Topological Kondo effect in Majorana devices

Reinhold Egger
Institut für Theoretische Physik

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Overview

Coulomb charging effects on quantum transport in a Majorana device:

"Topological Kondo effect" with stable non-Fermi liquid behavior

Beri & Cooper, PRL 2012

> With interactions in the leads: new unstable fixed point

Altland & Egger, PRL 2013

Zazunov, Altland & Egger, New J. Phys. 2014

- ,Majorana quantum impurity spin' dynamics near strong coupling
 Altland, Beri, Egger & Tsvelik, PRL 2014

Majorana bound states

Beenakker, Ann. Rev. Con. Mat. Phys. 2013 Alicea, Rep. Prog. Phys. 2012

- Majorana fermions
- Leijnse & Flensberg, Semicond. Sci. Tech. 2012
- Non-Abelian exchange statistics $\gamma_j = \gamma_j^+ \{\gamma_i, \gamma_j\} = 2\delta_{ij}$
- \succ Two Majoranas = nonlocal fermion $d = \gamma_1 + i\gamma_2$
- \triangleright Occupation of single Majorana ill-defined: $\gamma^+ \gamma = \gamma^2 = 1$
- \triangleright Count state of Majorana pair $d^+d = 0,1$
- Realizable (for example) as end states of spinless
 1D p-wave superconductor (Kitaev chain)
 - Recipe: Proximity coupling of 1D helical wire to s-wave superconductor
 - For long wires: Majorana bound states are zero energy modes

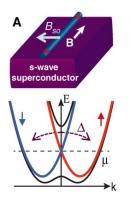
Experimental Majorana signatures

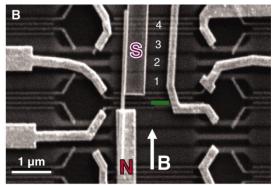
InSb nanowires expected to host Majoranas due to interplay of

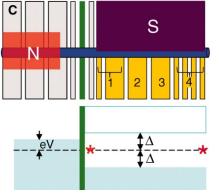
- strong Rashba spin orbit field
- magnetic Zeeman field
- proximity-induced pairing
 Oreg, Refael & von Oppen, PRL 2010
 Lutchyn, Sau & Das Sarma, PRL 2010

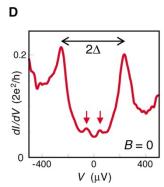
Transport signature of Majoranas: Zero-bias conductance peak due to resonant Andreev reflection

Bolech & Demler, PRL 2007 Law, Lee & Ng, PRL 2009 Flensberg, PRB 2010 Mourik et al., Science 2012





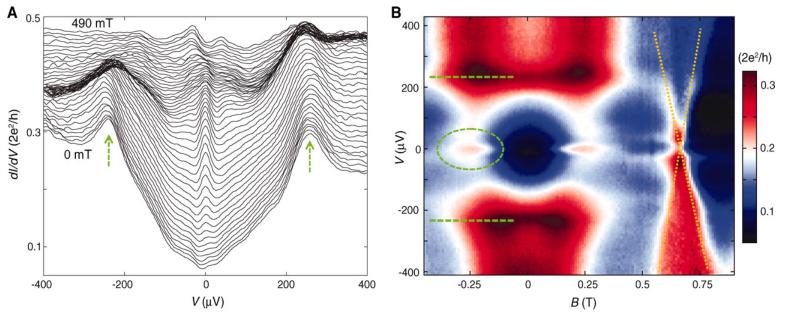




See also: Rokhinson et al., Nat. Phys. 2012; Deng et al., Nano Lett. 2012; Das et al., Nat. Phys. 2012; Churchill et al., PRB 2013

Zero-bias conductance peak

Mourik et al., Science 2012



Possible explanations:

- Majorana state (most likely!)
- Disorder-induced peak
- Smooth confinement
- Kondo effect

Bagrets & Altland, PRL 2012

Kells, Meidan & Brouwer, PRB 2012

Lee et al., PRL 2012

Suppose that Majorana mode is realized...

- Quantum transport features beyond zero-bias anomaly peak? Coulomb interaction effects?
- Simplest case: Majorana single charge transistor
 - Overhanging helical wire parts serve as normal-conducting leads
 - Nanowire part coupled to superconductor hosts pair of Majorana bound states
 - Include charging energy of this ,dot

Majorana single charge transistor

Hützen et al., PRL 2012

TS

Floating superconducting ,dot' contains two Majorana bound states tunnel-coupled to normal-conducting leads

Charging energy finite

Consider universal regime:

Long superconducting wire:
 Direct tunnel coupling between left and right
 Majorana modes is assumed negligible

No quasi-particle excitations: Proximity-induced gap is largest energy scale of interest

Hamiltonian: charging term

- > Majorana pair: nonlocal fermion $d = \gamma_L + i\gamma_R$
- Condensate gives another zero mode
 - Cooper pair number N_c, conjugate phase φ
- Dot Hamiltonian (gate parameter n_q)

$$H_{island} = E_C \left(2N_c + d^+ d - n_g \right)^2$$

Majorana fermions couple to Cooper pairs through the charging energy

Tunneling

- Normal-conducting leads: effectively spinless helical wire
 - Applied bias voltage V = chemical potential difference
- > Tunneling of electrons from lead to dot:
 - Project electron operator in superconducting wire part to Majorana sector
 - Spin structure of Majorana state encoded in tunneling matrix elements

Flensberg, PRB 2010

Tunneling Hamiltonian

Source (drain) couples to left (right) Majorana only:

$$H_t = \sum_{j=L,R} t_j c_j^+ \eta_j + h.c.$$
 $\eta_j = (d \pm e^{-i\phi} d^+)/2$

- respects current conservation
- > Hybridizations: $\Gamma_j \sim \nu |t_j|^2$

Normal tunneling $\sim c^+ d$, $d^+ c$

- Either destroy or create nonlocal d fermion
- Condensate not involved

Anomalous tunneling $\sim c^+ e^{-i\phi} d^+, de^{i\phi} c$

Create (destroy) both lead and d fermion
 & split (add) a Cooper pair

Absence of even-odd effect

- Without Majorana states: Even-odd effect
- With Majoranas: no even-odd effect!
 - Tuning wire parameters into the topological phase removes even-odd effect



picture from: Fu, PRL 2010

Noninteracting case:

Bolech & Demler, PRL 2007 Law, Lee & Ng, PRL 2009

Resonant Andreev reflection

> E_c=0 Majorana spectral function

$$-\operatorname{Im} G_{\gamma_{j}}^{ret}(\varepsilon) = \frac{\Gamma_{j}}{\varepsilon^{2} + \Gamma_{j}^{2}}$$

> T=0 differential conductance:

$$G(V) = \frac{2e^2}{h} \frac{1}{1 + (eV/\Gamma)^2}$$

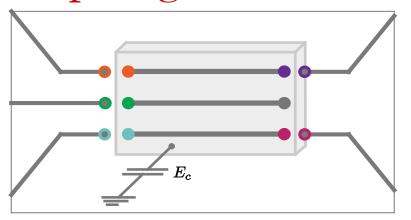
- Currents I_L and I_R fluctuate independently, superconductor is effectively grounded
- Perfect Andreev reflection via Majorana state
 - Zero-energy Majorana bound state leaks into lead

Strong blockade: Electron teleportation

Fu, PRL 2010

- Peak conductance for half-integer ng
- Strong charging energy then allows only two degenerate charge configurations
- Model maps to spinless resonant tunneling model
- > Linear conductance (T=0): $G = e^2 / h$
- Interpretation: Electron teleportation due to nonlocality of d fermion

Topological Kondo effect



Beri & Cooper, PRL 2012 Altland & Egger, PRL 2013 Beri, PRL 2013 Altland, Beri, Egger & Tsvelik, PRL 2014 Zazunov, Altland & Egger, NJP 2014

- Now N>1 helical wires: M Majorana states tunnelcoupled to helical Luttinger liquid wires with g≤1
- Strong charging energy, with nearly integer ng: unique equilibrium charge state on the island
- 2^{N-1}-fold ground state degeneracy due to Majorana states (taking into account parity constraint)
 - Need N>1 for interesting effect!

"Klein-Majorana fusion"

- Abelian bosonization of lead fermions
 - Klein factors are needed to ensure anticommutation relations between different leads
 - Klein factors can be represented by additional Majorana fermion for each lead
- Combine Klein-Majorana and ,true Majorana fermion at each contact to build auxiliary fermions, f_j
- All occupation numbers f_j+f_j are conserved and can be gauged away
- purely bosonic problem remains...

Charging effects: dipole confinement

- \triangleright High energy scales $> E_C$: charging effects irrelevant
 - Electron tunneling amplitudes from lead j to dot renormalize independently upwards $t_i(E) \sim E^{-1+\frac{1}{2}g}$
 - > RG flow towards resonant Andreev reflection fixed point
- \triangleright For $E < E_c$: charging induces ,confinement
 - In- and out-tunneling events are bound to ,dipoles' with coupling $\lambda_{i\neq k}$: entanglement of different leads
 - Dipole coupling describes amplitude for ,cotunneling' from lead j to lead k
 - > ,Bare' value $\lambda_{jk}^{(1)} = \frac{t_j(E_C) \ t_k(E_C)}{E_C} \sim E_C^{-3+\frac{1}{g}} \text{ large for small } E_C$

RG equations in dipole phase

Energy scales below E_C: effective phase action

$$S = \frac{g}{2\pi} \sum_{j} \int \frac{d\omega}{2\pi} |\omega| |\Phi_{j}(\omega)|^{2} - \sum_{j \neq k} \lambda_{jk} \int d\tau \cos(\Phi_{j} - \Phi_{k})$$

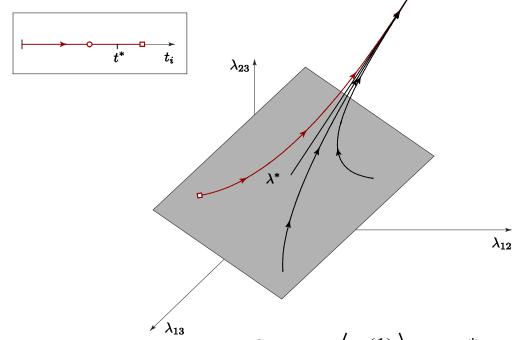
One-loop RG equations

$$\frac{d\lambda_{jk}}{dl} = -\left(g^{-1} - 1\right)\lambda_{jk} + v \sum_{m \neq (j,k)}^{M} \lambda_{jm} \lambda_{mk}$$

- suppression by Luttinger liquid tunneling DoS
- enhancement by dipole fusion processes
- ➤ RG-unstable intermediate fixed point with isotropic couplings (for M>2 leads)

$$\lambda_{j\neq k} = \lambda^* = \frac{g^{-1} - 1}{M - 2} \nu$$

RG flow



- > RG flow towards strong coupling for $\langle \lambda^{(1)} \rangle > \lambda^*$ Always happens for moderate charging energy
- Flow towards isotropic couplings: anisotropies are RG irrelevant
- Perturbative RG fails below Kondo temperature

$$T_K \approx E_C e^{-\lambda^*/\langle \lambda^{(1)} \rangle}$$

Topological Kondo effect

Beri & Cooper, PRL 2012

Refermionize for g=1:

$$H = -i \int_{-\infty}^{\infty} dx \sum_{j=1}^{M} \psi_{j}^{+} \partial_{x} \psi_{j} + i \lambda \sum_{j \neq k} \psi_{j}^{+} (0) S_{jk} \psi_{k} (0)$$

- > Majorana bilinears $S_{jk} = i\gamma_j\gamma_k$
 - Reality condition: SO(M) symmetry [instead of SU(2)]
 - nonlocal realization of ,quantum impurity spin'
 - Nonlocality ensures stability of Kondo fixed point

Majorana basis $\psi(x) = \mu(x) + i\xi(x)$ for leads: $SO_2(M)$ Kondo model

$$H = -i \int dx \mu^T \partial_x \mu + i \lambda \mu^T (0) \hat{S} \mu(0) + \left[\mu \leftrightarrow \xi \right]$$

Minimal case: M=3 Majorana states

SU(2) representation of "quantum impurity spin"

$$S_{j} = \frac{i}{4} \varepsilon_{jkl} \gamma_{k} \gamma_{l} \qquad [S_{1}, S_{2}] = i S_{3}$$

- Spin S=1/2 operator, nonlocally realized in terms of Majorana states
 - can be represented by Pauli matrices
- Exchange coupling of this spin-1/2 to two SO(3) lead currents →

multichannel Kondo effect

Transport properties near unitary limit

- Temperature & voltages < T_K:
 - Dual instanton version of action applies near strong coupling limit
 - Nonequilibrium Keldysh formulation
- Linear conductance tensor

$$G_{jk} = e \frac{\partial I_{j}}{\partial \mu_{k}} = \frac{2e^{2}}{h} \left(1 - \left(\frac{T_{T_{K}}}{T_{K}} \right)^{2y-2} \right) \left[\delta_{jk} - \frac{1}{M} \right]$$

- Non-integer scaling dimension $y = 2g\left(1 \frac{1}{M}\right) > 1$ implies non-Fermi liquid behavior even for g=1
- completely isotropic multi-terminal junction

Correlated Andreev reflection

Diagonal conductance at T=0 exceeds resonant tunneling ("teleportation") value but stays below resonant Andreev reflection limit

$$G_{jj} = \frac{2e^2}{h} \left(1 - \frac{1}{M} \right) \implies \frac{e^2}{h} < G_{jj} < \frac{2e^2}{h}$$

- Interpretation: Correlated Andreev reflection
- Remove one lead: change of scaling dimensions and conductance
- Non-Fermi liquid power-law corrections at finite T

Fano factor

Zazunov et al.. NJP 2014

Backscattering correction to current near unitary

limit for $\sum_{j} \mu_{j} = 0$ $\delta I_{j} = -\frac{e}{\hbar} \sum_{k} \left| \frac{\mu_{k}}{T_{K}} \right|^{2y-2} \left(\delta_{jk} - \frac{1}{M} \right) \mu_{k}$

> Shot noise: $\widetilde{S}_{ik}(\omega \to 0) = \int dt \ e^{i\omega t} \left(\langle I_i(t) I_k(0) \rangle - \langle I_j \rangle \langle I_k \rangle \right)$

$$\widetilde{S}_{jk} = -\frac{2ge^2}{\hbar} \sum_{l} \left(\delta_{jl} - \frac{1}{M} \right) \left(\delta_{kl} - \frac{1}{M} \right) \left| \frac{\mu_l}{T_K} \right|^{2y-2} \left| \mu_l \right|$$

universal Fano factor, but different value than for SU(N) Kondo effect

Sela et al. PRL 2006; Mora et al., PRB 2009

Majorana spin dynamics

Altland, Beri, Egger & Tsvelik, PRL 2014

- Overscreened multi-channel Kondo fixed point: massively entangled effective impurity degree remains at strong coupling: "Majorana spin"
- Probe and manipulate by coupling of Majoranas

$$H_Z = \sum_{jk} h_{jk} S_{jk}$$

- > ,Zeeman fields' $h_{jk} = -h_{kj}$: overlap of Majorana wavefunctions within same nanowire
- \triangleright Couple to $S_{ik} = i \gamma_i \gamma_k$

Majorana spin near strong coupling

Bosonized form of Majorana spin at Kondo fixed point:

 $S_{jk} = i\gamma_j \gamma_k \cos[\Theta_j(0) - \Theta_k(0)]$

- > Dual boson fields $\Theta_j(x)$ describe ,charge' (not ,phase') in respective lead
- > Scaling dimension $y_z = 1 \frac{2}{M} \rightarrow RG$ relevant
- Zeeman field ultimately destroys Kondo fixed point & breaks emergent time reversal symmetry
- > Perturbative treatment possible for $T_h < T < T_K$

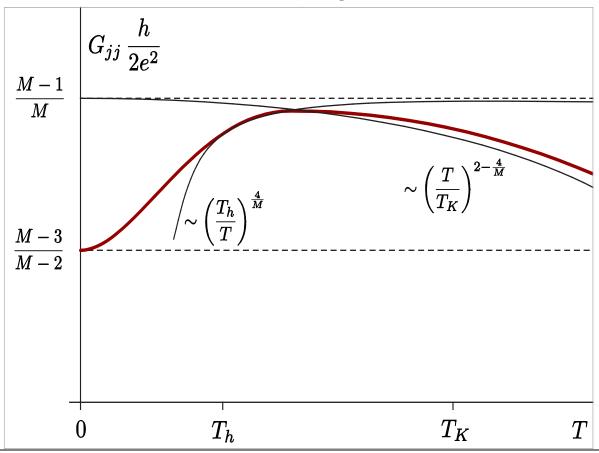
dominant 1-2 Zeeman coupling:
$$T_h = \left(\frac{h_{12}}{T_K}\right)^{M/2} T_K$$

Crossover $SO(M) \rightarrow SO(M-2)$

- Lowering T below T_h → crossover to another Kondo model with SO(M-2) (Fermi liquid for M<5)</p>
 - > Zeeman coupling h_{12} flows to strong coupling $\rightarrow \gamma_1, \gamma_2$ disappear from low-energy sector
 - Same scenario follows from Bethe ansatz solution
 Altland, Beri, Egger & Tsvelik, JPA 2014
- Observable in conductance & in thermodynamic properties

$SO(M) \rightarrow SO(M-2)$: conductance scaling

for single Zeeman component $h_{12} \neq 0$ consider G_{jj} $(j \neq 1,2)$ (diagonal element of conductance tensor)



Multi-point correlations

Majorana spin has nontrivial multi-point correlations at Kondo fixed point, e.g. for M=3 (absent for SU(N) case!)

$$\langle T_{\tau}S_{j}(\tau_{1})S_{k}(\tau_{2})S_{l}(\tau_{3})\rangle \sim \frac{\varepsilon_{jkl}}{T_{K}(\tau_{12}\tau_{13}\tau_{23})^{1/3}}$$

- > Observable consequences for time-dependent ,Zeeman' field $B_j = \varepsilon_{jkl} h_{kl}$ with $\vec{B}(t) = (B_1 \cos(\omega_1 t), B_2 \cos(\omega_2 t), 0)$
 - Time-dependent gate voltage modulation of tunnel couplings
 - Measurement of ,magnetization by known read-out methods
 - Nonlinear frequency mixing $\langle S_3(t) \rangle \sim B_1 B_2 \cos[(\omega_1 \pm \omega_2)t]$
 - Oscillatory transverse spin correlations (for B₂=0)

$$\langle S_2(t)S_3(0)\rangle \sim B_1 \frac{\cos(\omega_1 t)}{(\omega_1 t)^{2/3}}$$

Adding Josephson coupling: Non Fermi

liquid manifold

Eriksson, Mora, Zazunov & Egger, PRL 2014

$$H_{island} = E_C (2N_c + \hat{n} - n_g)^2 - E_J \cos \varphi$$

Yet another bulk superconductor: Topological Cooper pair box

Effectively harmonic oscillator for $E_J >> E_C$ with Josephson plasma oscillation frequency: $\Omega = \sqrt{8E_J E_C}$

Low energy theory

- Tracing over phase fluctuations gives two coupling mechanisms:
 - Resonant Andreev reflection processes

$$H_A = \sum_j t_j \gamma_j \left(\psi_j^+(0) - \psi_j(0) \right)$$

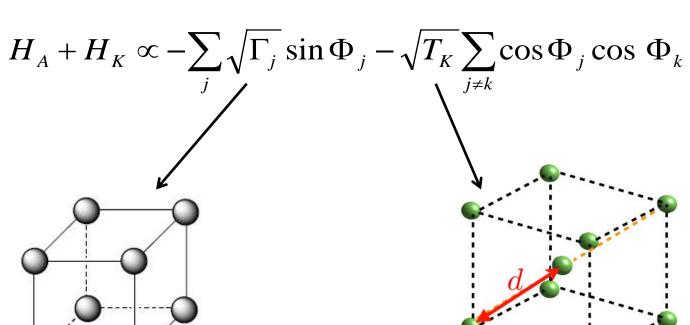
Kondo exchange coupling, but of SO₁(M) type

$$H_K = \sum_{j \neq k} \lambda_{jk} \left(\psi_j^+(0) + \psi_j(0) \right) \left(\psi_k^+(0) + \psi_k(0) \right) \gamma_j \gamma_k$$

Interplay of resonant Andreev reflection and Kondo screening for $\Gamma < T_K$

Quantum Brownian Motion picture

Abelian bosonization now yields (M=3)



Simple cubic lattice

bcc lattice

Quantum Brownian motion

- Leading irrelevant operator (LIO): tunneling transitions connecting nearest neighbors
- Scaling dimension of LIO from n.n. distance d

$$y_{LIO}=rac{d^2}{2\pi^2}$$
 Yi & Kane, PRB 1998

- Pinned phase field configurations correspond to Kondo fixed point, but unitarily rotated by resonant Andreev reflection corrections
- > Stable non-Fermi liquid manifold as long as LIO stays irrelevant, i.e. for $y_{LIO} > 1$

Scaling dimension of LIO

- M-dimensional manifold of non-Fermi liquid states spanned by parameters $\delta_j = \sqrt{\Gamma_j/T}$
- Scaling dimension of LIO

$$y = \min \left\{ 2, \frac{1}{2} \sum_{j=1}^{M} \left[1 - \frac{2}{\pi} \arcsin \left(\frac{\delta_j}{2(M-1)} \right) \right] \right\}$$

- Stable manifold corresponds to y>1
- For y<1: standard resonant Andreev reflection scenario applies</p>
- For y>1: non-Fermi liquid power laws appear in temperature dependence of conductance tensor

Conclusions

Coulomb charging effects on quantum transport in a Majorana device:

"Topological Kondo effect" with stable non-Fermi liquid behavior

Beri & Cooper, PRL 2014

> With interactions in the leads: new unstable fixed point

Altland & Egger, PRL 2013

Zazunov, Altland & Egger, New J. Phys. 2014

- ,Majorana quantum impurity spin' dynamics near strong coupling
 Altland, Beri, Egger & Tsvelik, PRL 2014

THANK YOU FOR YOUR ATTENTION