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Plan

Using phase difference in a Josephson junction as a means of
breaking time reversal symmetry.

I What does ‘breaking time reversal’ mean?

I Why it won’t work.

I How to make it work (and why 3 is much better than 2)?



Time reversal breaking in a mesoscopic JJ

Several manifestations:

I Splitting of Kramer’s degeneracy
(Chtchelkatchev&Nazarov, Béri&Bardarson&Beenakker)

I Closing of the induced gap

I Protected zero energy level crossings (switches in the ground
state fermion parity)

P = Pf(iH)

I Spectral peak in the DOS (Ivanov, Altland&Bagrets)

ρ(E ) = ρ0

(
1 +

sin(2πE/δ)

2πE/δ

)



Setup and formalism

Scattering matrices of electrons and holes:
Sh(−E ) = S∗e (E )

Andreev reflection matrix:
rA = ie iφi

Bound state condition:
Se(E )rASh(E )r∗Aψ = e−2i arccos(E/∆)ψ
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Short junction limit

S(E ) ≈ S(0)

Lowest density of Andreev states, strongest effect phase difference
on a single state.
Due to unitarity and time reversal symmetry of S the energies are

given by En = ±∆
√

1− Tn sin2(φ/2) (Beenakker)



Why it won’t work

I Splitting of Kramers degeneracy

:-(
δE ∼ E 2/ET < ∆2/ET

I Closing of the gap

:-(
|E | ≥ ∆ cos(φ/2)
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A big improvement

All the special properties of the spectrum originate from the small
number of leads!



Kramers degeneracy splitting

Take a Rashba quantum dot with E ∼ ESO , R & lSO , and λ . R

Calculate the splitting between the lowest two Andreev levels
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Kramers degeneracy splitting

Take a Rashba quantum dot with E ∼ ESO , R & lSO , and λ . R
Calculate the splitting between the lowest two Andreev levels
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Protected level crossings

Once again, try a random quantum dot:
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Protected level crossings

Are level crossings allowed for any (φ1, φ2)?
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No: the gap may only close when all the clockwise phase
differences are smaller (or larger) than π.
(Note that this result holds for any junction)
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Proof

1. The expression for Andreev spectrum:
SrAS

∗r∗Aψ = ω2ψ, E = ∆ Imω

2. The simplified expression for Andreev spectrum:
(SrA − rAS

T )ψ = 2e iα |E |∆ ψ

3. S = −ST due to time reversal.

4. This means Sψ ≡ ψ′, S(rAψ) = 2|E |e iα
∆ ψ − (rAψ

′)

5. The necessary and sufficient condition for existence of a
unitary S :

∃ψ,ψ′ : 〈ψ| rA |ψ〉+ 〈ψ′| rA |ψ′〉 = 2|E |
∆ eiχ 〈ψ′|ψ〉 .
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Proof II

1. We get:
|E | ≥ 1

2 ∆ |〈ψ| rA |ψ〉+ 〈ψ′| rA |ψ′〉| .

2. Graphical solution:

3. The lower bound on the gap:

E ≥ ∆ min
i ,j

cos
φi−φj
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Gap closing and the spectral peak

Both phenomena are visible

XIn the ensemble
(averaging over random
antisymmetric S)
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Conclusions

I Superconducting phase difference can strongly break time
reversal symmetry in a Josephson junction.

I This requires more than two superconducting leads.

I Spin degeneracy is split by a large fraction of ∆.

I The induced superconducting gap only closes in a a finite
subregion of the phase space.



Conclusions

Thank you all.
The end.


