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Levinson’s theorem

Consider H = Hy + V on L2(RY)
» Hy is "nice” free motion (no bound states) (e.g. Ho = —A,9,---)
» V (decaying) potential creating finitely many bound states
> o(Hp) = 0ac(Ho) = 0ac(H) = Iy, (interval)

Scattering operator , S(E) the scattering matrix ( )

Time delay at energy E is iS*(E)S'(E).



Levinson’s theorem

Theorem
Integrated time delay = number of bound states + corrections.



Levinson’s theorem

Theorem

Integrated time delay = number of bound states + corrections.
ia / (tr(S*(E)S/(E)) — reg.) dE = Tr(Ps) + corr.
21 Jo (ko)

1 .
corr. — { if 3 halfbound state (d = 3)

2
0 else

tr trace on L2(S9~"), Tr trace on L2(RY), P, bound state projection.
Halfbound state (0-energy resonance): HW = 0 for ¥ e L2 (R?)\L3(R?) but
in some weighted L2

Usual proofs involve complex analysis but it is topology!
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Theorem ([Kellendonk, Richard 2007])

If the wave operator Q2 belongs to an extension of C(S') by K(H)
then the number of bound states equals the winding number of w(Q2).



Topological version of Levinson’s theorem 1

Compare evolution of e ™W, W € imP} with e~ "W W, € [?(RY)
such that lim;_4 ., || ™V — e~ oW || = 0.

> Q=5 —lim 4o (™) e wave operators.

» Q = Q_ anisometry intertwining dynamics of Hy with that of H | 5¢

Q0=1, Q0 =1-Pp,

Theorem ( )

May also consider C(S', K(H’)*) in place of C(S").

Part of 7(£2) should be related to the scattering oper. S so that
part of the winding number is integrated time delay.
Eigenvalues may be embedded. No gap condition needed!
Conceptual clearness.

Topologically more involved models possible.

vV Yy
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New formulae for wave operators

The condition on the wave operator is the difficult analytical part!

Theorem ([Kellendonk, Richard (d=1) 2009][Richard, Tiedra (d=3) 2013])
Ho = —A sur L2(RY) (d = 1,3), V(x)|1 + x3|re € L2(RY).

Q=1+ R(A)(S(Hy) — 1) + compact
A= 1(X-V+V-X) (gen. dilation), R(A) = ®icnRi(A) (angular mom.)
Ro(A) = %(1 + tanh(mA) — icosh(7A) ") Ps_wave

R, are smooth functions with R(—o0) = 0, Rj(+o00) = 1.



New formulae for wave operators

The condition on the wave operator is the difficult analytical part!

Theorem (
Ho = —A sur L2(RY) (d = 1,3), V(x)|1 + x3|re € L2(RY).

A= 1(X-V+V-X) (gen. dilation), R(A) = ®icnRi(A) (angular mom.)

R, are smooth functions with R(—o0) = 0, Rj(+o00) = 1.

» There are results in d = 2 in the absense of half bound states.

» Bellissard & Schulz-Baldes have studied Hy = Laplacian on a
lattice.
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C*(W) = Toeplitz is C*-algebra gen. by W, W*.



Some non-commutative topology

H inf. dim. sep. Hilbert space, K(H) compact operators.
W isometry of codim 1. W*W =1, WW* =1 — proj. of rank 1.

K(H) = B(H)=>  B(H)/K(H)
I U U

K(H) — C*(W)5 =(C*(W))=C(S")

C*(W) = Toeplitz is C*-algebra gen. by W, W*.
Theorem (Atkinson)
F € B(H) is Fredholm whenever n(F) is invertible.

Theorem (Index theorem; Gochberg, Krein)
If F is Fredholm then ind(F) = —wind(7(F)).

» index and winding number are homotopy invariant and
characterise uniquely the homotopy classes.
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M(A) = s— lim e*F(A B)e ™

S——00
M(B) = s—tﬂTooe”BF(A B)e 8

similarily for '3, 4.

wind(7(F)) = wy + wa + wz + wa,

1 oo —1 /
Wi =€ ~— I'I. (x)l',-(x)dx, €1 = €2 = 1, €3 =¢€4 = —1

2m J_

differentiability and integrability assumed.



M as energy-scale space

Specify B = } In(—A), A generator of scaling (dilation).
F(Q) =Tlq10ls0l301ly4 with

r2(HO) — s — t IIT eit% |NHOQe—/f1§ InHo _ S(H())
F4(Ho) = 1
M(A) = s—_lim e 0e" rescale p — e Sp

=" 1+ R(A)(S(0) — 1) = Ppp + (1 — 2Ro(A)) Prp
r3(A) "™ 1+ R(A)(S(+00) — 1) =1



M as energy-scale space

Specify B = } In(—A), A generator of scaling (dilation).
W(Q) =Tlq10ls0l301ly4 with

r2(HO) — s — t IIT eit% InHOQe—l't1§ InHo _ S(Ho)
F4(Ho) = 1
M(A) = s—_lim e 0e" rescale p — e Sp

here 14 R(A)(S(O) _ 1) = PhLb-i- (1 — 2RO(A))Phb
r3(A) "™ 1+ R(A)(S(+00) — 1) =1

w. = integrated time delay

1
wy = 3 number of halfbound states
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Ki(A) abelian group generated by homotopy classes of unitaries in A
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(2) Need to get numbers! These arise from homomorphisms

7: K(A) — C.
Ex.: Trace, wind, chern-number: (cycl. cohom.).
7(g) (Connes’ pairing) is a topological quantum number.

(3) Need to give these numbers a physical interpretation.
(4) When are they integer?

Find Fredholm operator F s.th. 7(g) = indF (g € K(A), T € ht(A)).



Boundary maps

(5) A topological relation between two physical systems (algebras) A
and J is given by an extension E: J — E 5 A.

From J — E — A we get
3 Ki(A) — Kis1(J), 0% ht(J) — hti1(A)

such that
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Examples

1. Bulk edge correspondances.
A = C*(bulk) = B xg R?,
g = gr the class in Ky of the Fermi proj. (supposed in a gap).

C*(edge) < Wiener-Hopf > C*(bulk)

WindL‘ chern = 5*Windu
Oedge = oy = chern(gF)
wind XL Tr
pressure on bdry / energy = integr. density of states

2. Levinson’s theorem. g is the class in Ki of 7(Q).

C*(bounded) < Toeplitz = C*(scattered)
Tr windg

number bound states = integr. time delay + corr.



Higher degree Levinson’s theorems

Add degrees of freedom.

H = H(y) for y € Y a 2ndim. closed manifold (top. space).
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Higher degree Levinson’s theorems

Add degrees of freedom.
H = H(y) for y € Y a 2ndim. closed manifold (top. space).
C(Y,K(H)) — &5 C(S" x Y, K(H))

& = Toeplitz @ C(Y). P, = Py(y) vector bundle over Y.

, explicitely (n = 1)

L
2472

+ similar terms with I;, i=1,3,4

i/ Tr(PpdPy, dPy) / tr((S* —1)dS S*dS 5*dS)
2ri Jy o(Ho)x Y

d exterior differential on Y, d exterior differential on R+ x Y.



Higher degree Levinson’s theorems

Higher degree Levinson’s theorem. g is the class in K; of 7(Q).

C*(bounded) ® C(Y) < Toeplitz® C(Y) = C*(scattered) @ C(Y)
chernsp, windop 1
chern nb. of bd state bundle = ?

» "Adiabatic curvature and the S-matrix” Sadun & Avron 1996
contains elements of a higher Levinson’s theorem.

» | provide an example where the above identity is not trivial.



Aharonov Bohm point interaction

2
_ -y X
Flo = <2V+a(x2+yz’x2+y2>>

on CX(R2\{0}).

1 m+ «a)?
Hy = ®mezHom, Ham = *8r2 — Far + u

r2

If c = |m+ «a| > 1 then H, n is essentially self-adjoint.
If c = |m+ «a| < 1then H, n deficiency index (1,1).
H.—o one parameter family of J-interactions.

For o € (0, 1), H, describes a four parameter family of
o-interactions with magnetic flux tube at 0 (B = «?).

. ab
(1 —U)( B ) — 2i(1 +U)< a )
Um(r) = amr=¢+ bpur® + o(r°), U € U(2).

vV v v v

SoH=HY, Uec U(2),ac(0,1).



Aharonov Bohm point interaction

» Free Hamiltonian is —A, 0(HY) = o(—-A) = R,
» Number of eigenvalues of HY equals number of eigenvalues of U
with positive imaginary part.

Theorem (Kellendonk & Pankrashkin & Richard 2011)

Let A €C, |)\,’| =1, %()\1) <0< %()\2).
Y = Yy = {U € U(2)|U has eigenvalues A1, Az}

1. Y3 U~ Q=Q(HY,-A) is continuous

2. Q e & =Toeplitz® C(Y, Mx(C)),
3. P,= P}DJ defines a non-trivial line bundle over Y with chern

number 1.



