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Plan

1. Intro: Topological insulators
2. Reducing dimension: Understanding a Tl through scattering

3. Increasing dimension: Tls protected by a statistical symmetry
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Topological insulators and superconductors

Topological insulator is

» A material with a band gap in the bulk
(and a certain discrete symmetry)

» It has protected zero energy states at the edge

» Number of these states is a topological invariant Q[H(k)],
an integer which does not change under small perturbations.

» Q is a macroscopic quantity, defined for any insulator with
proper symmetry.
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Classification

Three discrete symmetries (Altland&Zirnbauer):

T : H(k) = UrH*(—=k)UL, P : H(k) = —UpH*(—k) UL,
C: H(k) = —UcH(k)U},

give 10 symmetry classes and

a lot of topological insulators (Kitaev, Schnyder et al.):

Symmetry d
class 1 2 K 4 ) 6 7 8
A Z Z Z Z
Alll Z Z Z Z
Al Z Zo 7o 7
BDI Z Z Zy 7o
D Zo 7 Z Zo
DI Zo Zo Z Z
All Zy Zo Z Z
cl Z Zo 7o Z
C Z Zo 7o 7
Cl Z VA




Many descriptions

» surface Hamiltonian avoids fermion doubling

» K-theory (Kitaev)

» top.-term in o-model (Schnyder, Ryu, Ludwig)

» ... in field theory (Qi, Hughes, Zhang & Ryu, Moore, Ludwig)
> string theory (Ryu, Takayanagi)

» Green's functions (Gurarie, Essin)

» c*-algebra (Hastings, Loring)
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Scattering matrix

Ay

(4 (Y
<¢R> out a 5 <¢R>in

» Describes scattering of free particles from the system at the
Fermi level.

» Is also constrained by symmetry.

» Easy to tell an insulator from a conductor.

What about Q(S)?



Simple case: Majorana fermions (1D superconductor)

2 Topological superconductor &}

Reflection matrix r has
Current conservation:

rmf=1=|detr| =1
Particle-hole symmetry:

r, r r, r
r= ("¢ "he) = °e ’f = Imdetr =0
Feh Ihh e Tee

detr = +1

Together:



Simple case: Majorana fermions (1D superconductor)

F— T 2 Topological superconductor &

detr = —1 = det(r — 1) = 0 < bound state at zero energy.
= Superconductor is in topologically nontrivial phase.



Scattering invariant

O =signdetr



Scattering invariant

O =signdetr

Phase transition is accompanied by a single fully transmitted mode.



Other Tl's in 1D

Idea:
1. Find all disconnected groups of fully reflecting r's.
2. Find what distinguishes them.
3. Check that this quantity is indeed Q(r).



Other Tl's in 1D

Idea:
1. Find all disconnected groups of fully reflecting r's.
2. Find what distinguishes them.
3. Check that this quantity is indeed Q(r).

It works!

Symmetry‘ D Dl Alll  BDI  ClI

O(r) |signdetr signPfr wu(r) wv(r) wv(r)



Question

What about higher dimensions?



Higher dimensions: QHE

-
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Edge state

Edge state
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» Not insulating due to edge states?
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Higher dimensions: QHE

» Not insulating due to edge states?
Solution: roll it up.

» No difference from 1D?
Solution: thread flux, quantized charge pumping appears.

» Charge pumping is a winding number of det r(®):
Q(r) = 027r dCDd% Im log det r(¢)
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Dimensional reduction

. Start from d-dimensional Hy(ky).

1

2. Close d — 1 dimensions with twisted boundary conditions.
3. Calculate r(kg—1).
4

. Classify topologically disconnected families of r(k).

Q: Isn't that a lot of work?



Dimensional reduction I

Idea: reduce problem to a known one.
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Dimensional reduction I

Idea: reduce problem to a known one.
With chiral symmetry C, r(k) = rf(k), so define

Hy_1(k) = r(k)

Without chiral symmetry define

Hoa0)= (149 D)

This Hy_1(k) has the same topology as r(k),
(Symmetry of Hy_1 is shifted according to the Kitaev's periodic table.)



Algorithm to calculate Q(S)

1. Start from d-dimensional Hg(kq).
2. Close d — 1 dimensions with twisted boundary conditions.
3. Calculate r(ky—1) and Hg_1(k).
4. Look up in the table Q(Hy—_1).
Symmetry d
class 1 2 3 4 5 6 7 8
A - o -z - -z
ATII /A Z - Z - Z -
Al - - -
- Zy Tn 7
BDI Z, - - - L - L I
D . Z - - - L - I
DIII Za \Za / - - - Z -
ATl -l T, Z - - - L
CII Z, - T L L - - -
C -z - Za Ln L - -
CI - - Z - Ly Z» Z -




Summary |

1. Topology of S(k) coincides with that of H(k)

2. This provides a highly efficient method to calculate @
systems of 2000 x 2000 vs 60 x 60 in 2D

and of 50 x 50 x 50 vs 12 x 12 X 12 in 3D
3. Any observable consequence of topology in transport must be
connected to Q(S)
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Non-TI protected surface states

Systems with conducting surface, but without bulk top. invariant:

» 3D topological insulator with
random magnetic field (broken
time-reversal):
surface at the critical point of QHE © At (symplecic)
transition, finite conductivity
oc~05
(Nomura, Ryu, Koshito, Mudry, Furusaki)

-1/2n%g? +Dexp(-2ng)|




Non-TI protected surface states

Systems with conducting surface, but without bulk top. invariant:

» 3D topological insulator with
random magnetic field (broken
time-reversal):
surface at the critical point of QHE
transition, finite conductivity
oc~05
(Nomura, Ryu, Koshito, Mudry, Furusaki)

» weak topological insulator

two randomly coupled Dirac cones,
always metallic

(Ringel, Kraus, Stern & Mong, Bardarson,

Moore)



The general idea: undefined surface topological invariant

Statistical topological insulators:

Surface of a system can be a topological insulator,
but it cannot choose which kind of a TI.

Hence it cannot become an insulator.
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Constructing a toy model

1. Make a layered system

2. Layers carry a staggered topological invariant.

3. Different staggering of couplings changes # of edge states
(of the surface).

4. If the ensemble is reflection symmetric, surface cannot be
localized.
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» Assume the surface is gapped and has definite topology.

» Consider a ‘domain wall' between H and UHU™1:
it has to carry no protected edge states.

» Add Hs and UH;U™! on the surface, such that the surface
will stay gapped.

vacuum

Hy ;'UHSU

O

UHU™



STls and their bulk invariant (Z, symmetry)

» Assume the surface is gapped and has definite topology.

» Consider a ‘domain wall' between H and UHU™1:
it has to carry no protected edge states.

» Add Hs and UH;U™! on the surface, such that the surface
will stay gapped.

» Remove disorder (without closing the bulk gap)

vacuum

He HHU

O

H clean



STls and their bulk invariant (continued)

» Number of states at the domain wall can be counted by
counting gap closings AQ in the path
Hclean + Hs — Hclean + UHs U_l-



STls and their bulk invariant (continued)

» Number of states at the domain wall can be counted by
counting gap closings AQ in the path
Hclean + Hs — Hclean + UHs U_l-

» AQ # 0 if Heean has odd # of Fermi surfaces at the surface
(odd mirror Chern number, one Majorana per unit cell, etc.)

H UHU! H UHU!
B b
a®s @ o

Q = (—1)AQ = 41, trivial STI. Q = (~1)AQ = —1, nontrival STI.




Really good things are good more than once

The construction can be repeated ad infinitum by adding extra
symmetries and dimensions.

Q = (-1)89 = (1A



Applications |

Comparison an array of Kitaev chains (px-wave superconductor)
and a stack of @ = 42 BDI wires.




Applications |

Comparison an array of Kitaev chains (px-wave superconductor)
and a stack of @ = 42 BDI wires.

N

For Kitaev chains G ~ L=1/2: for BDI wires G ~ et
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Triangular I\/Iajorana lattice (Laumann, Ludwig, Huse, Trebst & Kraus, Stern)

uniform
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Applications |l

Triangular I\/Iajorana lattice (Laumann, Ludwig, Huse, Trebst & Kraus, Stern)

uniform
.

Always metallic if two statistical reflection symmetries are present:
dG/dlogL >0
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Summary |l

1. There are many topological phases protected by a statistical
symmetry.

2. These have bulk-edge correspondence and a bulk invariant
protecting their surface from localization.

3. Statistical symmetry can be applied to prove the absence of
an insulating phase.



Conclusions

» Topology of a topological insulator manifests in one dimension
lower through its scattering matrix.

» Adding an ensemble symmetry allows to make a new
topological insulator in dimensions higher than the original
one.



Conclusions

Thank you all.
The end.



