles that number equals f = 3N . The notation F j

i ({q, q̇}) indicates
that the jth component of the force Fi acting on the ith particle may depend on the co-
ordinates of all other particles, and on their velocities. It is often advantageous to apply a

5

Constraints are present if some or all coordinates of the problem are confined to a submanifold (→ TP0) of
R3. For example, to describe the motion of a ball rolling on a plane only two coordinates are required, the
motion of a roller coaster cart can be described in terms of one coordinate, etc. Below, we will introduce
means to efficiently describe problems with constraints.
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standard procedure in the theory of differential equations to convert the system into a system
of 2× 3N equations of first order.

To this end, we use the definition of momentum miq̇i ≡ pi to write,

q̇ji =
1

mi

pji ,

ṗji = F j
i ({q, p}), (1.15)

where F ({q, p}) is a shorthand notation for the forces depending on coordinates and mo-
menta.

6
It is customary to define a 6N dimensional vector

x ≡
(
q
p

)
, (1.16)

bundling all variables relevant to the problem into a single vector. For a system containing
f ≡ 3N coordinate variables, the 2f -dimensional space spanned by the vector x is called the
phase space of the problem. Phase space is a concept of crucial importance to the modern
formulation of mechanics, to which we will turn below. For the moment, we just note that
the phase space formulation of Newton’s equations reads as

ẋ(t) = X(x(t)), (1.17)

where

Xj
i =

(
1
mi
pji

F j
i ({q, p})

)
. (1.18)

Technically, this is a system of 6N ordinary differential equations of first order in time. Ac-
cording to a fundamental result of the theory of differential equations, such systems possess
a unique solution provided an ‘inital condtion’ has been specified, and the functions X defin-
ing the right hand side are sufficiently smooth.

7
The precise statement goes as follows: for

each initial condition x(0), the system of differential equations (1.17) possesses a unique
solution trajectory x(t). The trajectory x(t) varies smoothly (i.e. differentiably) on the
initial condition x(0). The physical interpretation of these statements is that if an initial set
of coordinates q(0) and momenta p(0) is specified (think of the initial coordinate q(0) and
momentum p(0) = mv(0) of a thrown ball) then the Newton equations specify the future
development q(t) and p(t) of these variables. The motion responds smoothly to changes
in the initial conditions (e.g., if you slightly change the initial velocity of the ball, then its
trajectory will change smoothly in response

8
)

6

Since q̇ji = pji/mi, F ({q, p}) is trivially obtained from F ({q, q̇}).
7

More precisely, (→ TP0) the functions X need to specify a so-called Lipschitz continuity condition.
8

Notice however, that ‘smooth’ changes need not remain small at large times. It is a defining property of
chaotic mechanical systems that even small adjustments of the initial conditions lead to massive changes in
the evolution trajectories at large times!
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1.3.2 The invariance group of Newtonian mechanics

Newton’s equations make reference to a set of coordinates (r, t) parameterizing points X of
Galilean space, E4. To define these coordinates, we need a reference system K, which in turn
implies the definition of a point of origin, E4 = O+R4, and the choice of a basis spanning R4.
If we choose a different reference system K ′ the space time coordinates of X will change to
(r′, t′). We call Newton’s equations invariant under the transformation, if their representation
in the new system reads

mi
d2r′i
dt′2

=
∑
j ̸=i

F′
ij(r

′
i − r′j), (1.19)

where F′
ij are the force vectors Fij represented in the new coordinate system. ‘Invariance’

means that the Equations are structurally equivalent to the equations in K. To appreciate the
significance of this criterion, consider the transformation to a system K ′ whose point of origin
O′ = O − t2

2
a0 performs accelerated motion relative to that of K in space. The coordinates

of the two systems are related to each other as

t′ = t,

r′ = r+
t2

2
a0. (1.20)

The transformation of a K-Newton equation md2t r = F to the new system reads md2t′r
′ =

md2t (r+
t2

2
a0) = F+ma0 = F′+ma0, where we used that F = F({ri−rj}) = F({r′i−r′j}) =

F′ does not change under the transformation. The appearance of an additional term ma0

signifies non-invariance of the Newton equation. Specifically, an equation that is force-free in
K, F = 0, appears to be contain a force ma0 in K ′. To understand the origin of this force,
imagine a body at rest in K. In K ′ it will appear to be at position r′ = t2a0/2, i.e. it moves
at accelerated velocity v′ = ta0. From a K ′ perspective, a force ma0 causing this acceleration
must act. We call forces that can be removed by a transformation of coordinates fictitious
forces. Forces of this this type appear and disappear under changes of coordinate systems.
However, before furthering on this point, let us identify the set of coordinate transformations
that leave the Newton equations invariant.

All points in Galilean space are equal, and so are all ‘directions’. We therefore expect that
transformations changing the point of origin, or the geometric orientation of coordinate axes
leave Newton’s equations invariant. Indeed, it is straightforward to verify that the following
families of transformations do satisfy the invariance criterion:

▷ Translation in both space and time:(
t′

r′

)
=

(
t+ s
r+ q

)
, (1.21)

with constant s,q.
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▷ Rotation of space: (
t′

r′

)
=

(
t′

Rr

)
, (1.22)

with a rotation matrix R ∈ SO(3).

▷ Uniform motion of the reference systems:(
t′

r′

)
=

(
t

r+ vt

)
, (1.23)

with fixed v.

It is less straightforward to prove that there are no other transformations satisfying the invari-
ance criterion.

9

EXERCISE Convince yourself of the invariance of Newton’s equations under the transformations

above. Observe that the rotation of space, requires that all vectors, including the forces entering

Newton’s equation, F 7→ RF be transformed. Try to convince yourself that no other invariance

transformations can be found.

Compositions of the elementary transformations above, e.g., rotation followed by translation,
are again invariance transformations, and each transformation has an inverse. The set of
transformations therefore forms a group, the invariance group of classical mechanics. You
will have noticed that this group equals the Galilei group, i.e. we have arrived at the conclusion
that

The Galilei group is the invariance group of classical mechanics.

Two coordinate systems connected to each other by a Galilei transformation are called relative
intertial to each other. We have seen above how starting from a force free system K we may
transform by a non-Galilei transformation into a systemK ′ in which a force acts. However, this
force is fictitious in that it can be eliminated by a coordinate transformation, viz. the reverse
transformation to K. This observation motivates the definition of inertial systems as the
class of those reference systemsK in which no fictitious forces are present. The complementary
class of forces, i.e. forces that cannot be eliminated by coordinate transformation are called
intrinsic forces. The Newton equations in inertial systems contain only those, and in this
sense are distinguished for a maximal degree of simplicity. Keep in mind, however, that even
fictitious forces can be quite real in the systems where they act. For example, an observer

9

In fact, there are more general coordinate transformations preserving the form of Newton’s equations, cf.
O. Jahn, V. V. Sreedhar, The Maximal Invariance Group of Newtons’s Equations for a Free Point Particle,
Am.J.Phys. 69, 1039 (2001). However, generalization beyond the Galilei group do not appear to play a
significant role in the practice of mechanics (note the publication date of the given reference!) and will not
be discussed here.
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locked into a windowless cabin dragged at accelerated speed v0 = const. × t through an
otherwise force-free universe will feel a real (though fictitious) force pressing her to the bottom
of the cabin. However, an observer at rest (relative to the cabin) wouldn’t feel any force.

INFO Observe that in classical mechanics time and space stand on similar footing – both can be
translated, etc. – while there are also peculiar ‘asymmetries’. For example, space can be rotated
within itself, but rotations ‘mixing’ time and space are excluded. On the one hand, this seems
natural (what would a ‘rotation’ between space and time be like anyway?). On the other hand,
the mathematical asymmetry between space and time does not feel quite right and hints at
the existence of a generalized theory where it is lifted. The separation between space and time
is indeed abandoned in relativistic mechanics, a generalization of Newtonian mechanics capable
of handling fast motion at velocities comparable to the speed of light. From the perspective of
relativistic mechanics, the separation between space and time emerges as an artefact in the limit
of slow motion dynamics.

On a related note, the definition of inertial systems as given above, also has a sense of

vagueness to it. How to we really discriminate between real and fictitious forces. For example,

an observer locked into a windowless cabin which is dragged at uniformly accelerated motion will

have no constructive way to discriminate the acting force (a ‘fictitious force’ according to our

discussion) from a gravitational force. Conversely, imagine a universe in which a constant ‘real’

force field acts. Assume that all bodies in the universe respond to the force by accelerated motion

in its direction. A reference frame fixed performing this accelerated motion will then feel inertial

(why?). But according to our discussion above it is not. These seemingly paradoxical examples

show that the problem lies with unambiguous global definitions of inertial frames, whatever ‘global’

means in our universe. In the nineteenth century there has been a lot of discussion of this point.

However, the proper interpretation of of the term ‘inertial’ became clear only after the advent of

reality.

1.3.3 Center of mass and relative coordinates

Technically, Newton’s equations are second order ordinary differential equations for the 3N
functions xj

i (t), where N is the number of particles. Only in few cases can such equations
be solved explicitly. However, there exist a number of strategies by which the problem can
be simplified by using appropriate systems of coordinates and/or exploiting so called conser-
vation laws. In this section, we introduce a system of variables, suitably to the description of
mechanic’s principal conservation laws below.

Consider the general system of Newton’s equations

mir̈i =
∑
j ̸=i

Fij + Fe,i, (1.24)

for a system of N particles, subject to both ‘internal forces’ Fij exerted by particle no.j on i,
and ‘external’ forces Fe,i exerted by the ‘rest of the universe’ on particle no.i. For example,
the ri might be the coordinates of charged (and hence interacting) particles moving in an
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accelerator, and Fe,i would be the forces caused by an external magnetic field keeping the
particles in focus, etc.

The sum,

Fe ≡
∑
i

Fe,i, (1.25)

is called the total external force acting on the system. And the sum of all particle momenta

P ≡
∑
i

pi (1.26)

is called the total momentum of the system. The total momentum changes in response to
the external force acting on the system,

Ṗ = Fe. (1.27)

To prove, equation (1.27), we compute

dtP =
∑
i

mir̈i
(1.24)
=

∑
i ̸=j

Fij +
∑
i

Fe,i =
∑
i

Fe,i = Fe, (1.28)

where in the crucial third equality we used that in
∑

i ̸=j Fij we sum over Fij and Fji =

−Fji, i.e. the sum vanishes.
10

Notice how equation (1.27) resembles the equation of motion
of a ‘superparticle’ of momentum P and subject to an external force Fe. We further this
interpretation by defining the total mass of the system,

M ≡
∑
i

mi, (1.29)

and its center of mass,

R ≡ 1

M

∑
i

miri, (1.30)

The center of mass is that point in which the mass of the system appears to be concentrated
if we look at it from far away. For example, the center of mass of the system (earth/Mars) is
situated somewhere on the axis connecting the center of these planets. The total momentum
can now be expressed as P = MdtR, in analogy to the formula of a point particle.

It is often convenient to split the coordinates of the particles constituting the system as

ri = R+ r′i, (1.31)

10

To see this more explicitly, write
∑

i ̸=j Fij =
∑

i<j Fij+
∑

i>j Fij =
∑

i<j Fij+
∑

i<j Fji =
∑

i<j(Fij+
Fji) = 0, where in the second last step we relabeled summation indices i ↔ j
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where the vector describing the separation of particle i from the center of mass, r′i, is called its
relative coordinate. Similarly, we define v′

i = dtr
′
i as the relative velocity, and p′

i = miv
′
i

as the relative momentum. The relative coordinate, velocity and momentum describe the
motion of a particle in a reference system whose origin is the center of mass R+O. In many
cases, it advantageous to address the dynamics of an N particle system within the system of
its relative coordinates. The relative coordinates aren’t all independent, because∑

i

mir
′
i =

∑
i

miri −
∑
i

miR = MR−MR = 0. (1.32)

So, if you know N−1 of the relative vectors ri, the Nth one follows as r′N = m−1
N

∑N−1
i=1 mir

′
i.

A typical solution strategy will first aim to understand the motion of the center of mass by
solution of the relatively simple Eq. (1.27). One may then turn to the system of relative
coordinates, and aim to solve the Newton equation for these. For N ≫ 1 there are many
more relative coordinates than center of mass coordinates, i.e. the relative system is generally
harder to solve.

1.3.4 Conservation laws

Newton’s equations simplify considerably if con-
served quantities are present. Techni-
cally, a conserved quantity is a function
f(r1, . . . , rn, ṙ1, . . . , ṙn) of the coordinates and
perhaps the velocities of the problem, such that
dtf = 0, i.e. f does not change in time. The alge-
braic equation f = const. enables us to express one
of the unknown variables in terms of the others, i.e.
the number of unknowns has effectively reduced by
one. What here sounds like an abstract statement
is familiar to all of us from daily experience. For
example, we all know that in the absence of forces
acting in 1-direction, a mass will retain its velocity in 1-direction, i.e. we have a conserved
quantity ẋ1 = const.. Intuitive knowledge of this fact is used when we aim to catch a flying
ball and subconsciously ‘calculate’ its point of impact using the approximate conservation of
it’s velocity component parallel to the ground.

Momentum

The equations f = const. stating the conservation of a quantity are called conservation
laws. For the one-body problem Eq. (1.10), the conservation law above is formulated as
F = 0 ⇒ dtmṙ = dtp = 0, i.e. p = const.:

The absence of forces implies the conservation of momentum.
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This is no more than a reformulation of Newton’s first law. Also notice that p = const. gives
us three scalar conservation laws, dtr

i = const. The most general motion compatible with
the conservation law reads ri = ait + bi, where the constants have to be adjusted so as to
conform with the intial conditions of the problem. In this simple case, the conservation law
enables us to trivially solve the problem.

Applied to an N -particle system, the correspondence above reads

In the absence of external forces, Fe = 0, the total momentum of an
N -particle system is conserved, P = const..

This is our first example of a conservation law. Try to make yourself familiar with its intuitive
meaning. For example, a galaxy moving through space will be subject to all kinds of internal
forces. However, if there aren’t any substantial forces acting on the system as a whole,
the galaxy will appear to move as one big ‘metaparticle’ through empty space. The precise
formulation of this statement is that it’s total momentum does not change.

Angular momentum

Another conservation law familar from daily life relates to the motion of spinning bodies. A
wheel in motion opposes changes in its rotation axis, a frisbee disc tends to maintain its
rotation axis, etc.

The physical quantity behind these phenomena is called angular momentum. The angular
momentum of a point particle at r and carrying momentum p relative to a point r0 is defined
as

l = (r− r0)× p. (1.33)

Notice that angular momentum is always defined relative to a reference point r0. Changes in
angular momentum are caused by the action of a torque, n ≡ (r− r0)× F, where F is the
force acting on the body:

dtl = n. (1.34)

Using (dtr)× p = mv× v = 0, the equation is seen to be a consequence of the product rule
and Newton’s equation. As with angular momentum, torque is defined relative to a reference
point. The equation implies another important conservation law,

In the absence of torque, the angular momentum of a particle is conserved.

For example, the angular momentum of a satellite at r relative to earth’s center r0 is conserved
as long as forces other than the gravitational force Fg may be ignored. The reason is that
Fg ∝ (r−r0) acts towards the gravitational center, and this means n = 0. Angular momentum
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is conserved, e.g., for motion on a circular orbit at constant velocity, |v| = const. However,
as we will see, it may also be conserved along more complex trajectories.

The angular momentum L of a system of particles relative to r0 is given by the sum of
partial angular momenta

L =
∑
i

(ri − r0)× pi. (1.35)

Changes in this quantity are caused by the total torque

Ne =
∑
i

(ri − r0)× Fe,i (1.36)

due to the external forces Fe,i acting on the particles:

dtL = Ne, (1.37)

i.e. the internal forces of the system do not alter its angular momentum. The equation is
proved by straightforward calculation:

dtL =
∑
i

[ṙi × pi︸ ︷︷ ︸
0

+(ri − r0)× ṗi] =

=
∑
i ̸=j

(ri − r0)× Fij +
∑
i

(ri − r0)× Fi,e =

=
1

2

∑
i ̸=j

[(ri − r0)− (rj − r0)]× Fij︸ ︷︷ ︸
0

+Ne = Ne, (1.38)

where in the third line, we symmetrized the sum,
∑

i ̸=j Xij = 1
2
(
∑

i,j Xij +
∑

j,iXji) =
1
2

∑
i,j(Xij +Xji), and used that (ri − rj)× Fij = 0 ∝ (ri − rj)× (ri − rj) = 0 due to the

directional orientation of the pair forces. The qualitative reason for the vanishing effect of the
internal forces on the angular momentum is that the torque exerted by the pair force Fij on
the system is compensated by the opposite effect of the force Fji = −Fij (think about this
point.) We conclude that

In the absence of external torque Ne the angular momentum L of an
N -particle system is conserved.

As an example, consider the dynamics of a rotating wheel. The angular momentum of the
wheel relative to a point on the wheel axis points in the direction of that axis. It is not
affected by the complicated system of forces giving the wheel its static stability. Only if an
external force with a component perpendicular to the rotation axis is applied will the angular
momentum change.
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We finally note that the angular momentum of an N -particle system affords a decompo-
sition

L = (R− r0)×P+
∑
i

(r′i × p′
i), (1.39)

into a contribution resembling the angular momentum of a point particle of momentum R
at the center of mass coordinate R, plus an ‘internal’ contribution summing over the angular
momenta of the compound particles relative to the center of mass.

EXERCISE Prove the formula, and think of examples illustrating its contents.

Energy

Let r(t) be the solution of Newton’s equations over the time interval I = [t1, t2]. The
assignment t 7→ r(t) defines a curve γ : I → R3, t 7→ r(t) in three-dimensional space.

11
Now

consider the work

W ≡
∫
γ

ds · F (1.40)

done along this curve against a time independent force F(r) acting on the particle. We
compute this quantity as

W =

∫ t2

t1

dt
dr

dt
· F =

∫ t2

t1

dt
dr

dt
m
d2r

dt2
=

=
m

2

∫ t2

t1

dt
d

dt

(
dr

dt

)2

=
m

2

(
v2(t2)− v2(t1)

)
. (1.41)

We denote the quantity

T ≡ m

2
v2 (1.42)

as the kinetic energy of the particle. The formula above states that the work done against the
force acting on the particle equals the change in kinetic energy. An even stronger connection
between work against the force and kinetic energy emerges if the force vector field

F : R3 → R3,

r 7→ F(r) (1.43)

is a conservative vector field. Recall (→ TP0) that a vector field is conservative if there
exists a function U(r) such that F(r) = −∇U(r)

12
The function U is called the potential of

11

More precisely, r(t) defines a specific parameterization of the geometric curve γ, think about this difference.
12

The minus sign appearing in this formula is a matter of convention.
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the force. Also recall that the line integral against a conservative force field is obtained as

W =

∫
γ

ds · F = −
∫ t2

t1

dt
dr

dt
· ∇U(r) = −

∫ t2

t1

dt
dU(r(t))

dt
= −(U(r(t2))− U(r(t1))).

(1.44)

Comparing our two formulas for W , we obtain

m

2

(
v2(t2)− v2(t1)

)
= −(U(r(t2))− U(r(t1))), (1.45)

or

T (ṙ(t2)) + U(r(t2)) = T (ṙ(t1)) + U(r(t1)). (1.46)

Since the time arguments t2, t1 can be chosen arbitrarily, we conclude that the sum T + U
does not change along the trajectory r(t). This observation motivates the definition of the
energy of the particle as

E = T + U . (1.47)

We may think of the energy as a function of both, the particles instantaneous position r, and
it’s velocity v, E = T (v) + U(r). Equivalently, we may think of it as a characteristic of the
particle’s trajectory: given a trajectory r(t) (i.e. a solution of the Newton equation), we may
compute the velocity vector v(t) = dtr(t) at any instance of time to obtain the energy as
E = T (dtr) +U(r). The conservation of energy along the trajectory may be confirmed as

dtE = dt(T (ṙ) + U(r)) = ∂ṙT · r̈+ ∂rU · ṙ = mṙ · r̈− F(r) · ṙ = (mr̈− F︸ ︷︷ ︸
0

) · ṙ. (1.48)

The physical interpretation of energy conservation is illustrated in Fig. 1.4. The particle moves
in a ‘potential landscape’ described by the function U(r). A force F = −∇U pointing in the
direction of the fastest decrease

13
of U . If the particle moves in the direction of that force, U

decreases. At the same time, the kinetic energy T (and hence the magnitude of it’s velocity)
increases. The decrease of U and the increase of T are balanced such that E = T +U remains
constant.

The conservation law corresponding to our observations above states that

The energy of a particle subject only to conservative forces is
conserved, dtE = 0.

EXAMPLE As an example of a conversion of potential to kinetic energy consider a ball of mass
m being dropped from a hight h in the presence of a downward gravitational force F = −mgez

14

This force is conservative and it’s potential energy is given by U(r) = mgz. When the ball is

13

Recall that for a function f , ∇f is a vector pointing in the direction of fastest increase fo f .
14

Here, g ≃ 9.81m/s2 is the so called gravity of earth.
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Figure 1.4: On the conservation of energy along the trajectory of a particle. Discussion, see text.

released it has energy E = T + U = 0 + mgh. The solution of Newton’s equations subject to

the initial conditions r(0) = hez and ṙ(0) = 0 reads r(t) = (h− gt2

2 )ez. The ball hits the surface

z = 0 at time t0 =
√
2h/g at a velocity v(t0) = −gt0ez = −√

2hgez. At the point of impact,
its energy is given by E = T + U = m

2 v(t0)
2 + 0 = mgh, i.e. the potential energy has been fully

converted into kinetic energy.
As an example for non-conservative forces, consider the winds of a circulating weather system,
e.g. a hurrican. The integral of the force field around the storm’s center is non-vanishing, and this
signifies the non-gradientness of the acting forces. A particle subject to such forces will tend to spin
around the center, at growing speed. It’s kinetic energy increases, but there is no compensating
potential energy.

The total energy of an N-particle system can be defined in similar terms. Assume that
the pair forces are conservative in the sense that they derive from a potential as

15

Fij(ri − rj) = −∂riU(|ri − rj|), (1.49)

i.e. that there exists a pair potential function

U : R3 → R,
r 7→ U(|r|), (1.50)

such that U(|ri − rj|) measures the ‘interaction potential’ of two particles separated by a
distance |ri − rj|. It is customary to omit the | · | in the notation and to write U(r) = U(|r|)
for simplicity. Further assume that the external forces are conservative, too,

Fe(r) = −∂rUe(r), (1.51)

where Ue is the external potential. Under these conditions, the energy of the system may
be defined as

E =T + U,

T =
∑
i

mi

2
ṙ2i ,

U =
1

2

∑
i ̸=j

U(ri − rj) +
∑
i

Ue(ri). (1.52)

15

If the particles differ in their physical properties (charge, etc.) the pair potential functions Uij(r) may
explicitly depend on the particle type, and carry an indentifying index. However, that complication does not
change our conclusions below, and we will omit the index for simplicity.
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Conserved quantity 1 particle N -particle system

momentum F = 0 Fi,e = 0
angular momentum N = 0 Ni,e = 0
energy F conservative Fij and Fi,e conservative

Much like in the single particle case, it turns out that

The energy E of an N -particle system governed by conservative
forces is conserved, dtE = 0.

Energy conservation is proven as

dtE = dtT + dtU =

=
∑
i

miṙi · r̈i +
1

2

∑
i ̸=j

[
∂riU(ri − rj) · ṙi + ∂rjU(ri − rj) · ṙj

]
+
∑
i

∂riUe(ri) · ṙi =

=
∑
i

ṙi

[
mir̈i −

∑
j ̸=i

Fij(ri − rj)− Fe(ri)

]
︸ ︷︷ ︸

0

, (1.53)

where in the last equality, we exchanged summation indices i ↔ j as done before, and noted
∂riU(rj − ri) = −∂riU(ri − rj) (why?).

The table below summarizes the fundamental conserved quantities of classical me-
chanics and the conditions under which they are conserved.

This concludes our survey of the fundamental structures of classical mechanics. To
summarize,

▷ We have introduced Galilei space time as the fundamental domain of definition of
mechanics,

▷ introduced the Newtonian formulation of mechanics,

▷ explored its fundamental symmetries and invariances, the Galilei group,

▷ and assured the general solubility of Newton’s equations.

In the following sections we will illustrate the functioning of the formalism on a number of
examples

1.4 Examples and applications

In this section we will discuss various examples of Newton’s equations and their solution. While
the first three problems can be solved straightforwardly, the solution of the fourth – the Kepler
problem – relies on a careful analysis of symmetries and conservation laws.
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1.4.1 Motion in a constant force field

Baring the force-free motion, this is the second simplest problem of classical mechanics. We
consider a point particle of mass m subject to a constant force F = Fe1, where we chose a
coordinate system such that the force vector is colinear to the unit vector e1. The equation
dtp = F then has the uniqe solution

p1(t) = p1(0) + Ft, p2(t) = p2(0), p3(t) = p3(0). (1.54)

The second half of Newton’s equations dtq = m−1p is solved by

q1(t) =
F

2m
t2 +

p1(0)

m
t+ q1(0), q2(t) =

p2(0)

m
t+ q2(0), q3(t) =

p3(0)

m
t+ q3(0).

(1.55)

Observe the uniqueness of the solutions once the six initial conditions qi(0) and pi(0) are
specified.

EXAMPLE Conisder a ball of mass m thrown with velocity v(0) = (v1, v2, v3)T , v3 > 0 from

a point at sea level, q3(0) = 0. Assuming the presence of a gravitational force F = −mge3 and

ignoring friction, how long will it take the ball to hit the ground? How far will its landing point be

away from the point of departure q(0) = (q1(0), q2(0), 0)T ?

1.4.2 Harmonic oscillator

The harmonic oscillator

Consider a particle subject to a force F = −q1mω2e1, where ω is a constant of dimensionality
[time]−2. For simplicity, we assume that the particle does not move in 2− and 3−direction,
dtq

2,3 = 0, and set q2,3 = 0 for simplicity. Since the force acts only in 1−direction the problem
then effectively reduces to a one-dimensional one, and we write q1 ≡ q for simplicity. Newton’s
equations read

dtq =
p

m
,

dtp = −mω2q. (1.56)

As detailed in the next seection, the solution to these equations is given by

q(t) = q(0) cos(ωt) +
1

mω
p(0) sin(ωt),

p(t) = −mωq(0) sin(ωt) + cos(ωt)p(0). (1.57)

Consider, for example, a particle released at q(0) = q0 at zero velocity, p(0) = 0. The particle
will begin to move towards the origin, picking up speed in the proccees. At time t = π/2ω it
passes the origin at maximal (negative) speed −q0ω, shoots over towards the point of maximal
negative extension q = −q0, which is reached at time t = π/ω. The motion then reverses
towards the origin, which is passed again at time t = 3π/2ω, this time in positive direction.
At time t = 2π/ω the particle has reached its point of origin again, and the process repeats.
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It is instructive to take a look at the energy of the
particle. The acting force is conservative and derives
from the potential energy U = mω2

2
(q1)2, i.e. F =

−∇U = −q1mω2e1. The sum of potential and kinetic
energy T = m

2
q̇2 is given by

E = T + U =
m

2
ω2q20(sin

2(ωt) + cos2(ωt)) =
m

2
ω2q20 = U(q0),

(1.58)

and remains conserved. At the point of departure, the
energy of the particle is purely potential, T = 0. Along its way towards the origin, the energy
gets converted into kinetic energy, and becomes purely kinetic at q = 0, where U = 0.
The conversion of potential to kinetic energy periodically repeats, but the sum of the two
contributions remains constant.

Solution of harmonic oscillator differential equation

How are the solutions of Eq. (1.56) obtained? We first bring the equations into a more
symmetric form by introducing scaled variables,

q ≡ 1√
mω

z1, p ≡ √
mz2, (1.59)

in terms of which

dtz
1 = ωz2,

dtz
2 = −ωz1. (1.60)

or

dtz = ωτz (1.61)

where we defined z = (z1, z2)T , and τ ≡ ( 1
−1 ) These equations are simple enough to guess

the solution

z1(t) = cos(ωt)z1(0) + sin(ωt)z2(0),

z2(t) = − sin(ωt)z1(0) + sin(ωt)z2(0),

or

z(t) =

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
z(0) = (cos(ωt)I+ sin(ωt)τ)z(0). (1.62)

Upon re-introducing the original variables (q, p), we obtain Eq. (1.57). To understand how
these solutions are obtained without guessing, we note that we are dealing with a system
of linear first order differential equations with constant coefficients. A single equation of
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this type, dtz = ωz would be solved by an exponential, z(t) = z(0) exp(ωt). As we show
next, the exponential function plays a key role in the solution of more complex linear first
order differential equations as well. By analogy to the formula above, it is now tempting to
write a formula such as z(t) = exp(ωτt)z(0), only that we do not know the meaning of the
exponential of a matrix.

INFO Functions of matrices are generally defined by their Taylor series expansion. Consider a
function f(x) with expansion

f(x) =
∞∑
n=0

f (n)(x0)

n!
xn (1.63)

around some argument 0, where f (n) denotes the nth derivative. For an abitrary square matrix,
we then define

f(A) =

∞∑
n=0

f (n)(x0)

n!
An, (1.64)

where An = A · · · · · A is the product of n factors A. Specifically, the exponential of a matrix
is defined as

exp(A) =

∞∑
n=0

An

n!
. (1.65)

Using this representation it is straightforward to prove that

dt exp(At) = dt

∞∑
n=0

tnAn

n!
=

∞∑
n=1

tn−1An

(n− 1)!
=

= A

∞∑
n=0

tnAn

n!
= A exp(At). (1.66)

EXERCISE While the result above shows that the matrix exponential bears similarity to the
conventional exponential function, there are important differences. Convince yourself that we have

exp(A+B) ̸= exp(A) exp(B) (1.67)

for non-commutative matrices, i.e. matrices with [A,B] = AB−BA ̸= 0. Why does the equality

hold if A,B do commute?

In particular, we conclude that the differential equation (1.60) is indeed solved by

z(t) = exp(ωτt)z(0). (1.68)
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To show the equivalence of the r.h.s. of that equation to (1.62), we observe that τ 2n = (−)nI
and τ 2n+1 = (−)nτ . Using these formulae, we get

exp(ωτt) =
∑
n

(tωτ)n

n!
=

=
∑
l

(tωτ)2l

2l!
+
∑
l

(tωτ)2l+1

(2l + 1)!
=
∑
l

(−)l
(tω)2l

2l!
I+

∑
l

(−)l
(tω)2l+1

(2l + 1)!
τ =

= cos(ωt)I+ sin(ωt)τ (1.69)

Substituting this result into the formula above, we obtain (1.62).

Harmonic oscillator: a model of low energy physics

The harmonic oscillator is one of the most frequently occurring
model systems in physics. To understand why this is so, con-
sider the cartoon of a one-dimensional potential profile shown
in the figure. For example, the coordinate might represent the
distance between the atoms of a two-atomic molecule, and
U(q) the potential energy in dependence on that distance.
Imagine that the energy of the particle, E = T + U is only
slightly higher than the value of the local minimum U(q0), i.e.
a ‘weakly excited’ molecule. Since the kinetic energy is pos-
itive, only a small region of the potential landscape between
the coordinates q± defined by the condition U(q±) = E will be
accessible to the particle. If q± is close to q0, and the potential
smooth, we may Taylor approximate U(q) ≃ U(q0)+

1
2
U ′′(q−q0)

2 in that region. The motion
therefore is describable in terms of a harmonic oscillator problem centered around q0 and with
characteristic frequency ω =

√
U ′′(q0)/m.

The discussion above illustrates why harmonic oscillator problems frequently appear in the
approximation of weakly excited physical problems. This fact, and the exact solubility of the
problem make the harmonic oscillator an important paradigm in all areas of physics.

1.4.3 Small oscillations

Linearization of mechanical problems

Imagine a system of coordinates ri, i = 1, . . . , f , obeying the differential equation

mir̈i = −∂riV (r), (1.70)

where r = (r1, . . . , rf )T . We assume the system to be close to an ‘equilibrium point’ r = r̄
characterized by the simultaneous vanishing of all ‘generalized forces’ ∂riV (r̄) = 0. For smooth
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V and u ≡ r− r̄ sufficiently small, we may Taylor expand

V (r̄+ u) ≃ V (r̄) +
1

2

f∑
i,j=1

∂2
rirjV (r̄)uiuj + . . . (1.71)

Due to the vanishing of the first derivative, the Taylor expansion does not contain a first order
term.

EXERCISE Consider the f = 2 example V (r1, r2) = sin(r1) cos(r2). Where are the equilibrium

points of the potential? Taylor expand to second order in r1 and r2 around these points. Explain

the origin of the factor 1/2 in (1.71).

Once more assuming that ui = ri − r̄i is small, we have r̈i = üi and ∂riV = ∂uiV =∑
j ∂

2
rirjV (r̄)uj. Our differential equations therefore assume the form of a system of second

order linear equations

üi = −Ai
ju

j, (1.72)

where we defined Ai
j =

1
mi
∂2
rirjV (r̄) and a summation convention is implied. The equation is

linear because the matrix A ≡ {Ai
j} is independent of the coordinates ul. The ‘linearization’

of the full problem is justified as long as the ul remain sufficiently small. It must be solved
subject to the 2f initial conditions ui(0) = ui

0 and u̇i(0) = vi0, where ui
0 and vi0 determine

the initial position and velocity of the variables ui. We finally notice that it is often convenient
to introduce a vector notation u ≡ (u1, . . . , uf )T in which the linear equation reads

ü = −Au. (1.73)

Linearized equations such as (1.70) find applications in many different contexts. Consider
for example, the Newton equation of a molecule whose atoms are so heavy that a classical
description is justified. Assume that the N constituent atoms are at coordinates ri and carry
mass mi. Assuming the absence of external forces, the Newton equation reads

mir̈i =
∑
j

Fij(ri − rj) = −∇ri

∑
j ̸=i

Uij(ri − rj) = −∇riV (r),

where Uij is an inter-atomic potential generating the force between i and j, and V (r) =
1
2

∑
i ̸=j Uij(ri − rj) the total potential. When written as a set of equations for the 3N

coordinates rji separately, the equations assume the form of (1.70). Instead of atoms of a
molecule, one may consider a system of masses coupled by elastic strings (see the example
below), the large number of atoms in a solid, the metal compounds forming the wings of
an aricraft, etc. All these systems have in common that they are normally close to a static
equilibrium point. Perturbations (an excitation of the masses, heating the solid, exposing the
wing to flight conditions) lead to small excitations away from equilibrium, which often can
be described in terms of linearized equations. In passing, we note that similar ideas can be
applied to ‘dynamical systems’ outside phyiscs, e.g. the description of the motion of large
human crowds, etc.
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Figure 1.5: Two masses coupled by springs. Discussion, see text

EXAMPLE As a concrete example, consider two masses moving in one dimension and coupled
by a system of springs as shown in Fig. 1.5. Describing the position of the masses in terms of two
coordinates, q1,2, we consider the potential function

V (q1, q2) =
d

2
(q1 + a)2 +

d

2
(q2 − a)2 +

c

2
(q1 − q2)2.

The first and second term, resp., describe the potential energy stored in the two springs connecting
the left and right mass to the walls, and the third term represents the energy contained in the
center spring. The equilibrium point of the potential is defined by the condition ∂qiV (q̄1, q̄2) = 0,
i.e.

d(q̄1 + a) + c(q̄1 − q̄2) = 0.

d(q̄2 − a)− c(q̄1 − q̄2) = 0.

These equations are solved by q̄2 = −q̄1 = da
d+2c . (Discuss the solution in the limiting cases

d/c → 0, c/d → 0, and c = d.) If we now define qi = q̄i + ui and expand to second order in ui

we obtain

V (q̄1 + u1, q̄2 + u2) = V (q̄1, q̄2) +
d+ c

2
((u1)2 + (u2)2)− cu1u2

Due to the quadraticity of the potential V in qi the expansion stops at second order. Notice
the absence of terms linear in ui. Substituting this representation into the Newton equations, we
obtain

ü1 = − 1

m
((d+ c)u1 − cu2),

ü2 = − 1

m
((d+ c)u2 − cu1). (1.74)

We define the matrix

A ≡ 1

m

(
d+ c −c
−c d+ c

)
, (1.75)

to write this in the compact form of Eq. (1.72).

Solution of the linear problem

Eq. (1.72) bears similarity with the Newton equations for the harmonic oscillator. Intuitively,
too, we may expect a mechanical system weakly perturbed out of equilibrium to perform
oscillatory motion. This expectation motivates to search for solutions of the form uj

a(t) =
eiωatzja, whith time independent zja. The subscript a accounts for the fact that we should be
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prepared to find several of such solutions. Notice that we temporarily abandon the condition
of reality, uj ∈ R, in exchange for the convenience of working with the complex exponential
function. Real functions will later be obtained by taking the real part of complex solutions.

Substitution of the above ansatz into the linearized equation obtains

−ω2
az

j
ae

iωat = Aj
kz

k
ae

iωat.

We may simplify the notation by introducing a vector notation za = (z1a, . . . , z
f
a )

T and dividing
by the exponential,

(A− ω2
a)za = 0,

where A = {Ai
j} is an f × f -matrix. The equation tells us that the frequencies ωa must be

chosen such that ω2
a is an eigenvalue of the matrix A. Linear algebra tells us that A has f

complex eigenvalues λa. The physics of our problem requires that these eigenvalues be real
and positive, λa ≡ ω2

a > 0. Indeed, complex values of ωa would lead to time dependence
exp(iωat) = exp(iReωat − Imωat) divergent at large positive (Imωa < 0) or negative
(Imωa > 0) times. This would be at conflict with our expectation of oscillatory motion.
Notice that the components of the eigenvectors zia may be complex.

Assuming that we have found f linearly independent eigenvectors with real frequencies, we
consider the linear superposition uc(t) ≡

∑
a waza e

iωat. We fix the coefficients wa ∈ C such
that the initial conditions

u(0) = Reuc(0) = Re
∑
a

waza,

u̇(0) = Re u̇c(0) = Re i
∑
a

wa ωaza.

Notice that we have 2f real initial conditions ui(0) and u̇i(0) and 2f real free parameters
contained in the f complex coefficients wa. The equations above are therefore uniquely
solvable. Once the parameters wa have been identified, we have a solution

u(t) = Re
∑
a

waza e
iωat. (1.76)

EXAMPLE Let us illustrate the procedure on our masses–coupled–by–springs example. The
eigenvalues and eigenvectors of the matrix (1.75) are readily computed from the secular equation
(→ TP0) det(λa−A) = (λa− (d+ c)/m)2− (c/m)2 = 0, which is solved by λa = d+c

m ± c
m . We

thus obtain the two characteristic frequencies

ω+ =
√
λ+ =

√
d+ 2c

m
, ω− =

√
λ− =

√
d

m
.

where we chose the discriminating label ± rather than a = 1, 2. The corresponding eigenvectors
Az± = ω±z± are readily obtained as

z+ =
1√
2

(
1
−1

)
, z− =

1√
2

(
1
1

)
,
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and from here we obtain the general solution(
u1(t)
u2(t)

)
=

1√
2
Re

[
w+

(
1
−1

)
e
i
√

d+2c
m

t
+ w−

(
1
1

)
e
i
√

d
m
t
]
.

Consider a situation in which the bodies are initially elongated to the left ui(0) = −∆u < 0,
and released at rest dtu

i(0) = 0. This initial condition is realized with the choice w+ = 0 and
w− = −

√
2∆u, i.e.

(
u1(t)
u2(t)

)
= −∆u

(
1
1

)
cos

(√
d

m
t

)
.

The two bodies swing ‘in phase’, i.e. at fixed relative distance ∆u. By contrast, consider the
situation where −u1(0) = u2(0) = ∆u, u̇i(0) = 0, i.e. bodies initially distorted in opposite
direction. In this case, we obtain the solution(

u1(t)
u2(t)

)
= −∆u

(
1
−1

)
cos

(√
d+ 2c

m
t

)
.

The bodies now swing in opposite directions and at larger frequency. The two types of motion

identified above define the two fundamental ‘excitation modes’ of the system. They are funda-

mental in the sense that they are characterized by a single frequency, ω±. General initial conditions

are described by non-trivial linear superpositions of the two fundamental modes and distinguished

by more complex temporal behavior.

For the convenience of the reader, we once more summarize the essential solution steps
of the small oscillation problem:

1. Find the minima of the potential V .
16

2. Expand to second order in small coordinate deviations to identify the linear approximation
of the differential equation and the matrix A, Eq. (1.72).

3. Find the eigenvectors za and eigenfrequencies ωa characterizing the linear problem.

4. Build the linear superposition (1.76) and fix the coefficients wa such that the initial
conditions u(0) and u̇(0) are properly resolved.

16

In general, a potential V will have stationary points, i.e. points at which all derivatives ∂riV vanish,
but V need not be minimal. For example, the potential V (r) = (r1)2 − (r2)2 has a stationary point at r = 0,
which is not a minimum. In such cases, the matrix A has non-positive eigenvalues, which in turn means that
the motion around these points is not oscillatory. In the example above, a the 2 coordinate of a mass point
would grow indefinitely. The existence of such ‘negative eigenmodes’ generally means that we are considering
a dynamical system at a point of instability. However, the discussion of such problems is beyond the scope of
this text.
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1.4.4 Two body central force problem

The two-body central force problem (or two body-problem for brevity) describes the dynamics
of two bodies of mass m1 and m2, resp. interacting by a force F colinear to the vector r
connecting the two bodies (cf. Fig.) This setup is of importance, in particular, to celestial
mechanics, where situations in which two bodies influence each other in a manner only weakly
perturbed by the presence of other bodies (think of a satellite moving in earth’s gravitational
field, the earth-moon system, etc.) frequently occur. However, the problem also plays a role
in the description of ‘nearly isolated’ terrestrial systems, for example in atomic physics (as long
as the effects of quantum mechanics do not become overwhelmingly strong.)

Unlike with most other problems of practical impor-
tance, the two-body problem is tractable by ana-
lytic methods: due to its high degree of symmetry,
Newton’s equations for the six coordinates fixing
the position vectors r1,2 of the participating bodies
can be reduced to the differential equation for a sin-
gle coordinate (viz. the scalar distance r between
the bodies.) In the important case of bodies inter-
acting by gravitational or electrostatic forces that
effective equation can be solved by analytic means.
Much like the harmonic oscillator, the two-body
problem, therefore, has a status of an important
and tractable model system of classical mechanics.

Reduction of the problem I: momentum conservation

Above, we have shown that the total momentum of an N particle system in the absence of
external forces is conserved. We will now use this conservation law to reduce the number of
degrees of freedom from f = 6 to f = 3. To this end, we introduce:

Total mass: M = m1 +m2,

Reduced mass: m =
m1m2

M
,

Center of mass coordinate: R =
m1r1 +m2r2

M
,

Relative coordinate: r = r1 − r2,

Total momentum: P = MṘ,

Relative momentum: p = mṙ.

The condition that the total momentum is conserved Ṗ effectively constrains three of the six
degrees of freedom. To see this explicitly, we express the coordinates r1,2 in terms of the newly
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introduced variables,

r1 = R+
m2

M
r,

r2 = R− m1

M
r, (1.77)

Defining F12 ≡ F, the equations of motion

m1r̈1 = F12, m2r̈2 = −F12, (1.78)

then assume the form,

mr̈ = F, F(r) ≡ F (r)er, (1.79)

where er is a unit vector parallel to r, and the parameterization of the force on the r.h.s. uses
that the strength of the force, F , depends only on the distance r between the bodies.

Eq. (1.79) is the Newton equation of a fictitious single particle with coordinate r, mass m,
and subject to a force F. The effective problem has f = 3 degrees of freedom. Notice that
for a problem involving two particles of rather different mass, e.g., m1 ≫ m2, the effective
mass m ≃ m2 approximately equals that of the lighter particle.

Reduction of the problem II: energy conservation

The force F(r) entering the effective one-body problem is a conservative force. To see this,
we define the function

U(r) = −
∫ r

0

dr F (r). (1.80)

Interpreting U(r) as a function in space depending only on the distance to origin, we the define
the three-dimensional function,

U : R3 → R,
r 7→ U(r), r = |r|.

This is the potential of our conservative problem: we use the relation ∂ir = ∂i
√
(r1)2 + (r2)2) + (r3)2) =

ri/r to compute the gradient of U as

∂iU(r) = ∂rU(r)∂ir = −F (r)
ri

r
= −F (r)(er)

i = −(F(r))i. (1.81)

EXERCISE Recall that for a generic conservative force a potential may be defined as

U(r) = −
∫
γr

ds · F,

where the integral is over a straight line γr connecting the origin with r. Explain why in the

particular case of a central force F(r) = F (r)er the formula for U(r) coincides with the line

integral representation.
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The conservativeness of the effective one-body problem suggests the introduction of a con-
served energy function

E ≡ T + U =
mṙ2

2
+ U(r). (1.82)

EXERCISE Before the decomposition of the problem into center of mass motion and relative
coordinate, we might have defined its total energy as

Etot =
m1ṙ

2
1

2
+

m2ṙ
2
2

2
+ U(|r1 − r2|), (1.83)

where the function U is defined by (1.80). Verify that this energy is conserved along the solutions
of the equations (1.78). Show that Etot can be decomposed as

Etot =
MṘ2

2
+ E,

i.e. as the sum of the kinetic energy stored in the center of mass motion and the function E

representing the energy stored in the relative motion. Think about the physical meaning of this

decomposition.

Although much of our discussion will apply to general potentials, two rather important special
cases are,

Coulomb potential: U(r) = ke
Q1Q2

r
,

Gravitational potential: U(r) = −Gm1m2

r
. (1.84)

Here, ke ≃ 8.988 × 109Nm2C−2 is Coulomb’s constant determining the strength of the
Coulomb force between two charged bodies and G ≃ 6.674× 10−11N(m/kg)2 is the universal
gravitational constant determining the strength of gravitational force acting between two
masses. Notice that both potential decay like ∼ r−1. While the Coulomb potential can be
positive or negative depending on the relative sign of the involved charges, the gravitational
potential is negative. The force deriving from the gravitational potential F ∼ −∂rU ∼ −1/r2

is of negative sign, too, which means that it is an attractive force. The electrostatic forces
deriving from the Coulomb potential are attractive or repulsive for opposite or equally charged
bodies, respectively.

To summarize, we have split the f = 6 problem into an f = 3 sector describing the trivial
motion of the center of mass Ṙ = const., and a non-trivial f = 3 sector describing the
dynamics of the relative coordinate, r via the conservative problem defined by Eq. (1.79). The
f = 3 problem is described by 6 = 2 × 3 first order differential equation for its coordinates
and momenta, reduced down to 5 = 6− 1 thanks to the conservation of energy.
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Figure 1.6: Motion of a body under the influence of a central force. Discussion, see text

Reduction of the problem III: angular momentum conservation

We next turn our attention to the fact that the angular momentum l = r× p relative to the
origin, r = 0 is conserved: dtl = v×p+ r×F = 0+ 0, where F ∥ r has been used. Imagine
l(t) = l as a fixed vector in space. Due to the definition l = r(t) × p(t) ∝ r(t) × v(t), we
know that for all times v(t) · l = r(t) · l = 0. In other words, the motion takes place in a plane
perpendicular to l (cf. Fig. 1.6.) Counting variables, the conservation of the three components
li means that we are down to 3 = 12−6−3 first order equations before energy conservation is
taken into account, and just two with energy conservation — a massive reduction in complexity
owed to symmetries. We next derive these effective equations governing the system.

In the plane of motion, we introduce polar coordinates (r, ϕ) centered around r = 0 and
relative to an arbitrarily chosen axes ϕ = 0 (see Fig. 1.6.) Recall that a moving basis (→
TP0) suitable to the description of problems in polar coordinates is given by the two basis
vectors,

er = cos(ϕ)e1 + sin(ϕ)e2, eϕ =− sin(ϕ)e1 + cos(ϕ)e2, (1.85)

where er ∥ r and eϕ is perpendicular to it. Also recall that these vectors are defined relative
to a fixed r = r(r, ϕ). If r = r(t) is time dependent, the basis vectors vary in time too, and
this variation is described by

dter = ϕ̇eϕ, dteϕ = −ϕ̇er. (1.86)

We now represent Newton’s equations as

d2t r = d2t (rer) = dt

(
ṙer + rϕ̇eϕ

)
= r̈er + 2ṙϕ̇eϕ + rϕ̈eϕ − rϕ̇2er =

=
(
r̈ − rϕ̇2

)
er +

(
2ṙϕ̇+ rϕ̈

)
eϕ =

F (r)

m
er. (1.87)
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This is equivalent to the set of two equations

r̈ − rϕ̇2 =
F (r)

m
,

2ṙϕ̇+ rϕ̈ = 0. (1.88)

In the second of these, we re-discover angular momentum conservation. Indeed, l = r× p =
mrer × dt(rer) = mr2ϕ̇ez ≡ lez, where ez is a unit vector perpendicular to the plane, and

l = mr2ϕ̇ (1.89)

the conserved magnitude of angular momentum. The constancy of l requires dt(r
2ϕ̇) =

r(2ṙϕ̇+ rϕ̈) = 0, which is the second equation. We may solve for ϕ̇ as ϕ̇ = l
mr2

to reduce the
first equation to

mr̈ − l2

mr3
= F (r), (1.90)

i.e. an equation for the single variable r. Equation (1.90) is the radial equation corresponding
to the central force problem. Counting equations, we have three first order equations to solve,
Eq. (1.89), and another two (a second order equation counts like two first order equations)
for the radial equation. However, at this point, we have not yet used energy conservation!

Solution of the radial equation

We next turn to the solution of the effective radial problem. To this end we represent the
angular momentum dependent contribution to the radial equation as a derivative,

l2

mr3
= −∂r

l2

2mr2
,

where the function l2/2mr2 defines the so-called centrifugal potential. This representation
suggests the introduction of an effective potential

Ueff = U(r) +
l2

2mr2
, (1.91)

in terms of which the radial equation assumes the form

mr̈ = −∂rUeff(r). (1.92)

The addition of a centrifugal potential to the radial potential accounts for the fact that two
particles at distance r from the origin will perform different motion if their angular momenta
relative to the origin are different. For example a satellite whose velocity is near tangential to
the surface of earth (finite angular momentum) will move differently from a body at the same
distance relative to earth’s origin but with no tangential velocity.
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Notice that the radial equation has the mathematical structure of a fictitious particle living
on the one-dimensional half line parameterized by the coordinate r > 0. The fact that the
force acting on the particle is generated by a potential Ueff suggests the introduction of an
energy function

E = Tr + Ueff ≡ mṙ2

2
+ Ueff ,

where the subscript in Tr indicates that this is not the full kinetic energy of the particle, but
only the contribution accounting for the radial component of its velocity. A one-dimensional
version of the general argument given in section 1.3.4 shows that this energy is conserved
along any solution curve of the problem:

dtE(r, ṙ) = ∂ṙTr(ṙ)r̈ + ∂rUeff(r)ṙ = ṙ(mr̈ + ∂rUeff︸ ︷︷ ︸
0

) = 0. (1.93)

We denote the energy E of the one-dimensional effective problem by the same symbol as the
e ‘real’ energy defined in Eq. (1.82), which suggests that the two quantities equal each other.
To verify this statement, compute the kinetic energy appearing in (1.82),

T =
m

2
dtṙ

2 =
m

2
(dt(rer))

2 =
m

2

(
ṙer + rϕ̇eϕ

)2
=

m

2
ṙ2 +

mr2ϕ̇2

2

(1.89)
=

m

2
ṙ2 +

l2

2mr2
.

Substituting this representation into (1.82), we obtain the effective energy of the radial prob-
lem, and the added information how the centrifugal contribution to the effective potential
originates in kinetic energy.

Qualitative discussion of the motion

Before turning to the quantitative solution of the radial problem, let us discuss in qualitative
terms what kind of motion we are to expect. Although more general situations can be consid-
ered, for our purposes it will be sufficient to focus on the case of an attractive potential U ,
i.e. a potential monotonously increasing potential such that the derivative F (r) = −∂rU(r)
globally points towards the origin. We require that upon approaching r → 0 the potential be-
haves as a power law U(r) ∼ −r−α, where α < 2 such that the divergence is slower than that
of the centrifugal potential. At infinity, we require vanishing of the potential, U(r → ∞) → 0.
The constraints imposed by these conditions are relatively mild and obeyed, e.g., by the gravi-
tational and Coulomb potential, as well as by various other inter-particle potentials realized in
Nature. For the sake of comparison, we will also take a brief look at an repulsive potential,
i.e. one that is uniformly decreasing, ∂rU(r) < 0.
The effective potential obtained in the attractive case then qualitatively looks as shown in
the figure. Its distinguishing feature is the existence of a global potential minimum at some
finite radial coordinate rmin, where Ueff(rmin) < 0. To understand how the existence of that
minimum affects the radial motion, consider a fixed value of the particle’s energy, E. If
E > 0, then we have an equality E = U(r) at only one definite coordinate r. (Cf. the



38 CHAPTER 1. NEWTONIAN MECHANICS

line corresponding to the value E ′ > 0 in the figure.) At this coordinate, the kinetic energy
vanishes. The particle cannot approach the origin further, because that would require negative
kinetic energy. If it is released the point of closest approach it will start moving outwards,
gain kinetic energy in the process, and disappear to infinity. We call such type of motion the
motion of an unbound trajectory.

EXERCISE Discuss what happens if the particle is released at a general coordinate with general

positive or negative initial velocity.

The situation at negative energies U(rmin) ≤
E < 0 is more interesting. We now have two
points ra < rmin < rp where E = Ua,p. The
motion is confined to stay between these two
points, i.e. we are considering a bound tra-
jectory. The point of closest approach, ra,
is called the aphel of the motion and rp the
perihel. Notice how boundedness emerges
by conspiracy of attractiveness of the poten-
tial, and finiteness of the centrifugal poten-
tial. For example, an asteroid of angular mo-
mentum relative to earth’s center so small
that ra < R, where R is earth’s radius will
hit the surface (or evaporate in the atmo-
sphere), while one with larger angular mo-
mentum stands a chance of staying on an
earth bound orbit. At the turning points, ṙ(rp,a) = 0 which, however, does not mean that
the motion stops. Rather, l = mr2ϕ̇ means that ϕ̇(rp,a) = l/mr2p,a. At the aphel the angular

velocity ϕ̇ actually takes its maximum value. Qualitatively we expect the planar motion to
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looks as indicated in the figure. If the angle ∆ϕ enclosed between an aphel and the consecutive
perihel is an rational multiple of ∆ϕ = 2π p

q
, then the motion will close after q ‘bounces’, i.e.

we have a periodically traversed trajectory.

Quantitative Discussion

Let us now proceed to actually compute the trajectories r(t) performed by the radial co-
ordinate, and from there the motion of the three dimensional vector r(t). Eq. (1.90) is a
differential equation of second order. We know (→ TP0) that equations of nth order are
equivalent to systems of n DEQs of first order. On the other hand, we have the conservation
of energy, E = const., and this should reduce the problem down to a single first order differ-
ential equation. To see how this happens, we solve the energy conservation condition for ṙ to
obtain

E =
mṙ2

2
+ Ueff(r) ⇒ ṙ =

√
2

m
(E − Ueff(r)).

This equation can be solved by the method of ‘separation of variables’ (→ TP0) :

Gr0(r(t)) ≡
∫ r(t)

r0

dr√
2
m
(E − Ueff(r))

=

∫ t

0

dt = t,

where we assumed an initial condition r(0) = r0. For a given potential function Ueff(r) the
integral on the left hand side can be computed if not by analytical then by numerical methods
(for an example, see section 1.4.4.) As a result, one obtains a function Gr0(r(t)), where
the subscript indicates the dependence on the initial condition. We then need to solve (an
algebraic operation) the equality Gr0(r(t)) = t for

r(t) = G−1
r0
(t),

where G−1
r0

is the inverse function of Gr0 , i.e. G
−1
r0
(Gr0(s)) = s.

We now have the information how the radial coordinate changes in time. To fully describe
the motion, we also need the angular variable. The time dependence of the latter, ϕ(t), can
be extracted by a similar strategy, viz. by inspection of the conservation law l = mr2ϕ̇, or
ϕ̇ = l/mr2. The solution of this equation will obtain a dependence ϕ(r(t)), i.e. the angle ϕ
at a given value of r(t), which we want to compute. To this end, we we write

dϕ

dt
=

dϕ(r)

dr

dr(t)

dt
,

which we can re-order to obtain

dϕ

dr
=

dϕ

dt

1
dr
dt

=
l

mr2
1√

2
m
(E − Ueff(r))

.
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This equation is once more solved by separation of variables. We integrate the differential
relation

dϕ =
l

m

dr

r2
√

2
m
(E − Ueff(r))

,

to obtain

ϕ(t)− ϕ0 =

∫ ϕ

ϕ0

dϕ =

∫ r(t)

r0

dr
l

mr2
1√

2
m
(E − Ueff(r))

≡ Hr0(r(t)),

where the function Hr0 is defined by the integral. Our two results,

r(t) = G−1
r0
(t),

ϕ(t) = ϕ0 +Hr0(r(t)),

Gr0(r) =

∫ r

r0

dr′√
2
m
(E − Ueff(r′))

, Hr0(r) =
l

m

∫ r

r0

dr′

r′2
1√

2
m
(E − Ueff(r))

.(1.94)

Eq. (1.94) solves the problem up to a point where a two integrals need to be computed. (In
the theory of differential equations, this is called a ‘solution up to quadrature’.) For general
potentials, these integrals need to be done by numerical methods, or approximately. There
exists, however, an important class of model potentials for which the functions Gr0 and Hr0

can be computed in closed form:

The Kepler problem

As a special case, consider the potential

U(r) = −k

r
,

where k is a constant which may be chosen so as to model a gravitational problem, or the
Coulomb interaction between oppositely charged particles. Alluding to its relevance to the
description of planetary motion – a problem to which Kepler made important contributions
before Newton – the two-body system described by U(r) is called the Kepler problem. ??

For the Kepler problem, the integrals in (1.94) can be computed in closed form. Specifically,
we obtain

ϕ(r) = ϕ0 +Hr0(r) = ϕ0 +
l

m

∫ r

r0

dr′

r′2
1√

2
m
(E + k

r′
− l2

2mr′2
)
=

= ϕ0 +
l

m

∫ r

r0

dr′

r′
1√

2
m
(Er′2 + kr′ − l2

2m
)
=

= ϕ0 + arccos

(
p− r

ϵr

)∣∣∣∣r
r0

,
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where we defined

p ≡ l2

km
, ϵ ≡

√
1 +

2El2

mk2
. (1.95)

EXERCISE Explore the
√
-definition of the parameter ϵ. Why are energy values E so small that

the argument of the square root becomes negative unphysical?

We may solve this equation for r to obtain

r(ϕ) =
p

1 + ϵ cos(ϕ− ϕ̃)
, (1.96)

where the subtraction of ϕ̃ = ϕ0 − arccos
(

p−r0
ϵr0

)
makes sure that the initial condition

(r(0), ϕ(0)) = (r0, ϕ0) holds. The function r(ϕ) is our solution of the problem, we now
know how the trajectories look like in the plane of conserved angular momentum. (To under-
stand the time dependence of the trajectories, we would need to discuss the integral Gr0 as
well, but we will not do this here.)

INFO An ellipse in the two dimensional xy plane is de-
fined by two parameters 0 < b ≤ a as the set of points

E ≡
{
r = (x, y)T ∈ R2|x2

a2
+ y2

b2
= 1
}
. The axes y = 0

and x = 0 are called the major and the minor semi-axis
respectively. On the major semi-axis, we define the two so-
called focal points F± as points at distance ±

√
a2 − b2

from the origin. It is then not difficult to verify that the
ellipse can be described as,

E = {r ∈ R2|d(r,F+) + d(r,F−) = 2a},

i.e. the set of all points whose distances to the two focal points sum to the constant 2a. If you
construct an ellipse by the string-and-pin method – take a string, sling it around two pins, and
pencil out the curve you get when the string is stretched out – the focal points are where your
pins sit. Defining the two parameters (yes, the first one is actually called ‘parameter’)

parameter : p ≡ b
b

a
,

excentricity : ϵ ≡
√
1−

(
b

a

)2

,

and chosing one of the focal points, say, F−, as the point of origin of a polar coordinate system,
the ellipse may now be described by the curve,

r(ϕ) =
p

1 + ϵ cosϕ
, ϕ ∈ [0, 2π]. (1.97)



42 CHAPTER 1. NEWTONIAN MECHANICS

Geometrically, the curves r(ϕ) describe ellipses in such a way that the origin r = 0 coincides
with one of the focal points of the ellipse (see the info block below), and the axis ϕ = 0 is
aligned with the major semi-axis of it. We have therefore arrived at the important conclusion
that the trajectories of −k/r-potentials are closed ellipses.

INFO The first observation of ellipsoidal motion in gravitational potentials goes back to Kepler.
Observing the motion of Mars in the early 17th century, Kepler noted three empirical results,
known as the three Kepler laws:

▷ The trajectories of planetary motion are ellipses.

▷ A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

▷ The square of the orbital period of a planet is directly proportional to the cube of the semi-
major axis of its orbit.

We have just proven the first law. The second is a straightforward consequence of angular
momentum conservation: the area swept out by the radial vector in a short interval of time δt
approximately equals the area of a triangle with corner points O, O+r(t), and O+r(t)+ δtv(t),
where O is the origin. Its area is given by A = δt

2 |r(t) × v(t)| = δt
2m |r × p| = δt l

2m , where l is
the conserved angular momentum. In other words, the area equals the time interval δt times a
constant, the second law. To prove the third law, we note that the full area of the ellipse, πab, is
traversed in time T ≡ 2πabm/l. So the ratio addressed in the third law is therefore proportional
(relative to numerical constants) to

T 2

a3
∼ b2m2

al2
=

pm2

l2
(1.95)
=

m

k
=

m

mSmpG
,

where in the last equality we used the identification of the proportionality constant k = mSmpG

of the gravitational potential, and mS,p are the mass of sun and the planet under consideration,

resp. Now, recall that the effective mass of the two body problem, m =
mSmp

mS+mp
, to obtain

T 2/a3 = 1/(mS+mp)G ≃ 1/mSG. The ratio is indeed ‘universal’ (independent of the particular

planet) if we ignore the difference between the total mass of the respective two-body problem

M = mS + mp and the mass of sun ms ≃ 2 × 1030kg. Given that even Jupiter is about three

orders of magnitude lighter than sun, the error is indeed very small. To appreciate the accuracy

of Kepler’s observations, one should also factor in the required observation times (the length of a

year on Mars is about twice as long as a terrestrial year!)

EXERCISE A hyperbola in the xy-plane is defined as H ≡
{
r = (x, y)T ∈ R2|x2

a2
− y2

b2
= 1
}
.

The hyperbola contains two branches, a left one for which x < 0 and a right one with x > 0. As

with the ellipse, we define two focal points, F± at distance ±
√
a2 + b2. Defining the parameter

of the hyperbola as p = b2/a and its excentricity as ϵ =
√
1 + (b/a)2, show that the hyperbola

can again be parameterized by the polar representation (1.97) centered around F−. Discuss the

ranges of ϕ required to parameterize the left/right branch of the hyperbola. Go once more through

our solution of the radial equation to confirm that the left branch describes the unbound motion
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of a particle at positive energy in an attractive potential (think of an asteroid approaching and

escaping earth’s gravitational center). The right branch describes the motion of a positive energy

particle in a repulsive potential, k < 0 (two equally charged particles scattering off each other.)

Make sure you appreciate that the two branches of the hyperbola really have the shape you would

expect for such types of trajectories.

1.5 Generalized forces and the limitations of Newtonian
mechanics

The cornerstones of Newtonian mechanics were developed at a time when the understanding
of celestial motion stood in the foreground of interest. Planetary motion is distinguished
for a number of features which are optimally suited for a description in terms of Newtonian
mechanics:

▷ Planets and other celestial bodies are often well approximated as point particles,

▷ they freely move in space, and

▷ interact by the conservative gravitational force.

However, many of the dynamical processes taking place on earth are significantly more com-
plicated. The motion of a bicycle (as stabilized by its rotating wheels) can hardly be ap-
proximated as that of a point particles, forces relevant to terrestrial dynamics include time
dependent forces, non- conservative forces, friction forces, and others. It turns out that Newto-
nian mechanics is not optimally prepared to handle many of these complications, its conceptual
validity notwithstanding. In later chapters, we will discuss powerful concepts, building on the
Newtonian framework, but much better prepared to address complex problems of mechanics.
However, before entering this discussion it is worthwhile to introduce the main classes of forces
beyond the conservative forces discussed so far.

The most general force F(q, q̇, t) depends on coordinates q, velocities q̇ and time t.

1.5.1 Time dependent forces

Forces F(q, t) with explicit time dependence appear when a mechanical system is ‘influenced
from the outside’. For example, a pendulum might be driven by an external motor. If we focus
on the pendulum as our ‘system’, the motor acts via a time dependent force. The energy of a
system affected by time dependent forces is no longer conserved, even if F(q, t) = −∇U(q, t)
is conservative.

EXERCISE Consider the equation of motion of a driven harmonic oscillator

mq̈ = −mω2
0q

2 +A sin(ωet),
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where A sin(ω0t) is a time-periodic external force of frequency ωe and strength A. Apply a Fourier
transformation

q̃(ω) =

∫
dt eiωtq(t),

to bring the equation to the algebraic form

−m(ω2 − ω2
0)q̃(ω) = πA(δ(ω − ωe) + δ(ω + ωe)).

Show that this equation is solved by

q̃(ω) =
πA(δ(ω − ωe) + δ(ω + ωe))

m(ω2
0 − ω2)

+ 2πc+δ(ω + ω0) + 2πc−δ(ω − ω0),

where c± ∈ C are free complex constants. Compute the inverse Fourier transform to obtain

q(t) =
A

m

sin(ωet)

ω2
0 − ω2

e

+Re
(
c+e

iω0t + c−e
−iω0t

)
.

Discuss why the condition that q ∈ R be real effectively limits the freedom in the choice of c±
down to two real parameters – as one would expect for a real differential equation of second order.
Assume initial conditions q(0) = q0, q̇(0) = 0, to obtain the specific solution

q(t) =
A

m

sin(ωet)

ω2
0 − ω2

e

+ q0 cos(ω0t).

Discuss this result. Why is the divergence of the solution as ω0 → ±ωe called the resonance

catastrophy?

1.5.2 Velocity dependent forces

There exist three sub-families of forces which depend on velocities: fictitious forces, friction
forces, and Lorentz forces. We discuss them in turn.

Fictitious forces

As discussed above, fictitious forces appear upon non-Galilean change of reference frames.
They need not depend on velocities (this was the case, e.g., in the example of a uniformly
accelerated reference frame discussed in section 1.3.2) but may. This happens, e.g., upon
change to a rotating coordinate frame, a situation to be discussed in section xx below.

Friction forces

As we all know, friction forces are of paramount importance to all kinds of terrestrial motion.
Friction forces categorically depend on the velocity of the body on which they act, and they
always act to impede its motion. The most general form of a frction force Ff therefore reads

Ff(q,v) = −f(q,v)v, (1.98)
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where f > 0 is a positive function.

INFO The microscopic mechanism behind friction is dissipation, i.e. the flow of energy from

a system with few degrees of freedom (the body on which friction acts), into many degrees of

freedom. The noticeable consequence is heat, which is generated in any friction process and

reflects the increase in energy of the microscopic constitutents causing the friction. (Rub your

hands if you find the formulation abstract.)

To make the energy loss incurred by friction manifest, we assume conservativeness of the
non-fricition forces, F = −∇U , so that the Newton equation reads

mq̈ = −∇U(q)− f(q, q̇)q̇. (1.99)

The energy of the particle, E = T + U , is then seen to changes as

dtE = q̇(mq̈+∇U) = −f q̇ · q̇ < 0.

In the negativeness of the derivative shows the energy loss of the particle. The energy gets
transferred to the medium causing the friction and turned into heat.

Lorentz force

A third important representative of velocity dependent forces are forces arising when charged
particles move through electro-magnetic fields. The corresponding equation of motion reads

mq̈ = qE(q, t) +
q

c
q̇×B(q, t), (1.100)

where q is the particle charge, E an electric field (which may depend on coordinates and time),
and B the magnetic field. The force created by the magnetic field is called the Lorentz force.
It acts perpendicular to both, the magnetic field and the instantaneous velocity. The Lorentz
force is non-conservative, i.e. it is not generated by a potential. At the same time, a particle
acted upon only by Lorentz forces does not change its kinetic energy:

dtT = mq̈ · q̇ =
q

c
(q̇×B) · q̇ = 0. (1.101)

Rather, the Lorentz force aims to ‘bend’ the particle motion in a plane perpendicular to the
field, without changing the magnitude of its velocity.

EXERCISE Show that for a constant magnetic field B = const. the trajectories of charged

particles form circles.

Constraint forces

Newton’s mechanics as discussed up to this point addresses the motion of particle in free space,
acted upon by certain forces. However, only few of terrestrial motions fall into this category!
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Think of the motion of a sphere running down a hill, the moving parts of a combustion engine,
a turntable of a record player, etc. All these have in common that the motion of a system
of interest is effectively confined, to dimensions lower than three. Conceptually, there is no
mystery about this. For example, the forces keeping a turntable in place, can be understood as
‘infinitely strong’ forces preventing it from leaving its axis of rotation in infinite space. Forces
effecting such kinds of constraints are called constraint forces. While constraint forces
can be described within the framework of Newtonian mechanics, it is intuitively clear that a
description of a turntable as a body in three-dimensional will not be very economical. Rather,
one would like to describe it in terms of a single angular variable describing the unconfined
freedom to rotate it around its axis, i.e. the problem should be effectively one– instead of
three- dimensional.

Newtonian mechanics can and has been generalized to cope with the presence of constraint
forces. However, it turned out that the description of Newtonian mechanics in terms of
Newton’s differential equations is not optimally prepared to handle the situation. (Notice
that this is a methodological rather than a conceptual point.) This inconvenience led to
the development of an alternaitve and in many ways more powerful and flexible formalism,
Lagrange mechanics. The disucssion of Lagrange mechanics will be the subject of the next
chapter.

INFO Occasionally, one does need to explicitly include the constraint forces into the description

of mechanical systems. For example, the forces keeping the carts of a rollercoaster on its tracks

are constraint forces rendering the motion one-dimensional (along the track). By no means do

we want the motion to become three-dimensional (a crashing rollercoaster). So we have to make

sure that the static construction is strong enough to support the constraint forces required to

keep the carts on track, and for that we need to know the forces themselves. The theoretical

formalism suitable to compute constraint forces within Newtonian mechanics goes by the name

d’Alambert principle, and the corresponding equations are knows as Lagrange equations of

the first kind. However, the discussion of these equations is beyond the scope of this course.



Chapter 2

Lagrangian mechanics

Newton’s equations of motion provide a complete description of mechanical motion. Even
from today’s perspective, their scope is limited only by velocity (at high velocities v ∼ c,
Newtonian mechanics has to be replaced by its relativistic generalization), and classicicity
(the dynamics of small bodies is affected by quantum effects.) Otherwise, they remain fully
applicable, which is remarkable for a theory that old.

Newtonian theory had its first striking successes in celestial
mechanics. But how useful is this theory in a context more
worldly than that of a planet in open space? To see the jus-
tification of this question, consider the system shown in the
figure, a setup known as the Atwood machine: two bodies
subject to gravitational force are tied to each other by an ideal-
ized massless string over an idealized frictionless pulley. What
makes this problem different from those considered in celestial
mechanics is that the participating bodies (the two masses)
are constrained in their motion. The question then arises how
this constraint can be incorporated into (Newton’s) mechan-
ical equations of motion, and how the ensuing equations can
be solved. This problem is of profound applied relevance – of
the hundreds of motions taking place in, say, the engine of a
car practically all are constrained. In the eighteenth century, the era initiating the age of en-
gineering and industrialization, the availability of a formalism capable of efficient formulation
of problems subject to mechanical constraints became pressing.

Early solution schemes in terms of Newtonian mechanics relied on the concept of “con-
straining forces”. The strategy there was to formulate a problem in terms of its basal un-
constrained variables (e.g., the real space coordinates of the two masses in the figure). In
a second step one would then introduce (infinitely strong) constraining forces serving to
reduce the number of free coordinates (e.g., down to the one coordinate measuring the height
of one of the masses in the figure.) However, strategies of this type soon turned out to be
operationally suboptimal. The need to find more efficient formulations was motivation for
intensive research activity, which eventually culminated in the modern formulations of classical

47
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mechanics, Lagrangian and Hamiltonian mechanics.

INFO There are a number of conceptually different types of mechanical constraints: con-
straints that can be expressed in terms of equalities such as f(q, q̇) = 0 are called holonomic.
Here, q = (q1, . . . , qn) are the coordinates of the unconstrained problem, and q̇ the corresponding
velocities. (The constraint of the Atwood machine belongs to this category: x1+x2 = l, where l
is a constant, and xi, i = 1, 2 are the heights of the two bodies measured with respect to a com-
mon reference height.) This has to be contrasted to non-holonomic constraints, i.e. constraints
formulated by inequalities. (Think of the molecules moving in a piston. Their coordinates obey
the constraint 0 ≤ qj ≤ Lj , j = 1, 2, 3, where Lj are the extensions of the piston.)

Constraints explicitly involving time f(q, q̇, t) = 0 are called rheonomic. For example, a

particle constraint to move on a moving surface is subject to a rheonomic constraint. Constraints

void of explicit time dependence are called scleronomic.

In this chapter, we will introduce the concept of variational principles to derive Lagrangian (and
later Hamiltonian) mechanics from their Newtonian ancestor. Our construction falls short to
elucidate the beautiful and important history developments that eventually led to the modern
formulation. Also, it is difficult to motivate in advance. However, within the framework of a
short introductory course, these shortcomings are outweighed by the brevity of the derivation.
Still, it is highly recommended to consult a textbook on classical mechanics to learn more
about the historical developments that led from Newtonian to Lagrangian mechanics.

Let us begin with a few simple and seemingly un–inspired manipulations of Newton’s equa-
tions mq̈ = F of a single particle

1
subject to a conservative force F = −∂qU(q). Also, let’s

think for a moment of q and q̇ as 2f independent variables (rather than as parameterizations
of a curve and its velocity.) Now, notice that the l.h.s. of the equation may be written as
mq̈ = dt∂q̇T , where T = T (q̇) = m

2
q̇2 is the particle’s kinetic energy. However, T does

not depend on the q-‘variables’, ∂qT = 0. Conversely, the potential does not depend on q̇,
∂q̇U(q) = 0. Putting these observations together, we note that Newton’s equation may be
equivalently represented as

(dt∂q̇ − ∂q)L(q, q̇) = 0, (2.1)

where we have defined the Lagrangian function,

L = T − U. (2.2)

But what is this reformulation good for? To appreciate the meaning of the mathematical
structure of Eq. (2.1), we need to introduce the purely mathematical concept of

2.1 Variational principles

In standard calculus, one is concerned with functions F (v) that take vectors v ∈ Rn as
arguments. Variational calculus generalizes standard calculus, in that one considers “functions”

1

The generalization to many particles will be obvious.
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F [f ] taking functions as arguments. Now, “function of a function” does not sound nice. This
may be the reason for why the “function” F is actually called a functional. Similarly, it is
customary to indicate the argument of a functional in angular brackets. The generalization
v → f is not in the least mysterious: as we have seen in previous chapters, one may discretize
a function (cf. the discussion in section ??) f → {fi|i = 1, . . . , N}, thus interpreting it as
the limiting case of an N -dimensional vector; in many aspects, variational calculus amounts
to a straightforward generalization of standard calculus. At any rate, we will see that one may
work with functionals much like with ordinary functions.

2.1.1 Definitions

NOTATION Throughout this section, we will denote parameterizations γ(t) of curves γ by the

same symbol. Assuming cartesian coordinates, an index subscript notation is used, γi.

In this chapter we will focus on the class of functionals relevant to classical mechanics, viz.
functionals F [γ] taking curves in (subsets of) Rn as arguments.

2
To be specific, consider the

set of all curves M ≡ {γ : I ≡ [t0, t1] → U} mapping an interval I into a subset U ⊂ Rn of
n-dimensional space (see Fig. 2.1.)

3
Now, consider a mapping

Φ :M → R,
γ 7→ Φ[γ], (2.3)

assigning to each curve γ a real number, i.e. a (real) functional on M .

EXAMPLE The length of a curve is defined as

L[γ] ≡
∫ t1

t0

dt (γ(t) · γ(t))1/2 . (2.4)

It assigns to each curve its euclidean length. Some readers may question the consistency of the

notation: on the l.h.s. we have the symbol γ (no derivatives), and on the r.h.s. γ̇ (temporal

derivatives.) However, there is no contradiction here. The notation [γ] indicates dependence on

the curve as a geometric object. By definition, this contains the full information on the curve,

including all derivatives. The r.h.s. indicates that the functional L reads only partial information

on the curve, viz. that contained in first derivatives.

Consider now two curves γ, γ′ ∈ M that lie “close” to each other. (For example, we may
require that |γ(t)−γ′(t)| < ϵ for all t and some positive ϵ.) We are interested in the increment
Φ[γ]− Φ[γ′]. Defining γ′ = γ + h, the functional Φ is called differentiable iff

Φ[γ + h]− Φ[γ] = F
∣∣
γ
[h] +O(h2), (2.5)

2

We have actually met with more general functionals before. For example, the electric susceptibility χ[E]
is a functional of the electric field E : R4 → R3.

3

The set U may actually be a lower dimensional submanifold of Rn. For example, we might consider curves
in a two–dimensional plane embedded in R3, etc.
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Figure 2.1: On the mathematical setting of functionals on curves (discussion, see text)

where F
∣∣
γ
[h] is a linear functional of h, i.e. a functional obeying F

∣∣
γ
[c1h1 + c2h2] =

c1F
∣∣
γ
[h1] + c2F

∣∣
γ
[h2] for c1, c2 ∈ R and h1,2 ∈ M . In (2.5), O(h2) indicates residual

contributions of order h2. For example, if |h(t)| < ϵ for all t, these terms would be of O(ϵ2).
The functional F |γ is called the differential of the functional Φ at γ. Notice that F |γ need

not depend linearly on γ. The differential generalizes the notion of a derivative to functionals.
Similarly, we may think of Φ[γ+h] = Φ[γ]+F |γ[h]+O(h2) as a generalized Taylor expansion.
The linear functional F |γ describes the behavior of Φ in the vicinity of the reference curve γ.
A curve γ is called an extremal curve of Φ if F |γ = 0.

EXAMPLE Consider the length functional L[γ] restricted to all curves γ(t0) = γ0, γ(t1) = γ1
beginning and ending at common points γ0 and γ1, respectively. To obtain the differential of that
functional, we use γ · γ = γiγi (summation convention) and consider the variation

L[γ + h]− L[γ] =

∫ t1

t0

dt
[
((γ̇i + ḣi)(γ̇i + ḣi))

1/2 − (γ̇iγ̇i)
1/2
]
=

=

∫ t1

t0

dt

[
γ̇iḣi
|γ̇| +O(h2)

]
=

=

∫ t1

t0

dt

[
d

dt

(
γ̇i
|γ̇|

)
hi +O(h2)

]
, (2.6)

where |γ̇| = (γ̇iγ̇i)
1/2, and in the third line we integrated by parts. (Why does the integration by

parts not generate a boundary terms?) This identifies the differential of the length functional as

F |γ [h] =
∫ t1

t0

dt
d

dt

(
γ̇i
|γ̇|

)
hi. (2.7)
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The differential vanishes, if for all smooth curves h, F |γ [h] = 0. Inspection of the integral
representation shows that this is equivalent to the condition

∀t : d

dt

(
γ̇i
|γ̇|

)
= 0, i = 1, . . . , n. (2.8)

Argue why the differential vanishes on all curves that are straight, e.g. on

γ(t) =
1

t1 − t0
[−γ0(t− t1) + γ1(t− t0)] . (2.9)

Consider another straight connection of the two points,

γ ′(t) = γ0 + f(t)(γ1 − γ0), (2.10)

where f : [t0, t1] → R is a function with boundary condition f(t0) = 0 and f(t1) = 1. In general,

this curve performs accelerated motion, i.e. γ̈ ′ ̸= 0. Still it extremizes the length functional.

Discuss why.

EXERCISE Re-familiarize yourself with the definition of the derivative f ′(x) of higher dimensional

functions f : Rk → R. Interpret the functional Φ[γ] as the limit of a function Φ : RN → R, {γi} →
Φ({γi}) where the vector {γi|i = 1, . . . , N} is a discrete approximation of the curve γ. Think how

the definition (2.5) generalizes the notion of differentiability and how F |γ ↔ f ′(x) generalizes the

definition of a derivative.

This is about as much as we need to say/define in most general terms. In the next section
we will learn how to determine the extremal curves for an extremely important sub–family of
functionals.

2.1.2 Euler–Lagrange equations

In the following, we will focus on functionals that afford a “local representation”

S[γ] =

∫ t1

t0

dt L(γ(t), γ̇(t), t), (2.11)

where L : Rn ⊕ Rn ⊕ R → R is a function. The functional S is “local” in that the integral
kernel L does not depend on points on the curve at different times. Local functionals play
an important role in applications. (For example, the length functional (2.4) belongs to this
family.) We will consider the restriction of local functionals to the set of all curves γ ∈ M
that begin and end at common terminal points: γ(t0) ≡ γ0 and γt1 = γ1 with fixed γ0 and
γ1 (see the figure.) Again, this is a restriction motivated by the applications below. To keep
the notation slim, we will denote the space of all curves thus restricted again by M .
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We now prove the following important fact: the local func-
tional S[γ] is differentiable and its derivative is given by

F
∣∣
γ
[h] =

∫ t1

t0

dt (∂γL− dt∂γ̇L) · h. (2.12)

Here, we are using the shorthand notation ∂γL · h ≡∑n
i=1 ∂xi

L(x, γ̇, t)
∣∣
xi=γi

hi and analogously for ∂γ̇ · h.

Eq. (2.12) is verified by straightforward Taylor series expansion:

S[γ + h]− S[γ] =

∫ t1

t0

dt
(
L(γ + h, γ̇ + ḣ, t)− L(γ, γ̇, t)

)
=

=

∫ t1

t0

dt
[
∂γL · h+ ∂γ̇ · ḣ

]
+O(h2) =

=

∫ t1

t0

dt [∂γL− dt(∂γ̇L)] · h+ ∂γ̇L · h|t1t0 +O(h2),

where in the last step, we have integrated by parts. The surface term vanishes because
h(t0) = h(t1) = 0, on account of the condition γ(ti) = (γ+h)(ti) = γi, i = 0, 1. Comparison
with the definition (2.5) then readily gets us to (2.12).

Eq. (2.12) entails an important corollary: the local functional S is extremal on all curves
obeying the so-called Euler-Lagrange equations

d

dt

∂L

∂γ̇i
− ∂L

∂γi
= 0, i = 1, . . . , N.

The reason is that if and only if these N conditions hold, will the linear functional (2.12)
vanish on arbitrary curves h. (Exercise: assuming that one or several of the conditions above
are violated, construct a curve h on which the functional (2.12) will not vanish.)

Let us summarize what we have got: for a given function L : Rn ⊕Rn ⊕R → R,
the local functional

S : M → R,

γ 7→ S[γ] ≡
∫ t1

t0

dt L(γ(t), γ̇(t), t), (2.13)

defined on the set M = {γ : [t0, t1] → Rn|γ(t0) = γ0, γ(t1) = γ1} is extremal
on curves obeying the conditions

d

dt

∂L

∂γ̇i
− ∂L

∂γi
= 0, i = 1, . . . , n. (2.14)

These equations are called the Euler–Lagrange equations of the functional S.
The function L is often called the Lagrangian (function) and S an action
functional.
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φ ◦ φ−1

Figure 2.2: On the representation of curves and functionals in different coordinates

At this stage, one may observe a suspicious structural similarity between the Euler-Lagrange
equations and our early reformulation of Newton’s equations (2.1). However, before shedding
more light on this connection, it is worthwhile to illustrate the usage of Euler-Lagrange calculus
on an

EXERCISE Compute the Euler-Lagrange equations of the length functional (2.4) to re-establish

the results discussed above.

2.1.3 Coordinate invariance of Euler-Lagrange equations

What we actually mean when we write ∂L
∂γi(t)

is: differentiate the function L(γ, γ̇, t) w.r.t. the
ith coordinate of the curve γ at time t. However the same curve can be represented in different
coordinates! For example, a three dimensional curve γ will have different representations
depending on whether we work in cartesian coordinates γ(t) ↔ (x1(t), x2(t), x3(t)) or spherical
coordinates γ(t) ↔ (r(t), θ(t), ϕ(t)).

Yet, nowhere in our derivation of the Euler–Lagrange equations did we make reference to
specific properties of the coordinate system. This suggests that the Euler–Lagrange equations
assume the same form, Eq. (2.14), in all coordinate systems. (To appreciate the meaning
of this statement, compare with the Newton equations which assume their canonical form
ẍi = f i(x) only in cartesian coordinates.) Coordinate changes play an extremely important
role in analytical mechanics, especially when it comes to problems with constraints. Hence,
anticipating that the Euler–Lagrange formalism is slowly revealing itself as a replacement of
Newton’s formulation, it is well invested time to take a close look at the role of coordinates.
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Both a curve γ and the functional S[γ] are canonical objects, no reference to coordinates
made here. The curve is simply a map γ : I → U and S[γ] assigns to that map a number.
However, most of the time when we actually need to work with curve, we do so in a system
of coordinates. Mathematically, a coordinate system of U is a diffeomorphic

4
map:

ϕ :U → V,

r 7→ ϕ(r) ≡ y ≡ (y1, . . . , yn),

where the coordinate domain V is an open subset of Rm and m is the dimensionality of
U ⊂ Rm. (The set U may be of lower dimension than embedding space Rn.) For example,
spherical coordinates ]0, π[×]0, 2π[∋ (θ, ϕ) 7→ S2 ⊂ R3 assign to each coordinate pair (θ, ϕ) a
point on the two–dimensional sphere, etc.

5
Throughout, we will adopt a policy where y refers

to general coordinate vectors (spherical, cyldrical, ...), while x is reserved for the particular
choice of cartesian coordinates.

Given a coordinate system, ϕ, the abstract curve γ defines a curve y ≡ ϕ ◦ γ : I →
V ; t 7→ y(t) = ϕ(γ(t)) in coordinate space (see Fig. 2.2.) What we actually mean when
we referred to γi(t) in the previous sections, are the coordinates yi(t) of γ in the coordinate
system ϕ; we have been following the widespread policy to denote the coordinates yi (of a
given choice) and the geometric object they refer to (γ) by the same symbol yi = γi. As long
as one knows what one is doing, this abbreviated notation does not do harm. Occasionally,
however, like in the present discussion, it pays to be more explicit. On the same note, when
talking about generic coordinates, it may be expedient to use covariant notation, yi, i.e. place
indices upstairs.

The abstract functional S[γ] defines a functional Sc[y] ≡ S[ϕ−1 ◦ y] on curves in the
coordinate domain. In our derivation of the Euler-Lagrange equations we have been making
tacit use of a coordinate representation of this kind. In other words, the Euler–Lagrange
equations were actually derived for the representation Sc[y]. (Again it is customary to simply
write S[γ] if reference to a specific coordinate representation is implied. Another customary
notation is S[y] (omitting the subscript c). Occasionally one writes S[γ] where γ is meant to
be the vector of coordinates of γ in a specific system.)

Now, suppose we are given another coordinate representation of U , that is, a diffeomor-
phism ϕ′ : U → V ′, r 7→ ϕ′(r) = y′ ≡ (y′1, . . . , y′m). A point on the curve, γ(t) now has two
different coordinate representations, y(t) = ϕ(γ(t)) and y′(t) = ϕ′(γ(t)). The coordinate
transformation between these representations is described by the map

ϕ′ ◦ ϕ−1 :V → V ′,

y 7→ y′ = ϕ′ ◦ ϕ−1(x).

By construction, this is a smooth and invertible map between open subsets of Rm. For example,
if y = (r, θ, ϕ) are spherical coordinates and x = y′ Cartesian coordinates, we would have
x1(y) = r sin θ cosϕ, etc.

4

Loosely speaking, this means invertible and smooth (differentiable.)
5

We here avoid the discussion of the complications arising when U cannot be covered by a single coordinate
“chart” ϕ. For example, the sphere S2 cannot be fully covered by a single coordinate mapping. (Think why.)
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The most important point is that y(t) and y′(t) describe the same curve, γ(t), only in
different representations. Specifically, if the reference curve γ is an extremal curve, the coor-
dinate representations y : I → V and y′ : I → V ′ will be extremal curves, too. According to
our discussion in section 2.1.2 both curves must be solutions of the Euler-Lagrange equations,
i.e. we can draw the conclusion:

γ extremal ⇒ (2.15)

d

dt

∂L

∂ẏi
− ∂L

∂yi
= 0,

d

dt

∂L′

∂ẏ′i
− ∂L′

∂y′i
= 0,

where L′(y′, ẏ′, t) ≡ L(y(y′), ẏ(y′), t) is the Lagrangian in the ϕ′–coordinate representation.
In other words

The Euler–Lagrange equations are coordinate invariant.

They assume the same form in all coordinate systems.

EXERCISE Above we have shown the coordinate invariance of the Euler–Lagrange equations by

conceptual reasoning. However, it must be possible to obtain the same invariance properties by

brute force computation. To show that the second line in (2.15) follows from the first, use the

chain rule, dtx
′i =

∑
j
∂x′i

∂xj dtx
j , and its immediate consequence ∂ẋ′i

∂ẋj = ∂x′i

∂xj .

EXAMPLE Let us illustrate the coordinate invariance of the variational formalism on the example
of the functional “curve length” discussed on p 53. Considering the case of curves in the plane,
n = 2, we might get the idea to attack this problem in polar coordinates ϕ−1(x) = (r, φ). The
polar coordinate representation of the cartesian Lagrangian L(x1, x2, ẋ1, ẋ2) = (ẋ21 + ẋ22)

1/2 reads
(verify it)

L(r, φ, ṙ, φ̇) = (ṙ2 + r2φ̇2)1/2.

It is now straightforward to compute the Euler–Lagrange equations

d

dt

∂L

∂ṙ
− ∂L

∂r
= φ̇(. . . )

!
= 0,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= φ̇(. . . )

!
= 0.

Here, the notation φ̇(. . . ) indicates that we are getting a lengthy list of terms which, however,

are all weighted by φ̇. Putting the initial point into the origin ϕ(γ0) = (0, 0) and the final point

somewhere into the plane, ϕ(γ1) = (r1, φ1), we thus conclude that the straight line connectors,

ϕ(γ(t)) = (r(t), φ0) are solutions of the Euler–Lagrange equations. (It is less straightforward to

show that these are the only solutions.)

With these preparations in store, we are now in a very good position to apply variational
calculus to a new and powerful reformulation of Newtonian mechanics.
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2.2 Lagrangian mechanics

2.2.1 The idea

Before turning to the general discussion of Lagrangian mechanics, let us illustrate its workings
on two simple examples.

EXAMPLE Imagine a mechanical problem subject to constraints. For definiteness, we may
consider the system shown on the right – a bead sliding on a rod and subject to the gravitational
force, Fg. In principle, we may describe the situation in terms of Newton’s equations. These
equations must contain an “infinitely strong” force Fc whose sole function is to keep the bead on
the rod. About this force we do not know much (other than that it acts vertically to the rod, and
vanishes right on the rod.)
According to the structures outlined above, we may now reformulate Newton’s equations as (2.1),
where the potential V = Vg + Vc in the Lagrangian L = T − V contains two contributions, one
accounting for the gravitational force, Vg, and another, Vc, for the force Fc. We also know that

the sought for solution curve q : I → R3, t 7→ q(t) will extremize the action S[q] =
∫ t1
t0

dtL(q, q̇).

(Our problem does not include explicit time dependence, i.e. L does not carry a time–argument.)
So far, we have not gained much. But let us now play the trump card of the new formulation, its
invariance under coordinate changes.
In the above formulation of the problem, we are seeking for an extremum of S[q] on the set of
all curves I → R3. However, we know that all curves in R3 will be subject to the “infinitely
strong” potential of the constraint force, unless they lie right on the rod S. The action of those
generic curves will be infinitely large and we may remove them from the set of curves entering the
variational procedure from the outset. This observation suggests to represent the problem in terms
of coordinates (s,q⊥), where the one–dimensional coordinate s parameterizes the curve, and the
(3− 1)–dimensional coordinate vector q⊥ parameterizes the space normal to the curve. Knowing
that curves with non-vanishing q⊥(t) will have an infinitely large action, we may restrict the set of
curves under consideration to M ≡ {γ : I → S, t 7→ (s(t), 0)}, i.e. to curves in S. On the string,
S, the constraint force Fc vanishes. The above limitation thus entails that the constraint forces
will never explicitly appear in the variational procedure; this is an enormous simplification of the
problem. Also, our problem has effectively become one–dimensional. The Lagrangian evaluated
on curves in S is a function

L(q, q̇) = L((q⊥, s), (q̇⊥, ṡ)) → L((0, s), (0̇, ṡ)) ≡ L(s, ṡ)

much simpler than the original Lagrangian L(q, q̇) with its constraint force potential.
To be concrete, we measure the coordinate s from the origin of the rod, whereupon the potential
of the gravitational force becomes Vg = mg sinϕs. The kinetic energy assumes the form T =
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m
2 q̇

2 = m
2 (q̇

2
⊥ + ṡ2) → m

2 ṡ
2, so that the effective Lagrangian reads

L(s, ṡ) =
m

2
ṡ2 −mg sinϕs.

From here, we obtain the Euler-Lagrange equation as

dt
∂L

∂ṡ
− ∂L

∂s
= ms̈+mg sinϕ,

or s̈ = −g sinϕ, equivalent to a problem in a constant force mg sinϕ. (Discuss this equation.)

EXAMPLE As a second example, illustrating the convenience of the Lagrangian equation we
consider the Atwood machine depicted on p47. The Lagrangian of this problem reads

L(q1,q2, q̇1, q̇2) =
m1

2
q̇2
1 +

m2

2
q̇2
2 −m1gz1 −m2gz2.

Here, qi is the position of mass i, i = 1, 2 and zi is its height. In principle, the sought for solution
γ(t) = (q1(t),q2(t)) is a curve in six dimensional space. We assume that the masses are released
at rest at initial coordinates (xi(t0), yi(t0), zi(t0)). The coordinates yi and zi will not change in
the process, they are unconstrained (except that have to be equal (x1, y2) = (x2, y2)). Effectively
we are thus seeking for solution curves in the two–dimensional space of coordinates (z1, z2). The
constraint now implies that x ≡ z1 = l− z2, or z2 = l− z. Thus, our solution curves are uniquely
parameterized by the “generalized coordinate” z as (z1, z2) = (z, l − z). We now enter with this
parameterization into the Lagrangian above to obtain

L(z, ż) =
m1 +m2

2
ż2 − (m1 −m2)gz + const.

It is important to realize that this function uniquely specifies the action

S[z] =

∫ t1

t0

dtL(z(t), ż(t))

of physically allowed curves. The extremal curve, which then describes the actual motion of the
two–body system, will be solution of the equation

dt
∂L

∂ż
− ∂L

∂z
= (m1 +m2)z̈ + (m1 −m2)g = 0.

For the given initial conditions z(t0) = z1(t0) and ż(t0) = 0, this equation is solved by

z(t) = z(t0)−
m1 −m2

m1 +m2

g

2
(t− t0)

2.

Substitution of this solution into q1 = (x1, y1, z) and q2 = (x2, y2, l − z) solves our problem.

2.2.2 Hamilton’s principle
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After this preparation, we are in a position to formulate a
new approach to solving mechanical problems. Suppose, we
are given an N–particle setup specified by the following data:
(i) a 3N -dimensional coordinate vector x = (x1, . . . ,xN) re-
quired to register the coordinate vectors xi of N particles, a
Lagrangian function L : R6N+1 → R, (x, ẋ, t) 7→ L(x, ẋ, t)
defined in the 6N–dimensional space of coordinates and veloc-
ities, and (ii) a set of constraints limiting the motion of particles
to an f–dimensional submanifold of R3N .

6
Mathematically, a

(holonomic) set of constraints will be implemented through 3N − f equations

Fj(x, t) = 0, j = 1, . . . , 3N − f. (2.16)

The number f is called the number of degrees of freedom of the problem.

Hamiltons’s principle states that such a problem is to be solved by a three–step algorithm:

▷ Resolve the constraints (2.16) in terms of f parameters q ≡ (q1, . . . , qf ), i.e. find
a representation x(q), such that the constraints Fj(x(q)) = 0 are resolved for all
j = 1, . . . , 3N−f . The parameters qi are called generalized coordinates of the prob-
lem. The maximal set of parameter configurations q ≡ (q1, . . . qf ) compatible with the
constraint defines a subset V ⊂ Rf and the map V → R3N ,q 7→ (x1(q), . . . ,xN(q))
defines an f–dimensional submanifold of R3N .

▷ Reduce the Lagrangian of the problem to an effective Lagrangian

L(q, q̇, t) ≡ L(x, ẋ(q), t).

In practice, this amounts to a substitution of xi(t) = xi(q(t)) into the original La-
grangian. The effective Lagrangian is a function L : V × Rf × R → R, (q, q̇, t) 7→
L(q, q̇, t).

▷ Finally formulate and solve the Euler–Lagrange equations

d

dt

∂L(q, q̇, t)

∂q̇i
− ∂L(q, q̇, t)

∂qi
= 0, i = 1, . . . , f. (2.17)

The prescription above is equivalent to the following statement, which is known as Hamiltons
principle

6

Loosely speaking, a d–dimensional submanifold of Rn is a subset of Rn that affords a smooth param-
eterization in terms of d < n coordinates (i.e. is locally diffeomorphic to open subsets of Rd.) Think of a
smooth surface in three–dimensional space (n = 3, d = 2) or a line (n = 3, d = 1), etc.



2.2. LAGRANGIAN MECHANICS 59

Consider a mechanical problem formulated in terms of f generalized coordinates q =
(q1, . . . , qf ) and a Lagrangian L(q, q̇, t) = (T − U)(q, q̇, t). Let q(t) be solution of
the Euler-Lagrange equations

(dt∂q̇i − ∂qi)L(q, q̇, t) = 0, i = 1, . . . , f,

at given initial and final configuration q(t0) = q0 and q(t1) = q1. This curve describes
the physical motion of the system. It is an extremal curve of the action functional

S[q] =

∫ t1

t0

dt L(q, q̇, t).

To conclude this section, let us transfer a number of important physical quantities from New-
tonian mechanics to the more general framework of Lagrangian mechanics: the generalized
momentum associated to a generalized coordinate qii is defined as

7

pi =
∂L(q, q̇, t)

∂q̇i
. (2.18)

Notice that for cartesian coordinates, pi = ∂q̇iL = ∂q̇iT = mq̇i reduces to the familiar
momentum variable. We call a coordinate qi a cyclic variable if it does not enter the
Lagrangian function, that is if ∂qiL = 0. These two definitions imply that

the generalized momentum corresponding to a cyclic variable is
conserved, dtpi = 0.

This follows from dtpi = dt∂q̇iL = ∂qiL = 0.
In general, we call the derivative ∂qiL ≡ Fi a generalized force. In the language of gener-

alized momenta and forces, the Lagrange equations (formally) assume the form of Newton-like
equations,

dtpi = Fi.

For the convenience of the reader, the most important quantities revolving around the La-
grangian formalism are summarized in table 2.1.

2.2.3 Lagrange mechanics and symmetries

Above, we have emphasized the capacity of the Lagrange formalism to handle problems with
constraints. However, an advantage of equal importance is its flexibility in the choice of

7

Notice that our momentum variables carry subscript (covariant) indices. What here looks like a simple
mnemonic (differentiate scalar w.r.t. superscript variable to get subscript variable) has an underlying reason
which becomes transparent within the framework of Hamiltonian dynamics.
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quantity designation or definition
generalized coordinate qi
generalized momentum pi = ∂q̇iL
generalized force Fi = ∂qiL
Lagrangian L(q, q̇, t) = (T − U)(q, q̇, t)

Action (functional) S[q] =
∫ t1
t0

dt L(q, q̇, t)

Euler-Lagrange equations (dt∂q̇i − ∂qi)L = 0

Table 2.1: Basic definitions of Lagrangian mechanics

problem adjusted coordinates: unlike the Newton equations, the Lagrange equations maintain
their form in all coordinate systems.

The choice of “good coordinates” becomes instrumental in problems with symmetries.
From experience we know that a symmetry (think of z–axis rotational invariance) entails the
conservation of a physical variable (the z–component of angular momentum), and that it
is important to work in coordinates reflecting the symmetry (z–axis cylindrical coordinates.)
But how do we actually define the term “symmetry”? And how can we find the ensuing
conservation laws? Finally, how do we obtain a system of symmetry–adjusted coordinates? In
this section, we will provide answers to these questions.

2.2.4 Noether theorem

Consider a family of mappings, hs, of the coordinate manifold
of a mechanical system into itself,

hs :V → V,

q → hs(q). (2.19)

Here, s ∈ R is a control parameter, and we require that h0 =
id. is the identity transform. By way of example, consider the
map hs(r, θ, ϕ) ≡ (r, θ, ϕ + s) describing a rotation around the z-axis in the language of
spherical coordinates, etc. For each curve q : I → V, t 7→ q(t), the map hs gives us a new
curve hs ◦ q : I → V, t 7→ hs(q(t)) (see the figure).

We call the transformation hs a symmetry (transformation) of a mechanical system iff

S[hs ◦ q] = S[q],

for all s and curves q. The action is then said to be invariant under the symmetry transfor-
mation.

Suppose, we have found a symmetry and its representation in terms of a family of in-
variant transformations. Associated to that symmetry there is a quantity that is conserved
during the dynamical evolution of the system. The correspondence between symmetry and its
conservation law is established by a famous result due to Emmy Noether:
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Noether theorem (1915-18): Let the action S[q] be invariant under the transfor-
mation q 7→ hs(q). Let q(t) be an solution curve of the system (a solution of the
Euler-Lagrange equations). Then, the quantity

I(q, q̇) ≡
f∑

i=1

pi
d

ds
hi
s(q)

∣∣∣
s=0

(2.20)

is dynamically conserved:
dtI(q, q̇) = 0.

Here, pi = ∂q̇iL
∣∣
(q,q̇)

is the generalized momentum of the ith (untransformed, s = 0)

coordinate, and the quantity I(q, q̇) is known as the Noether momentum.

The proof of Noether’s theorem is straightforward: the requirement of action–invariance under
the transformation hs is equivalent to the condition dsS[hs◦q] = 0 for all values of s. We now
consider the action of an extremal curve, i.e. of a solution of the Euler-Lagrange equations,
evaluated between arbitrary times, t0 and t1.

S[q] =

∫ t1

t0

dt L(q, q̇, t).

We do not require the transformation hs to leave the terminal configurations invariant, i.e.
hs(q(tl)) ̸= q(tl), l = 0, 1 in general. We next explore what the condition of action invariance
tells us about the Lagrangian of the theory. To this end, we evaluate the invariance condition
dsS[hs ◦ q] at s = 0, where h0 ◦ q = h0(q) = q:

0
!
= ds

∣∣
s=0

∫ t1

t0

dt L(hs(q), ḣs(q), t)

=

∫ t1

t0

dt
(
∂qiL

∣∣
q=h0(q)

dsh
i
s + ∂q̇iL

∣∣
q̇=ḣ0(q)

dsḣ
i
s

)
=

=

∫ t1

t0

dt
(
∂qi − dt∂q̇iL

)
dsh

i
s + ∂q̇iL dsh

i
s

∣∣t1
t0
,

where in the second equality we integrated by parts to remove the time derivative in dsḣs, we
used h0(q) = q and ḣ0(q) = q̇, all s-derivatives are exectuted at s = 0, i.e. dshs = ds|s=0hs,
and we use the abbreviated notation hi

s = (hs(q))
i. Now, our reference curve is a solution

curve, which means that the integrand in the last line vanishes. With ∂q̇iL = pi, we are led
to the conclusion

(pi dsh
i
s)t1 = (pi dsh

i
s)t0 ,

for arbitrary values t0, t1. In other words, dtpidsh
i
s is temporally constant, which is the state-

ment made by Noether’s theorem.
Two practical remarks on this result:
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• Since the Noether momentum is computed for s = 0, it is often sufficient, to describe
the symmetry transformation hs for infinitesimal values of the control parameter s. In
practice, this means that we fix a pair (q, q̇) comprising coordinate and velocity of a
solution curve. We then consider an infinitesimal transformation hϵ(q), where ϵ is
infinitesimally small, and hϵ = id. +O(ϵ) is very close to the identity transformation.

• It is usually convenient to work in symmetry adjusted coordinates, i.e. in coordinates
where the transformation hs assumes its simplest possible form. These are coordinates
where hs acts by translation in one coordinate direction, that is (hs(q))i = qi + sδij,
where j is the affected coordinate direction. Coordinates adjusted to a symmetry are
cyclic (think about this point), and the Noether momentum

I = pi,

reduces to the generalized momentum of the symmetry coordinate.

2.2.5 Examples

In this section, we will discuss two prominent examples of symmetries and their conservation
laws.

Translational invariance ↔ conservation of momentum

Consider a mechanical system that is invariant under translation in some direction. Without
loss of generality, we choose cartesian coordinates q = (q1, q2, q3) in such a way that the
coordinate q1 parameterizes the invariant direction. The symmetry transformation hs then
translates in this direction: hs(q) = q+ se1, or hs(q) = (q1 + s, q2, q3). With dshs(q) = e1,
we readily obtain

I(q, q̇) =
∂L

∂q̇1
= p1,

where p1 = mq̇1 is the ordinary cartesian momentum of the particle. We are thus led to the
conclusion

Translational invariance entails the conservation of cartesian momentum.

EXERCISE Generalize the construction above to a system of N particles in the absence of external

potentials. The (interaction) potential of the system then depends only on coordinate differences

qi − qj . Show that translation in arbitrary directions is a symmetry of the system and that this

implies the conservation of the total momentum P =
∑N

j=1mjq̇j .

Rotational invariance ↔ conservation of angular momentum

As a second example, consider a system invariant under rotations around the 3-axis. In
cartesian coordinates, the corresponding symmetry transformation is described by

q 7→ hϕ(q) ≡ R
(3)
ϕ q,
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where the angle ϕ serves as a control parameter (i.e. ϕ assumes the role of the parameter s
above), and

R
(3)
ϕ ≡

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1


is an O(3)–matrix generating rotations by the angle ϕ around the 3–axis. The infinitesimal
variant of a rotation is described by

R(3)
ϵ ≡

 1 ϵ 0
−ϵ 1 0
0 0 1

+O(ϵ2).

From this representation, we obtain the Noether momentum as

I(q, q̇) =
∂L

∂q̇i
dϵ
∣∣
ϵ=0

(R(3)
ϵ q)i = m(q̇1q2 − q̇2q1).

This is (the negative of) the 3-component of the particle’s angular momentum. Since the
choice of the 3–axis as a reference axis was arbitrary, we have established the result:

Rotational invariance around a symmetry axis entails the conservation of the
angular momentum component along that axis.

Now, we have argued above that in cases with symmetries, one should employ adjusted co-
ordinates. Presently, this means coordinates that are organized around the 3–axis: spherical,
or cylindrical coordinates. Choosing cylindrical coordinates for definiteness, the Lagrangian
assumes the form

L(r, ϕ, ṙ, ϕ̇, ż) =
m

2
(ṙ2 + r2ϕ̇2 + ż2)− U(r, z), (2.21)

where we noted that the problem of a rotationally invariant system does not depend on ϕ.
The symmetry transformation now simply acts by translation, hs(r, z, ϕ) = (r, z, ϕ + s), and
the Noether current is given by

I ≡ l3 =
∂L

∂ϕ̇
= mr2ϕ̇. (2.22)

We recognize this as the cylindrical coordinate representation of the 3–component of angular
momentum.

EXAMPLE Let us briefly extend the discussion above to re-derive the symmetry optimized rep-
resentation of a particle in a central potential. We choose cylindrical coordinates, such that (a)
the force center lies in the origin, and (b) at time t = 0, both q and q̇ lie in the z = 0 plane.
Under these conditions, the motion will stay in the z = 0 plane. (Exercise: show this from the
Euler–Lagrange equations.) and the cylindrical coordinates (r, ϕ, z) can be reduced to the polar
coordinates (r, ϕ) of the invariant z = 0 plane.
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The reduced Lagrangian reads

L(r, ṙ, ϕ̇) =
m

2
(ṙ2 + r2ϕ̇2)− U(r).

From our discussion above, we know that l ≡ l3 = mr2ϕ̇ is a constant, and this enables us to
express the angular velocity ϕ̇ = l3/mr2 in terms of the radial coordinate. This leads us the
effective Lagrangian of the radial coordinate,

L(r, ṙ) =
m

2
ṙ2 +

l2

2mr2
− U(r).

The solution of its Euler–Lagrange equations,

mr̈ = −∂rU − l2

mr3
,

has been discussed in section *

2.3 Application: the rigid body

NOTATION In this section, we will be met with various component-carrying objects that ‘are not

truly vectors’. We will therefore indiscriminately write components downstairs. (A full discussion

of the underlying geometry would take too much time in this text.)

Mechanics is about the motion of bodies (as opposed to idealized mass points). The motion
of a generic body (think, e.g., of a running dog) is a complicated superposition of the motion
of its internal degrees of freedom (the motion of hind legs vs. that of the front legs) and the
bodies center of mass. The situation is much simpler with the sub-class of rigid bodies, for
which the relative motion of internal degrees of freedom is ‘frozen out’. Imagine a brick, or a
rod of steel thrown into the air. We will observe a motion of the center of masses, and changes
in the orientation of the bodies relative to our own. However, to a good approximation, the
constituents forming the bodies (their atoms, ultimately) will remain fixed relative to each
other.

In this section, we study how the notion of ‘rigidity’ can be made quantitative, how the
motion of rigid bodies may be described in formulas, and how these formulas may eventually
be solved.

2.3.1 Definition of the rigid body

Imagine a body as an assembly of N mass points mi at coordinates r
i. The body is rigid, if

the 3N coordinates defining it are subject to the set of holonomic constraints

|ri − rj| = const., i, j = 1, . . . , N, (2.23)
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K

K

K

Figure 2.3: On the definition of the six coordinates describing the motion of a rigid body. The shaded
drawing describes the position of the body in a different configuration.

i.e. all internal distances between points remain constant. How many coordinates do we
need to describe the motion of a body subject to such constraints? The answer follows from
Fig. 2.3. Define a point of reference inside the body, for example, its center of mass. Define
a system of coordinates K ′ whose origin is that point. Technically, K ′ is defined in terms
of a choice of origin and that of three basis vectors {e′1, e′2, e′3} which we may choose to be
orthojormal. Assuming the fixed ‘lab system’, K from which the body is obeserved to be
spanned by an orthonormal system {e1, e2, e3}, the basis vectors {e′i} are obtained from {ei}
by a three dimensional rotation matrix A.

The position of the body is then uniquely described in terms of (a) the three coordinates
required to specify the position of the chosen origin, R(t) and (b) a generally time dependent
rotation matrix A(t). The vector R is described by three real coordinates, and so is the
rotation matrix A. This tells us that

The motion of a rigid body is described in terms of 6=3+3 coordinates, 3 to
specify the coordinates of a fixed reference point within the body, and 3 to

specify its orientation.

EXERCISE Recapitulate why a three dimensional rotation matrix A ∈ SO(3) is parameterized in

terms of three real parameters. Try to find concrete parameterizations and discuss them in terms

of their action on the vectors of the standard basis.

2.3.2 Moving coordinate frames

The description of a fixed body’s motion crucially involves time dependent mappings between
a fixed observer frame K and a body centered moving frame K ′. Mathemathically, K and
K ′ are reference systems in the sense of our discussion in section ??. I.e. K is defined by a
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choice (O, {ei}) of an origin and a basis of three dimensional Euclidean space (a set of points
x), and the same with K ′. Practically, both K and K ′ describe a given point x by three
component coordinate vectors q and q′, respectively. We understand the map between the
coordinates q and q′ as a ‘dynamical coordinate transformation’, i.e. a map that assign to
coordinate vectors q′ ∈ K ′ ≡ R3 describing the coordinates of a point x in the system K ′

the coordinates q ∈ K ≡ R3 of the same point in K. Since K ′ may move relative to K, the
map relating between the two systems may be time-dependent. At any instance of time, the
map may involve translation and rotation, i.e. it is an affine map.

The mathematical concept required to describe transformations between moving coordinate
frames is called a motion of K relative to K ′. A motion is described by a family of maps,

Dt : K
′ −→ K,

q′ 7−→ Dtq
′ = q, (2.24)

where t is a continuous time-like parameter, and is an affine map leaving orientation
8
and the

norm of vectors invariant. If a motion Rt ≡ Dt leaves the origin invariant Rt0 = 0, then it is
called a rotation. Rotations are linear norm and orientation preserving maps, i.e. Rt ∈ SO(3)
is described by a unit-determinant rotation matrix. A map, shifting the coordinate systems,
Ct : K ′ → K,q′ → q′ + Rt, where Rt ∈ R3 is a shift vector, is called a translation.
Intuitively,

9
it is clear that a general motion can be represented as the product of a rotation

and a subsequent translation,

Dt = CtRt :K
′ −→ K,

q′ 7−→ Rtq
′ +Rt = q. (2.25)

If Rt = R is a time-independent rotation, then Dt is called a translatory motion.
Consider now a generally time dependent vector q′(t) representing the coordinates of a

point in the system K ′. For example, you may imagine the trajectory q′(t) of a satellite as seen
from the perspective of a space station orbiting earth. We are interested in the coordinates
q(t) = Dtq

′(t) of the same point in the system K, which in our example would be the
trajectory of the satellite as seen from, e.g., the surface of earth. However, we not only want
to understand the correspondence q′ ↔ q, but also that of velocities q̇′ ↔ q̇ and acceleration
q̈′ ↔ q̈.

A formal answer to these questions may be obtained by differentiating Eq. (2.25) w.r.t.
time. Omitting time arguments for notational clarity, this yields

q̇ = Rq̇′ + Ṙq′ + Ṙ. (2.26)

To obtain a better understanding of the terms appearing on the right hand side, let us take a
look at some particular types of motion:

8

With this condition, we exclude, e.g., reflections or other orientation changing maps from the set of
motions.

9

Verify this statement from the properties of general affine maps.
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Translational motion

For a translational motion, C with Ṙ = 0, the individual terms in the expression can be
interpreted as

q̇: Absolute velocity of the point in K,

Rq̇′: Velocity relative to the point R,

Ṙ: Velocity of the system K ′ relative to K,

q̇′: Velocity of the point as seen in K ′.

Rotational motion

We now turn to the somewhat more interesting case of a rotational motion, R, with R = 0,
but dtR ̸= 0 in general. Let us first consider a point at rest in K ′, q̇′ = 0. We are going to
show that there exists a vector ω = ω(t), such that

q̇ = ω × q. (2.27)

Before interpreting this result, let us prove it. With q′ = R−1q, we have

q̇ = Ṙq′ = ṘR−1q ≡ Aq, (2.28)

where we defined the matrix A = ṘR−1 : K → K. The most important property of
A is its anti-symmetry, AT = −A. This follows from R−1 = RT (the defining property
of a rotation matrix), and 0 = dt1 = dt(RRT ) = ṘRT + RṘT . With this, we obtain
AT = (R−1)T ṘT = RṘT = −ṘRT = −A. A 3 × 3 antisymmetric matrix affords the
representation

A =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.29)

in terms of three real parameters ωi. Defining the vector ω as ω = (ω1, ω2, ω3), it is then
straightforward to verify that Aq = ω × q.

Notice that the ω is not, in fact, an ‘ordinary’ vector. Our discussion shows that it is more
closely related to an antisymmetric matrix, i.e. a tensor of first co- and contravariant degree.
The anomaly of ω is also reflected in its physical dimension, which is [ω] = (time)−1. It does
not make sense, e.g., to compare the length of ω with that of a conventional vector.

The heuristic interpretation of Eq. (2.27) is that q precesses at a frequency ω ≡ |ω|
around an axis defined by ω̂ = ω/ω. This is best seen by considering a infinitesimally small
time evolution,

q(t+ δ) ≃ q(t) + δq̇(t) = q(t) + δωω̂ × q. (2.30)
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The increment ω × q is perpendicular to both q and ω which is characterizing for rotational
motion around an axis ∥ ω (why?). Adding infinitesimal increments, we conclude that after
a time ∆t = 2π/ω, we are back to the starting vector q(t +∆t) = q(t) which identifies the
rotational frequency as ω.

If we now drop the condition of constancy of q′, we obtain

q̇ = ω × q+Rq̇′, (2.31)

where the individual terms are,

q̇: Absolute velocity of the point in K,

ω × q: Contribution to q̇ originating in the rotational motion of the body.

Rq̇′: Contribution to the velocity originating in the non-constancy of the point relative to the
system K ′.

General case

The transformation formulas can be generalized to the description of a general motion K ′ D−→
K if we decompose the latter as D = CR into a rotation followed by a translation, K ′ R−→
K ′′ C−→ K. Our transformation formulas above tell us,

q′′ = Rq′, q = q′′ +R,

q̇′′ = ω × q′′ +Rq̇′, q̇ = q̇′′ + Ṙ. (2.32)

Combining these formulas, we obtain

q̇ = ω × (q−R) +Rq̇′ + Ṙ, (2.33)

as the most general transformation formula between moving systems. It is often convenient
to express all terms on the r.h.s. through quantities in K ′. To this end, we define

ω′ ≡ R−1ω, (2.34)

i.e. the rotation vector as seen in K ′. Using that for orthogonal matrices (check it), Rv ×
Rw = R(v ×w), we then obtain

q̇ = (Rω′)× (Rq′) +Rq̇′ + Ṙ = R(ω′ × q′) +Rq̇′ + Ṙ, (2.35)

and from there

q̇ = R(ω′ × q′ + q̇′) + Ṙ. (2.36)

INFO Eq. (2.36) is the starting point for the quantitative discussion of fictitious forces. One

may differentiate the formula once more w.r.t. time, to obtain q̈ = . . . , where on the r.h.s. we
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have a lengthy expression involving time derivatives of the constituents ω′, R and R describing

the transition between coordinate systems. Even in the absence of forces in K, q̈ = 0, the

acceleration q̈′ ̸= 0 in general. Specifically, for a rotational motion one finds that the acceleration

in K ′ is governed by a centrifugal force, and the more subtle action of the Coriolis force. For the

discussion of these forces, we refer to the literature.

2.3.3 Lagrangian of the rigid body

In this section we will express the Lagrangian of a rigid body in terms of its six generalized
coordinates. To this end, let us introduce a coordinate system K ′ fixed in the body. For
convenience, we choose the center of mass as its origin, R = M−1

∑
i rimi, where ri are

the lab coordinates of the N masses mi defining the body. Importantly, these points have
vanishing velocity ṙ′i inside K ′. Using this fact, and Eq. (2.33), the kinetic energy of the
system then assumes the form

T =
1

2

∑
i

miṙ
2
i =

1

2

∑
i

mi(ω × (ri −R) + Ṙ)2 =
1

2

∑
i

mi(ω × qi + Ṙ)2, (2.37)

where we defined qi = ri −R as the coordinate vectors relative to the point R (but observed
in K, not in K ′ where they are constant!). This expression can be simplified as

T =
1

2

∑
i

mi((ω × qi) · (ω × qi) + 2Ṙ · (ω × qi) + Ṙ2) =

=
1

2

∑
i

mi qia(ω
2δab − ωaωb)qjb +MṘ2, (2.38)

where we used that
∑

i miq̇i = dt
∑

i mi(ri −R) = 0. This expression affords the alternative
representation

T =
1

2
ωT Iω +

M

2
Ṙ2, (2.39)

where

Iab ≡
∑
i

mi(qicqicδab − qiaqib), (2.40)

defines the so-called tensor of inertia. The kinetic energy T = T (Ṙ,ϕ, ϕ̇) is a function of
the center of mass velocity, and of the rotation vector ω = ω(ϕ, ϕ̇) which in turn depends on
the three angles (and their derivatives) required to specify the rotational motion of the body.
We may now subtract a potential energy U = U(R,ϕ) which may depend on the orientation
and the position of the body, to obtain the Lagrangian of the rigid body,

L(R, Ṙ,ϕ, ϕ̇) = T (Ṙ,ϕ, ϕ̇)− U(R, Ṙ,ϕ, ϕ̇), (2.41)
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expressed as a function of the six generalized coordinates (R,ϕ) and their time derivatives.
The Lagrangian (2.41) conveniently contains contributions describing the translational and the
rotational motion of the system.

2.3.4 Angular momentum

The general description of the motion of a rigid body can be very complicated. In the following,
we will focus on the rotational parts of the dynamics, i.e. that what discriminates the motion
of a body from that of a mass point. To this end, we will focus on what is called a top. A
top is a rigid body fixed at one point, usually the center of mass, in space. This means that
the Lagrangian of a top assumes the form

L =
1

2
ωT Iω − U, (2.42)

where both T and U depend on angular coordinates only. We will aim to characterize the
motion of the system in terms of its angular momentum L relative to the fixed origin. An
advantage of emphasizing the angular momentum is that it is a main player in the equations
of motion of the system. In particular we know that dtL = 0 is conserved if no external torque
N is applied.

The angular momentum must, of course, be closely related to the rotation vector ω.
Indeed, a little calculation shows,

L ≡
∑
i

miqi × q̇i =
∑
i

qi × (ω × qi) =
∑
i

mi(ωaqibqib − qiaωbqib)ea = Iabωbea,

or

L = Iω. (2.43)

Alternatively, we may consider the angular momentum L′ = R−1L in the in the body centered
system. Comparison with (2.43) shows that

L′ = I ′ω′, (2.44)

where I ′ = R−1IR is the transformed tensor of inertia. A quick check shows that I ′ is
defined as in (2.40), only that we have to replace qi → q′i. Both representations of the
angular momentum have their own advantages: in K, we have the relatively simple equation
of motion dtL = N, the angular momentum changes according to the externally applied
torque. However, I is generally time dependent in K which means that the relation between
L and the directly observable rotation axis ω can be complicated. In K ′, the tensor of inertia
I ′ is fixed, and this means that the connection L′ ↔ ω′ is simple. However, even in the
absence of external torque, L′ will be time varying in general.

Our strategy in the following is to first pick a K ′ basis, that brings the constant I ′ into
a maximally simple form. Within this framework, we will then study the equations of motion
for L′ and ω′. In a final step, we may then transform back to quantities L or ω defined in the
laboratory system.
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2.3.5 Tensor of inertia

In K ′, the tensor of inertia, Eq. (2.40) is a symmetric 3× 3-matrix, which means that it can
be diagonalized in terms of an orthonormal basis {e′a}. The three perpendicular directions
specified by the three basis vectors are called principal axes of the body, and the eigenvalues
of I ′ are the principal moments of inertia. Let us denote these quantities by Ia. We then
know that in the principal basis, the inertia tensor assumes the form I ′ = diag(I1, I2, I3). On
the other hand, the representation (2.40) remains valid. Comparison of the two representations
then entails the identification

I1 =
∑
i

mi((q
′
2)

2 + (q′3)
2), (2.45)

and analogously for I2, I3. For bodies showing a high degree of symmetry, the principal axes
generally coincide with the symmetry axes. For example, the principal axes of a cuboid are
pierce through the centers of its faces, one of the principal axes of a cylinder runs through the
cylinder axes, the two others are perpendicular to it (and perpendicular to each other). The
second example shows that the principal axes need not be uniquely determined. In such cases,
the corresponding principal moments are degenerate, e.g., I2 = I3 for a cylinder with e′3 as
its symmetry axis. Also notice that the numbers Ia assume large/small values if the body is
wide/of narrow shape in the complementary directions. For example, a body shaped like a thin
disk would have its dominant moment of inertia assigned to the principal axis perpendicular
to the disk.

EXERCISE Verify these statements from the definitions above.

Let us now assume that the principal axes define the basis system in K ′. The components of
the angular momentum and the kinetic energy then assume the simple form

L′
a = Iaω

′
a,

T =
1

2

∑
a

(ω′
a)

2Ia. (2.46)

2.3.6 Euler Equations

We are now in a position to derive equations of motion describing the dynamics of a rigid body
in terms of the motion of the vector ω. These equations follow from rate change of angular
momentum dtL = N, where N is the external torgue acting on the body

10
.

We know that dtL
(2.36)
= R(ω′ × L′ + dtL

′). With N′ = R−1N, this leads to

ω′ × L′ + dtL
′ = N′,

10

We here assume that torque to be given, in concrete applications, i.e. a body subject to a gravitational
force, it has to be calculated as N =

∑
i qi × Fi, where Fi the extenal force acting on the ith component

of the body. In this expression, qi = qi(R,ϕ) can be expressed in terms of the six coordinates desribing the
body’s position.
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or, using (2.46),

Iadtω
′
a + ϵabcω

′
bIcω

′
c = N ′

a. (2.47)

Writing out the equations for each component separately, we obtain the set of Euler equations

I1dtω
′
1 = (I2 − I3)ω

′
2ω

′
3 +N ′

1,

I2dtω
′
2 = (I3 − I1)ω

′
3ω

′
1 +N ′

2,

I3dtω
′
3 = (I1 − I2)ω

′
1ω

′
2 +N ′

3. (2.48)

These are three coupled nonlinear equations which cannot be solved in general.

2.3.7 Free symmetric top

The Euler equations define the starting point of the theory of tops, a complex and highly
developed sub-field of classical mechanics. To gain some intuition into the type of phenomena
deriving from the Euler equations, we here discuss a particularly simple example, the free
(N = 0) symmetric (I1 = I2) top. The former condition means that L = const.. The
latter condition means that we are discussing a body with cylindrical symmetry, such that the
moments of inertia associated to the axes perpendicular to the symmetry axis, e′3 coalesce,
I1 = I2 ≡ I ′. The third Euler equation, then tells us that ω′

3 ≡ ω∥ = const. Defining

Ω ≡ I − I3
I

ω∥,

we find that the first two equations are solved by

ω′
1 = ω⊥ cos(Ωt+ ϕ),

ω′
2 = ω⊥ sin(Ωt+ ϕ), (2.49)

where ϕ is some phase, and ω⊥ a constant. What this means is that the vector ω′ performs
a precession around the symmetry axis of the body. The cone swept out by the precession
goes by the name body cone (cf. Fig. 2.4.)

To obtain an idea how the motion will look from the outside, i.e. the perspective of the
space centered system, we need to transform ω′ → ω. This task is most efficiently performed
by exploiting symmetries and conservation laws. First, a bit of vector algebra (do it!) shows
that the three vectors (L′,ω′, e′3) are linearly dependent; they lie in a plane. This means, that
the transformed vectors, (L,ω, e3), too, must lie in a plane (why?). In the space-system, L,
is constant. We also know that |ω| = |ω′| = const.. Further, energy conservation implies the
constancy of the kinetic energy,

T =
1

2
L · ω =

1

2
|L||ω| cos(θ) = const., (2.50)

where θ is the angle enclosed by L and ω. The constancy of this angle means, that in the space
system the rotation vector ω will precess around the constant angular momentum vector.
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Figure 2.4: On the motion of a free symmetric top. Discussion, see text.

We thus conclude that in the space system, the two vectors ω and e3 precess synchronously
around the constant angular momentum axis. The cones traced out by ω and e3 are called
space cone and nutation cone, resp.
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Chapter 3

Hamiltonian mechanics

The Lagrangian approach has introduced a new degree of flexibility into mechanical theory
building. Still, there is room for further development. To see how, notice that in the last
chapter we have characterized the state of a mechanical system in terms of the 2f variables
(q1, . . . , qf , q̇1, . . . , q̇f ), the generalized coordinates and velocities. It is clear that we need
2f variables to specify the state of a mechanical system. But are coordinates and velocities
necessarily the best variables? The answer is: often yes, but not always. In our discussion
of symmetries in section 2.2.3 above, we have argued that in problems with symmetries, one
should work with variables qi that transform in the simplest possible way (i.e. additively) under
symmetry transformations. If so, the corresponding momentum pi = ∂q̇iL is conserved. Now,
if it were possible to express the velocities uniquely in terms of coordinates and momenta,
q̇ = q̇(q,p), we would be in possession of an alternative set of variables (q,p) such that
in a situation with symmetries a some of our variables stay constant, and hence assume the
simplest possible form.

In this chapter, we show that the reformulation of mechanics in terms of coordinates and
momenta as independent variables is an option. The resulting description is called Hamilto-
nian mechanics. Salient features of the new approach include:

▷ It exhibits a maximal degree of flexibility in the choice of problem adjusted coordinates.

▷ The variables (q,p) live in a mathematical space, so called “phase space”, that carries
a high degree of mathematical structure (more than an ordinary vector space.) This
structure turns out to be of great use in the solution of complex problems. Relatedly,

▷ Hamiltonian theory is the method of choice in the solution of advanced mechanical
problems. For example, the theory of (conservative) chaotic systems is almost exclusively
formulated in the Hamiltonian approach.

▷ Hamiltonian mechanics is the gateway into quantum mechanics. Virtually all concepts
introduced below have a direct quantum mechanical extension.

However, this does not mean that Hamiltonian mechanics is “better” than the Lagrangian
theory. The Hamiltonian approach has its specific advantages. However, in some cases it

75
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may be preferable to stay on the level of the Lagrangian theory. At any rate, Lagrangian
and Hamiltonian mechanics form a pair that represents the conceptual basis of many modern
theories of physics, not just mechanics. For example, electrodynamics (classical and quantum)
can be formulated in terms of a Lagrangian and an Hamiltonian theory, and these formulations
are strikingly powerful.

3.1 Foundations of Hamiltonian mechanics

The Lagrangian L = L(q, q̇, t) is a function of coordinates and velocities. What we are after is
a function H = H(q,p, t) that is a function of coordinates and momenta, where the momenta
and velocities are related to each other as pi = ∂q̇iL = pi(q, q̇, t). Once in possession of the
new function H, there must be a way to express the key information carriers of the theory –
the Euler Lagrange equations – in the language of the new variables. In mathematics, there
exist different ways of formulating variable changes of this type, and one of them is known as

3.1.1 Legendre transform

Reducing the notation to a necessary minimum, the task formulated above amounts to the
following problem: given a function f(x) (here, f assumes the role of L and x represents q̇i),
consider the variable z = ∂xf(x) = z(x) (z represents the momentum pi.) If this equation is
invertible, i.e. if a representation x = x(z) exists, find a partner function g(z), such that g
carries the same amount of information as f . The latter condition means that we are looking
for a transformation, i.e. a mapping between functions f(x) → g(z) that can be inverted
g(z) → f(x), so that the function f(x) can be reconstructed in unique terms from g(z).
If this latter condition is met, it must be possible to express any mathematical operation
formulated for the function of f in terms of a corresponding operation on the function g (cf.
the analogous situation with the Fourier transform.)

Let us now try to find a transformation that meets the criteria above. The most obvious
guess might be a direct variable substitution: compute z = ∂xf(x) = z(x), invert to x = x(z),

and substitute this into f , i.e. g(z)
?
= f(x(z)). This idea goes in the right direction but is

not quite good enough. The problem is that in this way information stored in the function f
may get lost. To illustrate this point, consider the function

f(x) = C exp(x),

where C is a constant. Now, z = ∂xf(x) = C exp(x), which means x = ln(z/C) substitution
back into f gets us to

g(z) = C exp(ln(z/C)) = z.

The function g no longer knows about C, so information on this constant has been irretrievably
lost. (Knowledge of g(z) is not sufficient to re-construct f(x).)
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However, it turns out that a slight extension of the above idea does the trick. Namely,
consider the so called Legendre transform of f(x),

g(z) ≡ f(x(z))− zx(z). (3.1)

We claim that g(z) defines a transformation of functions. To verify this, we need to show
that the function f(x) can be obtained from g(z) by some suitable inverse transformation.
It turns out that (up to a harmless sign change) the Legendre transform is self-inverse; just
apply it once more and you get back to the function f . Indeed, let us define the variable
y ≡ ∂zg(z) = ∂xf

∣∣
x(z)

∂zx(z) − z∂zx(z) − x(z). Now, by definition of the function z(x) we

have ∂xf
∣∣
x(z)

= z(x(z)) = z. Thus, the first two terms cancel, and we have y(z) = −x(z).

We next compute the Legendre transform of g(z):

h(y) = f(x(z(y))− x(z(y))z(y)− z(y)y.

Evaluating the relation y(z) = −x(z) on the specific argument z(y), we get y = y(z(y)) =
−x(z(y)), i.e. f(x(z(y)) = f(−y), and the last two terms in the definition of h(y) are seen
to cancel. We thus obtain

h(y) = f(−y),

the Legendre transform is (almost) self–inverse, and this means that by passing from f(x) to
g(z) no information has been lost.

The abstract definition of the Legendre transform with its nested variable dependencies can
be somewhat confusing. However, when applied to concrete functions, the transform is actually
easy to handle. Let us illustrate this on the example considered above: with f(x) = C exp(x),
and x = ln(z/C), we get

g(z) = C exp(ln(z/C))− ln(z/C)z = z(1− ln(z/C)).

(Notice that g(z) “looks” very different from f(x), but this need not worry us.) Now, let us
apply the transform once more: define y = ∂zg(z) = − ln(z/C), or z(y) = C exp(−y). This
gives

h(y) = C exp(−y)(1 + y)− C exp(−y)y = C exp(−y),

in accordance with the general result h(y) = f(−y).
The Legendre transform of multivariate functions f(x) is obtained by application of

the rule to all variables: compute zi ≡ ∂xi
f(x). Next construct the inverse x = x(z). Then

define
g(z) = f(x(z))−

∑
i

zixi(z). (3.2)

3.1.2 Hamiltonian function

Definition

We now apply the construction above to compute the Legendre transform of the Lagrange
function. We thus apply Eq. (3.2) to the function L(q, q̇, t) and identify variables as x ↔ q̇
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and z ↔ p. (Notice that the coordinates, q, themselves play the role of spectator variables.
The Legendre transform is in the variables q̇!) Le us now formulate the few steps it takes to
pass to the Legendre transform of the Lagrange functions:

1. Compute the f variables

pi = ∂q̇iL(q, q̇, t). (3.3)

2. Invert these relations to obtain q̇i = q̇i(q,p, t)

3. Define a function

H(q,p, t) ≡
∑
i

piq̇i(q, q̇, t)− L(q, q̇(q,p, t)). (3.4)

Technically, this is the negative of L’s Legendre transform. Of course, this function
carries the same information as the Legendre transform itself.

The function H is known as the Hamiltonian function of the system. It is usually called
“Hamiltonian” for short (much like the Lagrangian function) is called “Lagrangian”. The
notation above emphasizes the variable dependencies of the quantities q̇i, pi, etc. One usually
keeps the notation more compact, e.g. by writing H =

∑
i piq̇i −L. However, it is important

to remember that in both L and
∑

i q̇ipi, the variable q̇i has to be expressed as a function of
q and p. It doesn’t make sense to write down formulae such as H = . . . , if the right hand
side contains q̇i’s as fundamental variables!

Hamilton equations

Now we need to do something with the Hamiltonian function. Our goal will be to transcribe
the Euler–Lagrange equations to equations defined in terms of the Hamiltonian, hoping that
these equations contain operational advantages over the Euler–Lagrange equations.

Now, the Euler-Lagrange equations probe changes (derivatives) of the function L. It will
therefore be a good idea to explore what happens if we ask similar questions to the function
H. Let us then compute

∂qiH(q,p, t) = pj∂qi q̇j(q,p)− ∂qiL(q, q̇(q,p))− ∂q̇jL(q, q̇(q,p))∂qi q̇j(q,p).

The first and the third term cancel, because ∂q̇jL = pj. Now, iff the curve q(t) is a so-
lution curve, the middle term equals −dt∂q̇iL = −dtpi. We thus conclude that the (q,p)-
representation of solution curves must obey the equation

ṗi = −∂qiH(q,p, t).

Similarly,

∂piH(q,p, t) = q̇i(q,p) + pj∂pi q̇j(q,p, t)− ∂q̇jL(q, q̇(q,p))∂pi q̇j(q,p, t).
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The last two terms cancel, and we have

q̇i = ∂piH(q,p, t).

Finally, let us compute the partial time derivative ∂tH.
1

∂tH(q,p, t) = pi∂tq̇i(q,p, t)− ∂q̇iL(q, q̇(q,p, t))∂tq̇i(q,p, t)− ∂tL(q, q̇, t).

Again, two terms cancel and we have

∂tH(q,p, t) = −∂tL(q, q̇(q,p, t), t), (3.5)

where the time derivative on the r.h.s. acts only on the third argument L( . , . , t).
Let us summarize where we are: The solution curve q(t) of a mechanical system de-

fines a 2f–dimensional “curve”, (q(t), q̇(t)). Eq. (3.3) then defines a 2f–dimensional curve
(q(t),p(t)). The invertibility of the relation p ↔ q̇ implies that either representation faithfully
describes the curve. The derivation above shows that

The solution curves (q,p)(t) of mechanical problems obey the so–called Hamilton
equations

q̇i = ∂piH,

ṗi = −∂qiH. (3.6)

Some readers may worry about the numbers of variables employed in the description of curves:
in principle, a curve is uniquely represented by the f variables q(t). However, we have now
decided to represent curves in terms of the 2f–variables (q,p). Is there some redundancy
here? No there isn’t and the reason can be understood in different ways. First notice that in
Lagrangian mechanics, solution curves are obtained from second order differential equations in
time. (The Euler–Lagrange equations contain terms q̈i.) By contrast, the Hamilton equations
are first order in time.

2
The price to be payed for this reduction is the introduction of a second

set of variables, p. Alternatively, we may note that the solution of the (2nd order differential)
Euler–Lagrange equations requires the specification of 2f boundary conditions. These can
be the 2f conditions stored in the specification q(t0) = q0 and q(t1) = q1 of an initial and
a final point,

3
or the specification q(t0) = q0 and q̇(t0) = v0 of an initial configuration and

1

Here it is important to be very clear about what we are doing: in the present context, q̇ is a variable in
the Lagrange function. (We could also name it v or z, or whatever.) It is considered a free variable (no time
dependence), unless the transformation q̇i = q̇i(q,p, t) becomes explicitly time dependent. Remembering the
origin of this transformation, we see that this may happen if the function L(q,p, t) contains explicit time
dependence. This happens, e.g., in the case of rheonomic constraints, or time dependent potentials.

2

Ordinary differential equations of nth order can be transformed to systems of n ordinary differential
equations of first order. The passage L → H is example of such an order reduction.

3

But notice that conditions of this type do not always uniquely specify a solution – think of examples!
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velocity. By contrast
4

the Hamilton are uniquely solvable once an initial configuration
(q(t0),p(t0)) = (q0,p0) has been specified.

Either way, we need 2f boundary conditions, and hence 2f variables to uniquely specify the
state of a mechanical system.

EXAMPLE To make the new approach more concrete, let us formulate the Hamilton equations
of a point particle in cartesian coordinates. The Lagrangian is given by

L(q, q̇, t) =
m

2
q̇2 − U(q, t),

where we allow for time dependence of the potential. Thus

pi = mq̇i,

which is inverted as q̇i(p) =
pi
m . This leads to

H(q,p, t) =

3∑
i=1

pi
pi
m

− L(q,p/m, t) =
p2

2m
+ U(q, t).

The Hamilton equations assume the form

q̇ =
p

m
,

ṗ = −∂qU(q, t).

Further, ∂tH = −∂tL = ∂tU inherits its time dependence from the time dependence of the
potential. The two Hamilton equations are recognized as a reformulation of the Newton equation.
(Substituting the time derivative of the first equation, q̈ = ṗ/m, into the second we obtain the
Newton equation mq̈ = −∂qU .)

Notice the Hamiltonian function H = p2

2m + U(q, t) equals the energy of the particle! In the next

section, we will discuss this connection in more general terms.

EXAMPLE Let us now solve these equations for the simple example of the one-dimensional

harmonic oscillator. In this case, V (q) = mω2

2 q2 and the Hamilton equations assume the form

q̇ =
p

m
,

ṗ = −mω2q.

For a given initial configuration x(0) = (q(0), p(0)), these equations afford the unique solution

q(t) = q(0) cosωt+
p(0)

mω
sinωt,

p(t) = p(0) cosωt−mω sinωt. (3.7)
4

Formally, this follows from a result of the theory of ordinary differential equations: a system of n first
order differential equations ẋi = fi(x1, . . . , xn), i = 1, . . . , n affords a unique solution, once n initial conditions
xi(0) have been specified.
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Physical meaning of the Hamilton function

The Lagrangian L = T − U did not carry immediate physical meaning; its essential role
was that of a generator of the Euler–Lagrange equations. However, with the Hamiltonian
the situation is different. To understand its physical interpretation, let us compute the full
time derivative dtH = dtH(q(t),p(t), t) of the Hamiltonian evaluated on a solution curve
(q(t),p(t)), (i.e. a solution of the Hamilton equations (3.6)):

dtH(q,p, t) =

f∑
i=1

(
∂H(q,p, t)

∂qi
q̇i +

∂H(q,p, t)

∂pi
ṗi

)
+

∂H(q,p, t)

∂t

(3.6)
=

∂H(q,p, t)

∂t
.

Now, above we have seen (cf. Eq. (3.5)) that the Hamiltonian inherits its explicit time
dependence ∂tH = −∂tL from the explicit time dependence of the Lagrangian. In problems
without explicitly time dependent potentials (they are called autonomous problems), the
Hamiltonian stays constant on solution curves.

We have thus found that the function H(q,p), (the missing time argument indicates that
we are now looking at an autonomous situation) defines a constant of motion of extremely
general nature. What is its physical meaning? To answer this question, we consider an general
N–body system in an arbitrary potential. (This is most general conservative autonomous
setup one may imagine.) In cartesian coordinates, its Lagrangian is given by

L(q,p) =
N∑
j=1

mjq̇
2
j − U(q1, . . . ,qN),

where U is the N–body potential and mj the mass of the jth particle. Proceeding as in the
example on p 80, we readily find

H(q,p) =
N∑
j=1

p2
i

2mi

+ U(q1, . . . ,qN). (3.8)

The expression on the r.h.s. we recognize as the energy of the system. We are thus led to the
following important conclusion:

The HamiltonianH(q,p) of an autonomous problem (a problem with time–independent
potentials) is dynamically conserved: H(q(t),p(t)) = E = const. on solution curves
(q(t),p(t)).

However, our discussion above implies another very important corollary. It has shown that

The Hamiltonian H = T + U is given by the sum of potential energy, U(q, t), and
kinetic energy, T (q,p, t), expressed as a function of coordinates and momenta.
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We have established this connection in cartesian coordinates. However, the coordinate
invariance of the theory implies that this identification holds in general coordinate systems.
Also, the identification H = T +U did not rely on the time–independence of the potential, it
extends to potentials U(q, t).

INFO In principle, the identification H = T +U provides an option to access the Hamiltonian

without reference to the Lagrangian. In cases where the expression T = T (q,p, t) of the

kinetic energy in terms of the coordinates and momenta of the theory is known, we may just

add H(q,p, t) = T (q,p, t) + U(q, t). In such circumstances, there is no need to compute the

Hamiltonian by the route L(q, q̇, t)
Legendre−→ H(q,p, t). Often, however, the identification of the

momenta of the theory is not so obvious, and one is better advised to proceed via Legendre

transform.

3.2 Phase space

NOTATION To keep the notation simple, we will suppress reference to an optional explicit time

dependence of the Hamilton functions throughout this section, i.e. we just write H(. . . ) instead

of H(. . . , t).

In this section, we will introduce phase space as the basic “arena” of Hamiltonian mechan-
ics. We will start from an innocent definition of phase space as a 2f–dimensional coordinate
space comprising configuration space coordinates, q, and momenta, p. However, as we go
along, we will realize that this working definition is just the tip of an iceberg: the coordinate
spaces of Hamiltonian mechanics are endowed with a lot of mathematical structure, which is
the ultimate reason for the power of Hamiltonian mechanics.

3.2.1 Phase space and structure of the Hamilton equations

The Hamilton equations are coupled equations for coordinates q, and momenta p. As was
argued above, the coordinate pair (q,p) contains sufficient information to uniquely encode
the state of a mechanical system. This suggests to consider the 2f–component objects

x ≡
(
q
p

)
(3.9)

as the new fundamental variables of the theory. Given a coordinate system, we may think of
x as element of a 2f–dimensional vector space. However, all what has been said in section
2.1.3 about the curves of mechanical systems and their coordinate representations carries over
to the present context: in abstract terms, the pair “(configuration space points, momenta)”
defines a mathematical space known as phase space, Γ. The formulation of coordinate
invariant descriptions of phase space is a subject beyond the scope of the present course.



3.2. PHASE SPACE 83

However, locally it is always possible to parameterize Γ in terms of coordinates,
5
and to describe

its elements through 2f–component objects such as (3.9). This means that, locally, phase
space can be identified with a 2f–dimensional vector space. However, different coordinate
representations correspond to different coordinate vector spaces, and sometimes it is important
to recall that the identification (phase space) ↔ (vector space) may fail globally.

6

Keeping the above words of caution in mind, we will temporarily identify phase space Γ with
a 2f–dimensional vector space. We will soon see that this space contains a very particular sort
of “scalar product”. This additional structure makes phase space a mathematical object far
more interesting than an ordinary vector space. Let us start with a rewriting of the Hamilton
equations. The identification xi = qi and xf+i = pi, i = 1, . . . , f enables us to rewrite
Eq. (3.6) as,

ẋi = ∂xi+f
H,

ẋi+f = −∂xi
H,

where i = 1, . . . , f . We can express this in a more compact form as

ẋi = Iij∂xj
H, i = 1, . . . , 2f, (3.10)

or, in vectorial notation,

ẋ = I∂xH. (3.11)

Here, the (2f)× (2f) matrix I is defined as

I =

(
1f

−1f

)
, (3.12)

and 1f is the f -dimensional unit matrix. The matrix I is sometimes called the symplectic
unity. Note its anti-symmetry IT = −I.

3.2.2 Variational principle

As in Lagrangian mechanics, the solutions of the Hamilton equations x(t) can be interpreted
as extremal curves of an action functional. This connection will be a gateway to the further
development of the theory.

Let us consider the set M = {x : [t0, t1] → Γ|q(t0) = q0,q(t1) = q1} of all phase space
curves beginning and ending at a common configuration space point, q0,1 and define the local
functional

S :M → R,

x 7→ S[x] =

∫ t1

t0

dt

(
f∑

i=1

piq̇i −H(q,p)

)
. (3.13)

5

Which means that Γ has the status of a 2f–dimensional manifold.
6

For example, there are mechanical systems whose phase space is a two–sphere, and the sphere is not a
vector space. (However, locally, it can be represented in terms of vector–space coordinates.)
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Figure 3.1: Visualization of the Hamiltonian vector field and its flow lines

We now claim that the extremal curves of this functional are solutions of the Hamilton equa-
tions (3.6). First note that the statement should not surprise us. According to Eq. (3.4), the
integrand is (the negative of) the Lagrangian, expressed in terms of (qi, pi) as independent
variables. Alluding to the geometric interpretation of variational principles, we should expect
that the extrema of the functional in this new representation define physical trajectories. To
see this in explicit terms, define the function F (x, ẋ) ≡ ∑f

i=1 piq̇i − H(q,p), in terms of

which S[x] =
∫ t1
t0

dt F (x, ẋ). Now, according to the general discussion of section 2.1.2, the
extremal curves are solutions of the Euler Lagrange equations

(dt∂ẋi
− ∂xi

)F (x, ẋ) = 0, i = 1, . . . , 2f.

Evaluating these equations for i = 1, . . . , f and i = f +1, . . . , 2f , respectively, we obtain the
first and second set of the equations (3.6).

3.2.3 Hamiltonian flow

For any x, the quantity I∂xH(x) = {Iij∂xj
H(x)} is a vector in phase space. This means

that the map

XH :Γ → Rn,

x 7→ I∂xH ≡ XH(x), (3.14)

defines a vector field in phase space, the so-called Hamiltonian vector field. The form of
the Hamilton equations

ẋ = XH(x), (3.15)

suggests an interpretation in terms of the “flow lines” of the Hamiltonian vector field: at each
point in phase space, the field XH defines a vector XH(x). The Hamilton equations state
that the solution curve x(t) is tangent to that vector, x(t) = XH(x). One may visualize the
situation in terms of the streamlines of a fluid. Within that analogy, the value XH(x) is a
measure of the local current flow. If one injected a drop of colored ink into the fluid, its trace
would be a representation of the curve x(t).
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For a general vector field v : U → RN ,x 7→ v(x), where U ⊂ RN , one may define a
parameter–dependent map

Φ : U × R → U,

(x, t) 7→ Φ(x, t), (3.16)

through the condition ∂tΦ(x, t)
!
= v(Φ(x, t)) and Φ(x, 0) = x. The map Φ is called the flow

of the vector field v. Specifically, the flow of the Hamiltonian vector field XH is defined by
the prescription

Φ(x, t) ≡ x(t), (3.17)

where x(t) is a curve with initial condition x(t = 0) = x. Equation (3.17) is a proper
definition because for a given x(0) ≡ x, the solution x(t) is uniquely defined. Further,
∂tΦ(x, t) = dtx(t) = XH(x(t)) satisfies the flow condition. The map Φ(x, t) is called the
Hamiltonian flow.

There is a corollary to the uniqueness of the curve x(t) emanating from a given initial
condition x(0):

Phase space curves never cross.

For if they did, the crossing point would be the initial point of the two out-going stretches
of the curve, and this would be in contradiction to the uniqueness of the solution for a given
initial configuration. There is, however, one subtle caveat to the statement above: although
phase space curves do not cross, they may actually touch each other in common terminal
points. (For an example, see the discussion in section 3.2.5 below.)

We conclude this section with a general remark on the concept of phase space vector
(fields). We have introduced phase space as a set of ‘vectors’ x = (q,p). Actually, however,
the concept of vectors is not very useful in this context. We rarely ‘add’ x+ y, etc. Instead,
q are coordinates parameterizing a smooth configuration space ‘surface’ or a configuration
space manifold.

INFO A manifold is the mathematical abstraction of a smooth geometric object. A manifold can

be locally, but not necessarily globally identified with a subset of Rn. For example, a sphere like

the surface of earth is a manifold. Locally, we can parameterize it in terms of two coordinates

and in this way identify it with a subset of the plane. (This is what a map visualizable on a sheet

of paper does.) However, globally it is different from a subset of the plane.

The same holds true for the momenta of the theory, and so we should think of phase space as
a 2f -dimensional manifold, Γ. Phase space vector fields lie tangent to this manifold. To each
point x in Γ, we may attach a tangent vector space TxΓ, i.e. the set of vectors tangent to
the manifold at this particular point. For example, vectors tangent to earth at the northpole
define a two-dimensional plane isomorphic to, but different from vectors tangent to earth at
a point on the equator. The vectors XH(x) ∈ TxΓ lie tangent to phase space at x. This
interpretation will become useful below, when we discuss further geometric structures in phase
space.
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3.2.4 Liouville Theorem

Besides the non-crossing of flow lines, the phase space flow has one more general property
which is indirectly responsible for many properties of mechanical systems: it is area conserving.
Intuitively this means that if you could paint an area element in two-dimensional phase space
and monitored its fate under the flow, it would in general change its position and shape, but
not its geometric area. The statement carries over to higher dimensional phase spaces.

To formulate and prove it in informal terms
7
, consider a phase space and inside it a certain

subset M . (Think of simple geometric structures such as cubes or spheres, etc.). Choosing
coordinates x = {qi, pi}, we define its volume by V =

∫
M
dx, where the subscript indicates

that the integration extends overM , and the integration measure is defined as dx =
∏

i dpidqi.
Will this volume depend on the choice of coordinates? The answer is ‘no’, as long as we restrict
ourselves to the canonical coordinate transformations defined in section 3.5.

Intuitively, you may think of the construction as the continuum limit of a swarm of infinitely
many phase space points concentrated in M . We next ask what will happen to this swarm
under the Hamiltonian flow. The answer is that individual points x will evolve to Eq. (3.17),
and M into Φ(M, t) = {x(t)|x ∈ M}. What is the volume of the evolved set? To investigate
this question, think of the evolution ρ : x 7→ x(t) ≡ y as a smooth and invertible (why?)
map. Under it, M maps to ρ(M) = {y = ρ(x)|x ∈ M}, and the phase space volume of
the evolved set is given by V (ϵ) ≡

∫
ρ(M)

dy, with the same measure dy =
∏

dqidpi. (In the

computation of this volume, y is simply an integration variable, denoted differently from x in
preparation of the next step of the construction.)

To study the evolution of the thus defined volume, it is sufficient to consider infinitesimal
times t = ϵ. The volume at finite times can then be obtained by iteration of the procedure. The
evolution under infinitesimal times can be read off from Eq. (3.11): x(ϵ) ≈ x(0)+ϵI∂xH|x(0).
We thus have x = x(0) and y ≡ x(ϵ). Let us now forget for a momentum about the
mechanical context and make use of a theorem of multi-dimensional integration: For a smooth
ρ : x → y mapping an integration domain M to ρ(M), we have∫

ρ(M)

dyf(y) =

∫
M

dx

∣∣∣∣∂y∂x
∣∣∣∣ f(y(x)),

where
∣∣ ∂y
∂x

∣∣ is a shorthand for the determinant of the Jacobi-matrix, i.e. the matrix J defined

by the partial derivatives {Jij = ∂yi

∂xj }. The statement holds for arbitrary functions, including
f = 1. In this case, the left hand side produces V (ϵ), and what the right hand side does
depends on the determinant factors.

So, we need to investigate the Jacobi matrix, which for our present case is close to the
unit matrix. With y = x+ ϵI∂xH, we have

Jij =
∂yi

∂xj
= δij + ϵ

∂

∂xj
Iik

∂

∂xk
H(x)

7

By ‘informal’, we mean that we will not spell out all technical points in full detail. The emphasis is on
conveying the idea of the construction.
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We may abbreviate this result as J = 1 + ϵIR, where R is the symmetric matrix of partial
derivatives Rjk = ∂2

jkH. Now, for a matrix A = 1+ϵB, we have det(A) = 1+ϵ tr(B)+O(ϵ2)
(why?). Applied to our construction, det(J) ≈ 1 + ϵ tr(AI) Remembering that IT = −I is
anti-symmetric, tr(AI) = tr(ITAT ) = −tr(IA) = −tr(AI), where we used elementary
properties of the trace. This proves det J = 1, within the required ϵ-accuracy, and in this way
the constancy of the phase space volume.

In our discussion of stability theory and of chaotic flows below we will understand the
far-reaching consequences of this finding.

3.2.5 Phase space portraits

Graphical representations of phase flow, so-called phase space
portraits are very useful in the qualitative characterization of
mechanical motion. The only problem with this is that phase
flow is defined in 2f dimensional space. For f > 1, we cannot
draw this. What can be drawn, however, is the projection of a
curve onto any of the 2f(2f −1)/2 coordinate planes (xi, xj),
1 ≤ i < j ≤ 2f . See the figure for the example of a coordi-
nate plane projection out of 3d–dimensional space. However, it
takes some experience to work with those representations and
we will not discuss them any further.

However, the concept of phase space portraits becomes
truly useful in problems with one degree of freedom, f =
1. In this case, the conservation of energy on individual curves H(q, p) = E = const. enables
us compute an explicit representation q = q(p, E), or p = p(q, E) just by solving the relation
H(q, p) = E for q or p. This does not “solve” the mechanical problem under consideration.
(For that one would need to know the time dependence at which the curves are traversed.)
Nonetheless, it provides a far–reaching characterization of the motion: for any phase space
point (q, p) we can construct the curve running through it without solving differential equations.
The projection of these curves onto configuration space (q(t), p(t)) 7→ q(t) tells us something
about the evolution of the configuration space coordinate.
Let us illustrate these statements, on an example where a closed solution is possible, the
harmonic oscillator. From the Hamiltonian H(q, p) = p2

2m
+ mω2

2
q2 = E, we find

p = p(q, E) = ±
√

2m

(
E − mω2

2
q2
)
.

Examples of these (ellipsoidal) curves are shown in the figure. It is straightforward to show
(do it!) that they are tangential to the Hamiltonian vector field

XH =

(
m−1p
−mω2q

)
.

At the turning points, p = 0, the energy of the curve E = mω2

2
q2, equals the potential energy.
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Now, the harmonic oscillator may be an example a little bit
too basic to illustrate the usefulness of phase space portraits.
Instead, consider the problem defined by the potential shown
in Fig. 3.2. The Hamilton equations can now no longer be
solved in closed form. However, we may still compute curves by
solution ofH(p, q) = E ⇒ p = p(q, E), and the results look as
shown qualitatively for three different values of E in the figure.
These curves give a far–reaching impression of the motion of
a point particle in the potential landscape. Specifically, notice
the threshold energy E2 corresponding to the local potential
maximum. At first sight, the corresponding phase space curve
appears to violate the criterion of the non-existence of crossing
points (cf. the “critical point” at p = 0 beneath the potential
maximum.) In fact, however, this isn’t a crossing point. Rather
the two incoming curves “terminate” at this point: coming
from the left, or right it takes infinite time for the particle to
climb the potential maximum.

EXERCISE Show that a trajectory at energy E = V ∗ ≡ V (q∗) equal to the potential maximum

at q = q∗ needs infinite time to climb the potential hill. To this end, use that the potential

maximum at q∗ can be locally modelled as an inverted harmonic oscillator potential, V (q) ≃
V ∗−C(q−q∗)2, where C is a positive constant. Consider the local approximation of the Hamilton

function H = p2

2m − C(q − q∗)2 + const. and formulate and solve the corresponding equations of

motion (hint: compare to the standard oscillator discussed above.) Compute the time it takes to

reach the maximum if E = V (q∗).

Eventually it will rest at the maximum in an unstable equilibrium position. Similarly, the out-
going trajectories “begin” at this point. Starting at zero velocity (corresponding to zero initial
momentum), it takes infinite time to accelerate and move downhill. In this sense, the curves
touching (not crossing!) in the critical point represent idealizations that are never actually
realized. Trajectories of this type are called separatrices. Separatrices are important in that
they separate phase space into regions of qualitatively different type of motion (presently,
curves that make it over the hill and those which do not.)

EXERCISE Take a few minutes to familiarize yourself with the phase space portrait and to learn

how to “read” such representations. Sketch the periodic potential V (q) = cos(2πq/a), a = const.

and its phase space portrait.

3.2.6 Poisson brackets

Consider a (differentiable) function in phase space, g : Γ → R,x 7→ g(x). A natural question
to ask is how g(x) will evolve, as x ≡ x(0) 7→ x(t) traces out a phase space trajectory. In
other words, we ask for the time evolution of g(x(t)) with initial condition g(x(0)) = g(x).
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Figure 3.2: Phase space portrait of a ”non–trivial” one-dimensional potential. Notice the “critical
point” at the threshold energy 2).

The answer is obtained by straightforward time differentiation:

d

dt
g(x(t)) =

d

dt
g(q(t),p(t)) =

f∑
i=1

(
∂g

∂qi

dqi
dt

+
∂g

∂pi

dpi
dt

)
(q(t),p(t))

=

=

f∑
i=1

(
∂g

∂qi

∂H

∂pi
− ∂g

∂pi

∂H

∂qi

)
(q(t),p(t))

,

where the terms ∂tg account for an optional explicit time dependence of g. The character-
istic combination of derivatives governing this expressions appears frequently in Hamiltonian
mechanics. It motivates the introduction of a shorthand notation,

{f, g} ≡
f∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (3.18)

This is expression is called the Poisson bracket of two phase space functions f and g. In the
invariant notation of phase space coordinates x, it assumes the form

{f, g} = (∂xf)
T I ∂xg, (3.19)
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where I is the symplectic unit matrix defined above. The time evolution of functions may be
concisely expressed in terms of the Poisson bracket of the two functions H and g:

dtg = {g,H}. (3.20)

We note that the Poisson brackets satisfy a number of algebraic properties:

▷ {f, g} = −{g, f}, (skew symmetry),

▷ {cf + c′f ′, g} = c{f, g}+ c′{f ′, g}, (linearity),

▷ {c, g} = 0,

▷ {ff ′, g} = f{f ′, g}+ {f, g}f ′, (product rule),

▷ {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0 (Jacobi identity),

where, c, c′ ∈ R are constants. The first three of these relations are immediate consequences
of the definition and the fourth follows from the product rule. The proof of the Jacobi identity
amounts to a straightforward if tedious exercise in differentiation.

Finally notice how Eq. (3.19) resembles a scalar product. To make this observation more
concrete, we observe that for phase space vectors, which we recall live in the tangent spaces
TxΓ, we may define an inner product:

ω : TxΓ× TxΓ → R,
(X,Y) 7→ XiIijYj = XT IY ≡ ω(X,Y).

This inner product is skew symmetric ω(X,Y) = −ω(Y,X), and non-degenerate. Further, to
each function f : Γ → R, we assign a vector field x 7→ TxΓ according to the following recipe:
multiply the vector of derivatives ∂xif(x) with the symplectic unity, I, to obtain x 7→ Xf (x)
with components Xf,i = Iij∂jf(x).

8
It is then straightforward to verify that

{f, g}(x) = ω(Xf (x),Xg(x)). (3.21)

To understand the meaning of these vector fields and their scalar product, note that

{f, g} = ∂ifIij∂jg = ∂ifXg,i = df(Xg), (3.22)

where we omitted the arguments x for clarity. By anti-symmetry, {f, g} = −dg(Xf ). Com-
bining the above formulas, we have

ω(Xf ,Xg) = df(Xg) = −dg(Xf ).

In other words, the scalar product measures how much the function f changes in Xg-direction,
vice versa. For example, the fact that the function H does not change along the Hamiltonian

8

Without further discussion beyond the scope of this introduction it is not obvious why we make I a part
of the definition. Just accept it for the time being.
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flow can be expressed as 0 = ω(XH ,XH) = dH(XH), where the first equality follows from
anti-symmetry. Since XH is tangent to the flow, Eq. (3.15), the second equality states the
conservation of H along it.

The structures introduced in this section define the starting point of what is called formal
mechanics, an amazingly rich web of structures revolving around Hamiltonian flows in phase
space. However, for reasons not exclusively related to time, we will not delve into this subject in
abstract generality. Indeed, from a perspective of modern physics, one of the prime applications
of formal mechanics is the description of chaotic dynamics

9
. We take this as an incentive to

reverse the order of the presentation: A brief discussion to chaotic dynamics will motivate the
introduction of advanced concepts of Hamiltonian dynamics tailored to its description.

3.3 Application: Hamiltonian chaos

Looking back, the majority of examples discussed so far in this
text described oscillatory, or free motion. Focusing on these is
both by their simplicity, and the fact that close to configura-
tions of mechanical equilibrium (think of a guitar string in rest)
motion tends to be oscillatory (guitar in a state of vibration).
More generally, however, we encounter different types of me-
chanical motion, which, broadly speaking, can be categorized
into two groups. The first is motion that is ’predictable’ in the
sense that a small perturbation, such as a small deviation in
initial conditions, will lead to predictable consequences. Such
dynamics is callled integrable, alluding to the solubility of the underlying equations of mo-
tion. (The practical solution can still be complicated, though.) The complementary class
is chaotic in that a small perturbation will lead to consequences exponentially divering in
time. No matter how small the perturbation, eventually it will lead to divergences reflecting
instabilities in the equations of motion. Chaos is a typical (but not necessary) phenomenon of
non-integrability, i.e. the absence of analytical solutions of equations of motion.

The majority of mechanical systems is neither fully integrable, nore fully chaotic, but lie
somewhere in-between. Even the mathematically and physically precise definition of chaos is
far from straightforward, and a subject of ongoing research. As a simple example, illustrating
the principle, consider the two-dimensional Henon-Heiles oscillator, defined by the Hamilton
function

H =
1

2
(p21 + p22 + q21 + q22) + q21q

2
2 −

1

2
q32 (3.23)

Where we have set dimensionful constants, such as masses or frequencies, to unity for sim-
plicity. This Hamiltoninan was proposed in 1964 as a simple model for motion of stars close

9

Another application field is quantum dynamics close to classical limits, where (semi)classical concepts of
classical mechanics can be applied.
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Figure 3.3: Poincaré plots defined by the condition q2(t) = 0 for inital conditions q1(0) = 0.5, p1(0) =
p2(0) = 0, and q2(0) = 0.8, 0.88, 0.8825, 0.95 from left to right. Note how the transition from regular
(left) to ergodic (right) motion occurs over a narrow parameter window.

to a galactic center
10
. For energies close to the local minimum of its potential shown in the

figure, the system is linearizable in the sense of our discussion of Section 1.4.3, and in this
limit becomes a two-dimensional harmonic oscillator. However, for larger energies, the terms
beyond quadratic order become important, and the motion begins to show signatures of chaos.

3.3.1 Poincaré Plots

To visualize this phenomenon, we introduce the concept of a surface of section aka Poincaré
plot. Surfaces of section provide potent vizualizations of dynamics in the lowest dimensional
phase spaces where chaotic motion may occur, namely the four dimensional spaces correspond-
ing to systems with two degrees of freedom, f = 2. (We will see momentarily, that systems
with just one degree of freedom are never chaotic.) Since energy is conserved in Hamiltonian
dynamics, we have one conservation law E(q1, q2, p1, p2), reducing the number of independent
variables on a surface of conserved energy down to three. Now let’s assume we monitor the
motion x(t) on this surface, and every time one of the coordinates assumes a specific value,
say q2(t) = 0, we graph (q1(t), p1(t)), or any other pair of the remaining three variables in a
plane. If we wait long enough, we generate a cloud of points, defining the surface of section.

How should we expect these clouds to look like? Imagine the fixation q2 = 0 like cutting
phase space with a knife. The three-dimensional plane (or hypersurface) defined in this way
may or may not intersect with the three-dimensional manifold on which the dynamical motion
takes place. If they intersect, and if, in the limit of infinitely long tracking t → ∞, the
motion fully covers the energy surface

11
the Poincaré plot should yield a uniformly filled two-

dimensional area. However, if there is another conservation laws besides energy, the motion
will be confined to a two-dimensional surface, and the Poincaré plot, if not empty, will show
intersection curves.

Figure ?? shows Poincaré plots for the Henon-Heiles oscillator for differently chosen initial
conditions. On the left, we observe a closed intersection curve, which should remind us

10

Hénon, M.; Heiles, C. (1964). ”The applicability of the third integral of motion: Some numerical experi-
ments”. The Astronomical Journal. 69: 73–79.

11

We call this the case of ergodic motion, i.e. the Hamiltonian flow uniformly covering the energetically
accessible regions in phase space.
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of the closed phase space curves identified earlier for the harmonic oscillator (more on this
connection will follow). However, only a slight change in initial conditions radically changes the
situation towards ergodic forms of motion. Also notice that the transition includes structure,
notably the breakup of closed curves into smaller closed curves visible in the second panel.
Notice that similar constructions can, in principle, we defined for higher dimensional surfaces.
However, in that case (think about it) the interpretation of the ensuing portraits will be far
less straightforward, and different techniques for diagnosing ergodicity or chaos are applied.

3.3.2 Linear stability theory

Chaos is associated with dynamical instability. The study of such phenomena generically begins
with the analysis of fixed points, and of their stability. A fixed point x∗ of a Hamiltonian system
is a point in phase space which remains stationary, think of a particle resting at the bottom
of a potential well. What happens, if we distort the configuration a little, x∗ → x∗ + y? Will
the trajectory defined by the distorted initial condition run away from x∗, or stay close to it,
and if so, how? In the following, we learn how to formulate and answer such questions, in
generality.

In mathematics, a system of coupled first order differential equations,

dtx(t) = f(x(t)), x(0) = x0,

f(x) = (f 1(x), . . . , fn(x))), x ∈ Rn, is called a dynamical system. With f(x) = XH(x),
our Hamilton equations define a dynamical system, however, the concept is so general, and
important, that we do not specialize to the Hamiltonian case just yet.

A fixed point is defined by the vanishing of the r.h.s., f(x∗) = 0. In order to understand
what happens in the vicinity of it, we substitute the configuration x(t) = x∗ + y(t) into
the equation, assume smoothness of f around its zero and Taylor expand to first order. The
components of xi(t) then evolve according to

dtx
i(t) = dt(x

∗i + yi(t)) = f i(x∗ + y(t)) ≈ f i(x∗) +
∂f i(x∗)

∂xj
yj(t),

or,

dty(t) = Ay(t), Ai
j =

∂f i(x∗)

∂xj

∣∣∣∣
x=x∗

,

where we used dtx
∗ = f(x∗) = 0, and ∂f i(x∗)

∂xj = ∂f i

∂xj

∣∣
x=x∗ We observe that the deviation vector

evolves according to a linear first order differential equation, governed by a matrix A, which
in turn is determined by the derivatives of f at the fixed point.

The linear equation is solved by
12

y(t) = exp(At)y(0).

12

Recall that the matrix exponential is defined by the formal Taylor series, exp(B) =
∑

n
1
n!B

n.
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To understand the different classes of behavior, we assume A to be diagonalizable with eigven-
vectors bvj and -values λj. An expansion y = yjvj in the eigenbasis then leads to the solution

y(t) =
∑
j

eλjtyj(0)vj.

Recall that eigenvectors and -values are generically complex, even if the underlying matrix is
real. Taking this fact into account, we may anticipate the following types of near-fixed point
evolution:

• Oscillatory motion around the fixed point: all eigenvalues purely imaginary, Re(λj) =
0;

• Damped oscillatory motion: eigenvalues have finite negative real part, Re(λj) < 0;

• Attenuated motion back to the fixed point: eigenvalues real and negative, Re(λj) <
0, Im(λj) = 0;

• Instability: there exist eigenvalues with positive real part, Re(λj) > 0, for at least one
i.

In the last case, a deviation in the direction vj will grow exponentially, ∼ vje
λjt, hence the

fixed point is unstable and the system will flow away from it. In such cases, the condition
that the deviation y is small holds only for short time scales and different solution methods
must be applied to describe the dynamics at longer time scales. Let us illustrate the above
cases on a few examples:

EXAMPLE Consider the one dimensional damped oscillator, described by the equations of
motion

dtq =
1

m
p,

dtp = −mω2q − 2γp.

For γ = 0, these are the Hamilton equations of motions of an harmonic oscillator of frequency ω,
with H = p2/2m+mω2q2/2. The term proportional to γ describes friction, i.e. a de-accelarating
force proportional to velocity or momentum. The equations are already linear, and the resting
configuration (q, p) = (0, 0) is a fixed point. With

A =

(
1
m

−mω2 −2γ

)
and x = (q, p), the equations of motion assume the form dtx = Ax. The eigenvalues of this
matrix are obtained as (do it!)

λ± = −γ ± i
√
ω2 − γ2.

Even without solving for the eigenvectors and specific solutions, we can anticipate two different

type of motion: for ω > γ, we have complex eigenvalues. The negative real part, γ, desccribes
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damping, and the imaginary part,
√
ω2 − γ2 oscillation with a frequency modified by damping.

The net result is damped oscillatory motion. (Think of the sound of a musical instrument fading

due to attenuation.) For strong friction, γ > ω, the eigenvalues are negative and real, and the one

with smaller real part −γ +
√

γ2 − ω2 ≈ ω2

2γ describes an exponential approach ∼ exp(−tω2/2γ)

towards the resting fixed point. (Think of a pendulum immersed in syrup.)

EXAMPLE Consider the Hamiltonian H(q, p) = 1
2mp2 + V (q) with the washboard potential

V (q) = −U cos(aq), at constant U > 0. The Hamilton equations of motion have fixed points at
p∗ = 0 and q∗ = nπ/a. For even n they correspond to particles resting at minima of the potential,
for odd n at its hills. Linearization of the equations of motion for x = x∗ + y leads to (verify it!)

dty =

(
0 1

m
−Ua2(−1)n 0

)
y

with eigenvalues z± = ±
√

(Ua2/m)(−1)n+1. For the minima, they are purely imaginary and of

opposite sign, corresponding to oscillatory motion with frequency ω = a
√

U/m. These are the

harmonic oscillators defining the dynamics close to the minima of the potential. For odd n, we

have a likewise sign-opposite real eigenvalues λ± = a
√
U/m, corresponding to accelerated motion

away from the unstable hill-fixed points. (Write down solutions for concretely specified initial

conditions and discuss their coordinate and momentum dependence.)

Are all these scenarios realized in Hamiltonian dynamics? The discussion of the second ex-
ample gives us a hint that this may not be the case. We saw that both for oscillatory and
unstable motion, the eigenvalues characterizing the problem came in sign inverted pairs ±λ.
To understand if this is a general structure, let us go back to the definition of the Hamiltonian
vector field in Eq. (3.15). Consider the Hamilton equations ẋi = Iij∂jH(x) ≡ Xi(x) linearized
in y around a fixed point x∗. With Xi(x

∗ + y) ≈ Xi(x
∗) + ∂kXi(x

∗)yk, we obtain

ẏi = Aikyk, Aik = Iij∂
2
jkH(x∗),

i.e. the same matrix structure that featured before in our discussion of the Liouville theorem
in section 3.2.4. With the abbreviated notation A = IR, and the symmetric Rjk = ∂2

jkH(x∗),
we need to understand the eigenvalues of a matrix A possessing a curious symmetry: With
IT = −I, and IT I = 1,

AT = RT IT = IT IR(−I) = −ITAI.

From this relation, we obtain a condition on A’s eigenvalues: suppose that λ is one of them,
i.e. det(λ− A) = 0. Using properties of the determinant, we obtain

det(λ− A) = det(λ− A) det(IIT )︸ ︷︷ ︸
1

= det(IT (λ− AT )I) = det(λ+ A) = det(−λ− A),

where in the final step we used that the evenness of A’s matrix dimension. In other words, −λ
is an eigenvalue too. This finding is closely related to our earlier observation of volume con-
servation under Hamiltonian flow. For example, consider a parallelogram in a two-dimensional
phase space aligned along the directions of eigenvectors corresponding to eigenvalues ±λ. In
the course of time, its edges will shrink and grow according to the factors exp(±λt). However,
the area ∝ exp(λt) exp(−λt) remains constant.
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3.4 Integrability

Linear stability theory can diagnose instabilities in the vicinity of fixed points of dynamical
motion, however, such instabilities need not be associated to chaos. A case in point is the
motion in the washboard potential discussed in the previous example: while the hilltops of the
potential define unstable fixed points, there is no chaoticity in the dynamics.

The best avenue towards understanding actual chaos begins with an analysis of its absense,
the case of integrable motion. We will begin with a somewhat technical definition of
integrability, then discuss its physics, and in a third step use this discussion as a platform to
venture into regions where integrability is absence, and chaos may await.

We call a mechanical system with f degrees of freedom integrable if there exist f inde-
pendent and mutually involutive functions fi(x) which are dynamically conserved in its motion,
fi(x(t)) = const. There are two keywords in this definition which require explanation: first,
two functions f and g are involutive in the sense of classical mechanics, if {f, g} = 0. Second,
much as with linearly dependent vectors, functions fi are dependent functions, if coefficient
functions ci(x) can be found such that

∑
i ci(x)dfi(x) = 0, i.e. if the differentials, which are

linear maps, and hence can be added and subtracted, can be linearly combined to zero.

What is the meaning of these conditions and of the definition of integrability? The con-
dition of independence serves to prevent overcounting. For example, consider a mechanical
system for which three components of angular momentum are conserved, Li(x) = const.
Now, obviously any function of these components F (L1, L2, L3), will likewise be conserved.
However, dF (x) =

∑
i ∂Li

F (x)dLi(x), in violation of independence. In this formula ∂Li
F (x)

assume the role of the coefficient functions. According to Eq. (3.21), the condition {fi, fj} = 0
means ω2(Xfi ,Xfj) = 0.

In order to understand the physical meaning of the definition, we first need to prove the
following mathematical consequence of the definition: we first note that the mechanical motion
takes place on an f -dimensional manifold, T , defined by the constancy fi(x) = const. This
is not hard to understand. Phase space is parameterized by 2f coordinates, f of these are
constraint by the f equations fi(x) = const., and so we are left with a 2f−f = f dimensional
generalized surface, or manifold of motion. Let us assume, that T is compact, i.e. we exclude
unbounded motion in any direction. (Think of pendula, or planetary motion.) We now use
the above conditions to demonstrate that the vector fields Xfi are tangent to T and linearly
independent. Tangency means, that the functions fi do not change in Xj-direction, for if they
did, Xj would ’point away’ from T . In other words, we require dfi(Xfj) = {fi, fj} = 0, where
Eq. (3.22) was used, i.e. the tangency condition is a consequence of the involution property.
To prove the linear independence, we assume the opposite, i.e. the existence of coefficient
(functions) such that

∑
i ci(x)Xi(x) = 0. In particular, the scalar product with any other

phase space vector X would vanish, ω2(ciXi,X) = cidfi(X) = 0. However, this cannot be,
due to the assumed independence.

We still don’t know what all these conditions are useful for. However, this follows from an
important, and deep, statement we now import from mathematics: informally, it states that a
compact f -dimensional surface supporting f linearly independent continuous tangent vector
fields is diffeomorphic to an f -dimensional torus. What does this mean? Try to imagine an
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f -dimensional closed and finite surface, it will help to focus on the case f = 2. Examples
include spheres, or deformations of spheres, tori (the abstractions of rings with one hole), or
surfaces supporting multiple holes. Of these, only the torus satisfies the above condition. To
understand this, imagine your surface covered with hair, and trying to comb it such that there
are no singularities (this would be the analog of a globally continuous tangent vector field.)
On a sphere, this is not an option, there will remain a discontinuous ‘vortex’, a fact that will
be confirmed by any barber. However, a torus, and only the torus, can be combed not just in
one, but in two directions, namely the directions aligned with its two ring like bounding circles:

INFO An f -dimensional torus T ≃ S1 × · · · × S1 is a manifold diffeomorphic to the product

of f -circles. As such, it can be parameterized in terms of f coordinates ϕi playing the roles of

angles.

Note that ‘diffeormorphic’ to a torus means that our motion manifold need not actually look
like a torus. However, topologically, it is one. Heuristically, this includes wild deformations
of tori made of knead. If you now imagine taking a knife and cutting your torus, you will
end up with circles or unions of circles in the plane of intersection. This is precisely what we
observed earlier for the Poincaré plots of the Henon-Heiles oscillator. Close to the minimum
of its potential, q1 = q2 = 0, we can safely forget about the terms beyond quadratic order
in qi (why?). The ensuing two-dimensional harmonic oscillator has rotational symmetry in
the (q1, q2) plane, which defines a conservation law, namely the constancy of planar angular
momentum. Along with the conservation with energy, this makes for two conserved quantities
for an f = 2 system, integrability. The Poincaré plots defined in its four-dimensional surface
reveal circular structures as intersection manifolds. For a simpler example of an f = 1 torus,
consider the ellipsoidal (diffeomorphic to circles) phase space curves of the harmonic oscillator.

EXERCISE Consider the f = 6 two-body central force problem. Is it integrable in the sense of

the above definition?

3.5 Canonical transformations

Having identified the torus geometry of the generalized surfaces in phase space on which
integrable motion takes place, we next ask how to describe it in quantitative terms. This is,
in the first place, a question concerning a good choice of coordinates.

In the previous chapter, we have emphasized the flexibility of the Lagrangian approach
in the choice of problem adjusted coordinates: any diffeomorphic transformation qi 7→ q′i =
q′i(q), i = 1, . . . , f leave the Euler–Lagrange equations form–invariant. Now, in the Hamilto-
nian formalism, we have twice as many variables xi, i = 1, . . . , 2f . Of course, we may consider
“restricted” transformations, qi 7→ q′i(q), where only the configuration space coordinates are
transformed (the transformation of the pi’s then follows.) However, things get more inter-
esting, when we set out to explore the full freedom of coordinate transformations “mixing”
configuration space coordinates, and momenta. This would include, for example, a mapping
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qi 7→ q′i ≡ pi, pi 7→ p′i = qi (a diffeomorphism!) that exchanges the roles of coordinates and
momenta.

This freedom raises tempating new perspectives. For example, an f -dimensional torus
can be parameterized by f angles ϕi. We also know that an integrable system possesses f
conserved quantities pi. Wouldn’t it be nice to use Xi ≡ (ϕi, pi) as a new set of 2f generalized
coordinates? The issue with such choices is that many of them will not be ‘canonical’. This
is another way of saying that the Hamilton equations of motion transformed to the new set of
variables will not assume the form Ẋ = I∂XH

′(X), with a transformed function H ′.

3.5.1 Definition

Since much of what we are doing in Hamiltonian dynamics makes explicit reference to the
form of the Hamilton equation, this is a price we are not ready to pay. Instead, we will restrict
ourselves to transformations that are canonical in the sense that the form of the equations of
motion remains conserved: We call a coordinate transformation “canonical”, if the following
condition is met:

A diffeomorphism x 7→ X(x) defines a canonical transformation if there exists a
function H ′(X) such that the representation of solution curves (i.e. solutions of the
equations ẋ = I∂xH) in the new coordinates X = X(x) solves the “transformed
Hamilton equations”

Ẋ′ = I∂XH
′(X). (3.24)

What may appear strange about this definition is that it does not tell how the “new” Hamilto-
nian H ′ relates to the old one, H. In the most general formulation of the Hamiltonian mechan-
ics, where we allow for coordinate transformations X(x, t) carrying explicit time dependence

13
,

finding H ′(X) can be a difficult task. However, we will here restrict ourselves to maps X(x).
Referring to our discussion below, in these cases we simply have H ′(X) = H(x(X)), the new
Hamiltonian is the old one expressed in the new coordinates.

Before exploring the ways by which canonical transformations can be constructively ob-
tained, let us ask how a ‘good canonical transformation’ might facilitate our description of (for
now integrable) mechanical systems. Supposed we had managed to find a canonical transfor-
mation from our original phase space coordinates x = (q,p) to a new set X = (ϕ, I), such
that the f coordinate Ii are dynamically conserved. In other words, Ii(t) = const. along phase
space trajectories. Since the transformation is canonical, dtIi(t) = −∂ϕi

H ′(X) = 0, meaning
that the Hamiltonian expressed in new coordinates does not depend on the ϕ-variables. The
time dependence of the latter is then given by

ϕ̇i(t) = ∂IiH
′(I) ≡ ωi = const.,

13

Imagine a system with constraints explicitly depending on time, such as the motion of a bead on a
time-dependent loop. In this case, one might want to consider such generalizations.
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where we used the constancy of all Ij. This is trivially solved as ϕi(t) = ωit + ϕi(0). Now
remember that our motion manifold is a torus, i.e. an object described by f angular coordi-
nates. The discussion above suggests that these f coordinates are just angles ϕi required to
parameterize the f -dimensional torus on which integrable motion takes place.

3.5.2 Canonical transformations: why?

Why would one start thinking about generalized coordinate transformations mixing config-
uration space coordinates and momenta, etc.? In previous sections, we had argued that
coordinates should relate to the symmetries of a problem. Symmetries, in turn, generate con-
servations laws (Noether), i.e. for each symmetry one obtains a quantity, I, that is dynamically
conserved. Within the framework of phase space dynamics, this means that there is a function
I(x) such that dtI(x(t)) = 0, where x(t) is a solution curve. We may think of I(x) as a
function that is constant along the Hamiltonian flow lines.

Now, suppose we have s ≤ f symmetries and, accordingly, s conserved functions Ii, i =
1, . . . , f . Further assume that we find a canonical transformation to phase space coordinates
x 7→ X, where P = (I1, . . . , Is, Ps+1, . . . , Pf ), and Q = (ϕ1, . . . , ϕs, Qs+1, . . . , Qf ). In
words: the first s of the new momenta are the functions Ii. Their conjugate configuration
space coordinates are called ϕi.

14
The new Hamiltonian will be some function of the new

coordinates and momenta, H ′(ϕ1, . . . , ϕs, Qs+1, . . . , Qf , I1, . . . , Is, Ps+1, . . . , Pf ). Now let’s
take a look at the Hamilton equations associated to the variables (ϕi, Ii):

dtϕi = ∂IiH
′,

dtIi = −∂ϕi
H ′ !

= 0.

The second equation tells us that H ′ must be independent of the variables ϕi:

The coordinates, ϕi, corresponding to conserved momenta Ii are cyclic coordinates,

∂H ′

∂ϕi

= 0.
At

this point, it should have become clear that coordinate sets containing conserved momenta,
Ii, and their coordinates, ϕi are tailored to the optimal formulation of mechanical problems.

The power of these coordinates becomes fully evident in the extreme case where s = f ,
i.e. where we have as many conserved quantities as degrees of freedom. In this case

H ′ = H ′(I1, . . . , If ),

14

It is natural to designate the conserved quantities as “momenta”: in section 2.2.4 we saw that the
conserved quantity associated to the “natural” coordinate of a symmetry (a coordinate transforming additively
under the symmetry operation) is the Noether momentum of that coordinate.
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and the Hamilton equations assume the form

dtϕi = ∂IiH
′ ≡ ωi

dtIi = −∂ϕi
H ′ = 0.

These equations can now be trivially solved:
15

ϕi(t) = ωit+ αi,

Ii(t) = Ii = const.

A very natural guess would H ′(X, t)
?
= H(x(X), t), i.e. the “old” Hamiltonian expressed

in new coordinates. However, we will see that this ansatz can be too restrictive.
Progress with this situation is made once we remember that solution curves x are extrema

of an action functional S[x] (cf. section 3.2.2). This functional is the x–representation of an
“abstract” functional. The same object can be expressed in terms of X–coordinates (cf. our
discussion in section 2.1.3.) as S ′[X] = S[x]. The form of the functional S ′ follows from the
condition that the X–representation of the curve be solution of the equations (3.24). This is
equivalent to the condition

S ′[X] =

∫ t1

t0

dt

(
f∑

i=1

PiQ̇i −H ′(Q,P, t)

)
+ const.,

where “const.” is a contribution whose significance we will discuss in a moment. Indeed, the
variation of S ′[X] generates Euler–Lagrange equations which we saw in section 3.2.2 are just
the Hamilton equations (3.24).

15

The problem remains solvable, even if H ′(I1, . . . , If , t) contains explicit time dependence. In this case,

ϕ̇i = ∂IiH
′(I1, . . . , If , t) ≡ ωi(t), where ωi(t) is a function of known time dependence. (The time dependence

is known because the variables Ii are constant and we are left with the externally imposed dependence on
time.) These equations – ordinary first order differential equations in time – are solved by ϕi(t) =

∫ t

t0
dt′ ωi(t

′).
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phase space, 12
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