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2+1D Topologically ordered states

Topology-dependent degeneracies,

Quasiparticles with fractional charge and statistics,

Long range entanglement
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An aspect of topological states that has received little
attention so far is the physics of extrinsic defects:

* |t's well-known that gapless robust edge states can
provide a window into the topological phenomena of

chiral topological states (eg FQH)  wen 1990

* Similarly, the properties of gapped boundaries,
junctions between different gapped boundaries, and
other “extrinsic” defects can provide a new window

into topological phenomena
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Quasiparticle loop operator: WZ(C) — eil $e a-dl



Chiral edge theory (wen 1)
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Electron tunneling across two 1/3 Laughlin states
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Electron tunneling 0L = —t cos(3(¢1 — ¢2))

Large t 2 Gaps modes <ei(¢1—¢2)> — 627773?%/3



Double layer (1/3 + 1/3)

Barkeshli, Qi PRX 2012
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Topologically Distinct Edge Phases!



Domain Walls Between Different Edge Phases
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“Twisted” tunneling induces
branch cut between layers




Branch cut effectively changes topology

* In bilayers, pair of defects (branch points) creates “worm hole”

V4

flip the
top layer
—

Barkeshli, Wen (2010)
Barkeshli, Qi (2012)



* Every pair of defects add genus 1 to the manifold

2n defects on a sphere genus g=»-1 surface

Defects called genons---genus generators

Barkeshli, Wen (2010)
Barkeshli, Qi (2012)



Quantum dimension of genons

* v=1/m Laughlin FQH state in each layer =

ground state degeneracy ms,

each pair of defects add m degrees of freedom

- Each defect has quantum dimension /i

Jm state"s?‘v
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W(b) = ei(@r1=612)(B1) o —i(¢n1—r2)(B2)

ax-'i;_;_\___x W(a),Hl = [W(b),H| =0
e/ W (@)W (b) = W (b)W (a)e?™/?

n pairs of genons on sphere = n - 1 copies of loop algebra
- 3n-1lstates
= Quantum dimension = \/§



Localized “parafermion” zero modes

* Twist defects/genons lead to localized zero energy states
for some quasiparticles

* Genons in bilayers can absorb/emit fractional excitons :

I §> fractional exciton
(a,-a)

Pair-create
in one layer




Parafermion zero mode operators

 Zero mode = quasiparticle exciton operators at domain walls:

;= o (PR1—PR2)(T4)
2misgn(j—k)/3

Qi — QR0 E
Z, “parafermion” algebra

Beyond Majorana zero modes

Exponentially
localized
to defect.
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Projective braiding statistics of genons

* Braiding two genons = “Dehn twist” on the high genus surface

Overall phase not topological = Projective non-Abelian statistics

1 braiding

e—




Cooper pair tunneling in 1/3 Laughlin state

0L = — %(\IIZR\IJZL + H.c.) = —tcos(3(¢r + ¢1))
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Large t 2 Gaps modes <ei(¢R‘|‘¢L)> — p2min/3

Topologically distinct way to gap out modes (cf. normal tunneling)



Normal — Superconducting Domain Walls

FQH Lindner, Berg, Refael, Stern 2012;

' ‘ Clarke, Alicea, Shtengel 2012;
9 % -3 S€-- X norma :

Cheng 2012; Vaezi 2012
FQH IQSH: Fu-Kane 2008

Quantum Dimension V2y/m  modd
of domain walls: m/2  meven

Parafermion
zero modes




General theory of topologically distinct gapped edges?
Domain walls and junctions?

Previous Work:

1. Beigi, Shor, Whalen (2011) Gapped edges of Kitaev quantum
double models

2. Kitaev, Kong (2012) Gapped edges of Levin-Wen models

3. Kapustin-Saulina (2011) Conjectured classification of “topological
boundary conditions” in Abelian CS theory

4. Fuchs, Schweigert, Valentino (2013) Mathematical theory of
“topological boundary conditions” for general Modular Tensor Category

5. M. Levin (2013) General condition for possibility of a gapped edge
in Abelian states



Classification of general defects

Use folding process to map all defects to boundary defects:

; Classify different kinds of

folding

— =) boundaries = Line defects
\ Ay g i Ay X Ay '

Point defects = domain walls
between different boundary
4 , line defects

A, folding
Az . '
N e
foldmg
Az XAy | Ap x A, (Ale_z)X(A_g,XAz)\

(Barkeshli, Jian, Qi 2013)




Effective theory of Abelian states

1

o I J K=NxN symmetri
Louir = —Krya 0a X N symmetric
4 integer matrix

K even (odd) = Bosonic (fermionic) system

Distinct quasiparticles labelled by [ € ZV [ ~ ]

Self statistics 0 = it K11

Mutual Statistics @, = 27l K~

KzN



General edge theory

1

Leqge = —K150:010:05 — Vg0, 01005
41

Nr, (Ngr) = No. of positive (negative) eigenvalues of K

Edge can only be fully gapped if N = Np

Local tunneling terms: 0L = — Ztl cos(AT K¢)
Ar e 7N

Null vector condition (Haldane 1995):
IfATKA; =0, I,J=1,---,n

- 2n modes are gapped



Lagrangian Subgroups
“Maximal” subgroup of bosonic quasiparticles:

M is a Lagrangian subgroup if:

1. e =1, Vme M
2. eemm =1, VYm,m' € M,
3. VIl ¢ M,3Im € M such that ¥t £ 1

Condensation of M = All quasiparticles are either condensed or
confined. Resulting state is trivial.



Lagrangian Subgroups and gapped edges

M. Levin (2013):

* An Abelian state can support a gapped edge if and only if
N, = N; and it has a Lagrangian subgroup

A Lagrangian subgroup must be condensed at a gapped edge

—~——

m

Is there a one-to-one correspondence between Lagrangian
subgroups and topologically distinct gapped edges?



One-to-One Correspondence (Classification)

Every Lagrangian subgroup M corresponds to a possible

gapped edge where M is condensed Barkeshli, Jian, Qi (2013)

Levin v2 (2013)
Proof (sketch):

1. ExpandKinatrivialway: - k' = K &® P
]DetP\zl Tr P =0

2. There is a choice of generators {m;} of M such that
1" =1/
_ 1 : :
3. SetA; = ¢;K'""m] and pick tunneling terms

0L = —t Z cos(A] K'¢) = —t Z cos(c;m;’ @)

- Large t fully gaps edge, <e"'mgT¢> 2 ()



General Examples

N : :
1. K= (](\)[ O) is equivalent to Z gauge theory

Lagrangian subgroups < subgroups of Z,

A 0

Lagrangian subgroups <= Automorphisms of A-theory



Point defects in Abelian states

Barkeshli, Jian, Qi (2013)

* Point defects = domain wall between edges with different
Lagrangian subgroups M, M’

 Carry non-trivial topological degeneracy due to Wilson line
algebra. m € M, m' € M’

Wm (a)Wm/ (b) — Wm’ (b)Wm(a)Qsz’mTK—lm/

e This can always be mapped to A L.5.2.42.7 %
Wilson loop algebra
of some Abelian CS theory on

high genus surface = Genons




Parafermion zero modes/Non-Abelian statistics

Barkeshli, Jian, Qi, 2013

Quasiparticles | = m + m’ can be emitted/absorbed at defects

| has fractional statistics

_ zmT(b
H o . ¥ ) Xm p— 6
Generalized “parafermion” zero modes
Y= lim X (—€)Xm (€ A B
¢ e—0t m( ) m () e s § B §Cee—

m /
Non-abelian braiding defined by " L
coupling the defects in various patterns.

H,, = ZleL tﬂzf(a:a)%(a:b) + H.c.

Alicea et al. 2010; Clarke et al, Lindner et al 2012; BJQ 2013

Braiding = Dehn twist of effective high genus surface



Part Il
Possible New Experimental Probes



Quantum Spin Liquids

Electrically insulating, quantum-disordered states,
not adiabatically connected to band insulator

Physical picture: Resonating Valence Bonds (RVB)

Anderson 1973, 1987;
Kivelson, Rokhsar, Sethna; Read, Chakraborty; Read, Sachdev; Wen; Many more.....



Quantum Spin Liquids

* Experimental signature:

Cool material to lowest temperatures, and look for
evidence of Nothing.

No electrical conductivity

No spin order

No neutron scattering peaks

No specific heat, no thermal conductivity (gapped spin ligquids)



e Spin liguids have rich and profound internal structure

— Fractionalization Q

— Emergent gauge fields

— Long-range Quantum Entanglement

e Gapped Spin Liquids: Topological Order



Example: Z, spin liquid (Z, short-ranged RVB)

|Z2 RVB) = Pg|BCS)  Described by Z, lattice
gauge theory

4 topological classes:

1. Local excitations (e.g. spin 1)

2. Spinons (spin-1/2, charge 0), holons (spin 0, charge 1):

ll 7

/A YAvAVA7A' AVAVAVAVA' particles
AVI N N Vs Vava
A YAVAYavaAVAVAY VAV

AVAAY VA YA YAVAWAY N

3. Vortices (Z, flux)  “m” particles

4. em particles



Fractional Statistics

e Spinons and holons can be bosonic or fermionic
 Mutual statistics between e and m particles

o /‘ 1

vortex spinon

1
L :;Euu)\auaub)\ +.7'u - b +.73 ’ a'+jh - a

()



QSLs realized in frustrated magnets

* Numerics: Gapped QSL in frustrated Heisenberg models.

H=01Y8-5+1Y &5
(27) ({(i7))

Yan et al 2011, Depenbrock et al 2012
Jiang et al 2012, Wang et al 2011

Topological order =Z, sRVB or doubled semion ?

* Experiments: suggestive evidence of spin liquids.

No observable magnetic ordering
No well-defined spin-1 excitations (neutron scattering)
Large low-T thermal conductivity, specific heat

Materials: Herbertsmithite, kappa-ET, dmit, ...



Major Challenge:

How can we directly probe topological order
and fractionalization in an experimentally
accessible setting?

Use new insights about extrinsic defects:
gapped edges, domain walls, etc



Edge Luttinger Liquid Theory
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i
[6(z),0(y)] = 5 sgn(z —y)
Describes either spin or charge fluctuations
- S 1 :
(a) Spin fluctuations:  S% = =9,¢ Qt — Ei20
+10+in : '
€ ? creates spinon, 67'¢ creates vortex,

(b) Charge fluctuations: p. = %af,;qb

eT0+ind  creates holon, ez'qb creates vortex,

Local operators: ei’i29, e ti2¢



Gapped Edges

Edge modes gapped by backscattering:

6Lz, = Am cos(2¢) + e cos(26)
Only local operators can be added to edge.

Two gapped edge phases:
1. (e) #£0 (e¥) = 0 Vortex condensed (m-edge)

2. (e)=0 (e¥) #£ 0 Spinons or holons condensed
(e-edge)



Boundary of Z, sRVB

* Z, spin liquid: two topologically distinct types of
gapped boundaries

Boundary
Topological
Phase Transition
<€ >
e - type m - type
Z, gauge symmetry broken Z, gauge symmetry unbroken
e particles condensed m particles condensed

* Related to rough/smooth edges of toric code



Topological Zero Modes and Non-Abelian Defects

Localized Majorana
zero modes

d

Fermionize edge theory =2 fermions form p-wave SC



Realizing e, m-type boundaries

Barkeshli, Berg, Kivelson, 2014

* e-edge requires breaking spin or charge conservation

cos(26) breaks spin or charge

* Charge and spin conservation =2 m-edge

Valence Bond
Solid

Vacuum



e-edge from superconductivity

H edge — Aedge Z CEZ'TCTL?; |CRitCRi| + Jedge Z Sri - Sri + H.c.
) 7

0Ledge ~ Aedge c0S(20) — 10,

m-type edge e-type edge Critical Aedge
% A > can be made small
0 T edge .
by gating superconductor

Ising Transition



Coherent spinon injection

Co = bfa b = bosonic holon > Condensed on edge

f ¢, = fermionic spinon

6Hedge — tedge Z CL,;CRi + H.c. = tedge (bL> Z f},iCRi + H.c.
i i

Electron can coherently pass through the superconductor and
into the spin liquid as a fermionic spinon



Measurable consequences



Tomasch Oscillations

In 1965, Tomasch studied superconducting film diodes:
| 300A 4.3 um

AlO

X

<__ —

T 1 r o6 I
* Oscillations in
-V curve 1

% oa}-

* Period set by ; ] il
thickness of Pb film. l" : e
Independent of I I A | e
Al, AlO, thickness / R S Y &

— : A C——



Tomasch Oscillations

VOLUME 16, NUMBER 3 PHYSICAL REVIEW LETTERS 17 JANUARY 1966

THEORY OF GEOMETRICAL RESONANCES
IN THE TUNNELING CHARACTERISTICS OF THICK FILMS OF SUPERCONDUCTORS

W. L. McMillan and P. W. Anderson

Explained by McMillan and Anderson as due to quasiparticle
interference from scattering off of boundary of sample:

- >

Pb




Tomasch Oscillations in Spin Liquids

* If the fermionic spinon is a stable quasiparticle excitation
in the Z2 spin liquid:

Expect oscillations in
dl/dV with period
set by d

gsl

Only possible with
e-type edge




e-type boundaries from magnetism

Hedge — Jedge 5 SL?I ) SR?Z
)

OLedge ~ Jedge[h1 cos(20 — a) + ho0z¢]

m-edge e-edge

° T J, edge

Ising Transition




Coherent holon injection

Co, = dZg d = fermionic holon

Zc = bosonic spinon

6Hedge — tedge z CL,;CRz' + H.c. = tedge (zLa> Z dTLz'CRi + H.c.
1 )

Electron can coherently pass through the SDW and
into the spin liquid as a fermionic holon



Tomasch Oscillations in Spin Liquids

* If the bosonic holon is a stable quasiparticle excitation
in the Z2 spin liquid:

Expect oscillations in
dl/dV with period
set by d

Only possible with
e-type edge




e-type boundaries from magnetism

e XXZ spin system: magnetic field applied to
boundary can induce topological transition to e- edge

m-edge e-edge
A >

0 ! B
Ising Transition

m



Coherent fermion-boson transmutation

Signature of Majorana fermion zero mode:

* Near domain wall, fermionic spinon can emit/absorb a
vortex from m edge

* Electron coherently enters as bosonic spinon



Conclusion

* Theory of gapped boundaries and domain walls
— Topologically distinct gapped edges = Lagrangian subgroups
— Domain walls = Topological degeneracies, exotic zero modes,

Non-abelian statistics in an abelian phase.

* Possible new experimental probes of topological order
— Direct coupling to fractionalized quasiparticles

— Experimental proposal to detect topology-dependent ground

state degeneracies in FQH states. Barkeshli, Qi 2013
Barkeshli, Oreg, Qi 2014



