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Non-interacting insulator ground states

« Single particle Hiloert space 2(Z9) @ C"
e Translation invariant Hamiltonian H = @, H(k) with
momentum k in Brioullin zone T¢
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¢ Insulator ground state given by assignment

k — V(k) = subspace spanned by m occupied states
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Mathematical descriptions
Classifying map

T9 — Grp,(C")
k — V(k)

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Mathematical descriptions

Classifying map Vector subbundle of T9 x C”
T9 — Grp,(C") p:V—TY
k— V(k) p (k) = V(K)

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Mathematical descriptions

Classifying map Vector subbundle of T9 x C”
T9 — Grp,(C") p:V—TY
k— V(k) p (k) = V(K)

e Impose symmetry T o Z (time-reversal 72 = 1 and
inversion 72 = 1), effectively replaces C by R

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Mathematical descriptions

Classifying map Vector subbundle of T9 x C”
T9 — Grp,(C") p:V—TY
k— V(k) p (k) = V(K)

e Impose symmetry 7 o T (time-reversal 72 = 1 and
inversion 72 = 1), effectively replaces C by R
e Example:d=1,n=2and m=1

\L/(k) C R?
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Topological Phases

“Two ground states are in the same topological phase if one
adiabaticall deformed into
can be : y connected to the other.”
continuously . .
interpolated into
In other words, Vp, V4 : T9 — Grp(C") are in the same

topological phase iff there exists a homotopy V; (0 <t < 1).
Set of topological phases:

[T9, Grpm(CM)]

Other equivalence relations:
« Isomorphic as vector bundles: Vect$,(T9) = [T?, Gry,(C™)]
o Stably equivalent: K(T9) = [T9, Gro(C™)]
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Homotopy generalisations

Homotopy classes D Iso. classes of vector bundles O K-groups

Consequences:
1. More topological phases
2. More restrictive definition of “strong” topological insulators
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1. More topological phases
Symmetry T o Z in d = 1 with m = 1 of n = 2 bands occupied:

S - Gry(R?)
(x,y) — line through (x, y)

2in [S',Gr(R?)] =Z
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1. More topological phases

S® = Grq(C?)
(x,y) + line through (x, y)

1in [S3,Gry(C?)] =Z
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1. More topological phases

Symmetry | Dimension
class 112783
A 0|z |0
Alll 7 | 0| Z
D Zo | Z | O
DIl Zo | Zo | Z
All 0 | Zo | Zo
Clli 7 | 0 |Zo
C 0|z 1|0
Cl 0|0 |2
Al 0| 0| O
BDI Z |00
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Symmetry | Dimension
class 1]2]3
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1. More topological phases

Symmetry | Dimension
class 112783
A 0|z | 2z
Alll Z |0 | Z
D Zo | 7Z | O
DIl Zo | Zo | Z
All 0 | Zo | Zo
cll Z |0 |Z
C 0| Z|O
Cl 0| 0|2
Al 0] 0|0
BDI Z | 0|0
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Hopf insulator (n=2,m=1)
[Moore,Ran,Wen 2008]

Hopf superconductor (n=2,m=1)
[RK,Zirnbauer 2014]




1. More topological phases

Symmetry | Dimension
class 112783
A 0 | Z | Z | Hopfinsulator (n=2,m=1)
A| || 7, 0 7 [Moore,Ran,Wen 2008]
D Zo | Z | O
DIl Zo | Zo | Z
All 0 | Zo | Zo
Cll Z | 0| Zo
C 0 | Z | Zo | Hopf superconductor (n=2,m=1)
Cl 0 0 7, [RK,Zirnbauer 2014]
Al 00O
BDI Z | 0|0
|
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Strong and weak

Maps from cubes /9 correspond to maps from
e TYif periodic in all coordinates
e S%if 919 maps to a point

Usual definitioniitaev 2009: RK.Guggenheim 2014] for |arge n, m:

d
[T, Grm(CM] = [][S", Grm(C™) )

p=1
d—1 d
_ [Sd, Grm(C”)] « H[SP’ Grm((cn)](p)
p=1
strong weak
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Strong and weak
Example d =3, m,n> 1:

[S',Grm(CM)] =0
[S2, Grp(C™)] = Z (Chern number)
[S3,Grm(CM)] =0

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Strong and weak
Example d =3, m,n> 1:
[§",Grm(C")] =0
[S2, Grp(C™)] = Z (Chern number)
[S3,Grp(C™] =0
[T3,Grm(C™)] = [S2, Grm(C™)] @)

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Strong and weak
Example d =3, m,n> 1:
[S',Grm(CM)] =0
[S2, Grp(C™)] = Z (Chern number)
[S3,Grp(C™] =0
[T3,Grm(C™)] = [S2, Grm(C™)] @)
= [S?,Grm(C")] x [S?, Grm(CM)] x [S?, Grm(CM)]

weak

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Strong and weak
Example d =3, m,n> 1:
[S',Grm(CM)] =0
[S2, Grp(C™)] = Z (Chern number)
[S3,Grp(C™] =0
[T3,Grm(C™)] = [S2, Grm(C™)] @)
= [S?,Grm(C")] x [S?, Grm(CM)] x [S?, Grm(CM)]

weak

=ZXZLXZ

Ricardo Kennedy
University of Cologne
H py Theory of Topological




Strong and weak
Example d =3, m,n> 1:
[S',Grm(CM)] =0
[S2, Grp(C™)] = Z (Chern number)
[S3,Grp(C™] =0
[T3,Grm(C™)] = [S2, Grm(C™)] @)
= [S?,Grm(C")] x [S?, Grm(CM)] x [S?, Grm(CM)]

weak

=Z XZ X7

Interpretation: Chern insulators stacked orthogonal to vector
(n,n2,n3) €EZXZ X7
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Strong and weak
Exampled =3, m=1,n=2:

[S',Gr(C?®)] =0
[S2, Gry(C?)] = Z (Chern number)
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Strong and weak
Exampled =3, m=1,n=2:

=0
| = Z (Chern number)
= 7Z (Hopf)

[T3,Gry(C?)] = {(no; ny, N2, n3) | Ny, N2, N3 € Z,
noezZforny=n,=n3=0,

no € Zo.ged(ny,np,ng) Otherwise}
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Strong and weak
Exampled =3, m=1,n=2:

=0
| = Z (Chern number)
= 7Z (Hopf)
[T3,Gr1(C?)] = {(no; n1, M2, n3) | Ny, 1z, 15 € Z,
noezZforny=n,=n3=0,
No € Za.ged(ny,np,ng) Otherwise} # Z x (Z x Z x )
New definition of “strong”: image of injective map
[S3,Gry(C?)] < [T3,Gry(C?)]
Generalises to all d and Zo-equivariant classes!.Guagenheim 2014]
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Strong and weak
Example with symmetry T oZford =2, m=1,n=3:

[S', Gr{(R®)] = Z» (Moebius band)
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Strong and weak
Example with symmetry T oZford =2, m=1,n=3:

[S', Gr{(R®)] = Z» (Moebius band)
[S?,Gry(R®)] = N (Skyrmions)
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Strong and weak
Example with symmetry T oZford =2, m=1,n=3:

[S', Gr{(R®)] = Z» (Moebius band)
[S?,Gry(R®)] = N (Skyrmions)

[T2,Gr{(R%)] = {(no; n1,m2) | Ny, N2 € Zo,
ngeNforni=n =0,
ng € Z, otherwise}

Ricardo Kennedy
University of Cologne
H py Theory of Topological S




Strong and weak
Example with symmetry T oZford =2, m=1,n=3:

[S', Gr{(R®)] = Z» (Moebius band)
[S?,Gry(R®)] = N (Skyrmions)

[T2,Gr1(R®)] = {(no; m,n2) | N1,z € Zo,
ngeNforni=n =0,
ng € Z, otherwise}

# N X Zo X Zo
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Breakdown of strong invariant N — Z,
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Stacked realisation
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Conclusion

¢ Homotopy classes O Vect. bundle iso. classes D K-groups

o Stability typically reached quickly, but some exceptions
exist (Hopf insulator/superconductor)

e Only non-trivial maps from S are strong in general
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Conclusion

¢ Homotopy classes O Vect. bundle iso. classes D K-groups

o Stability typically reached quickly, but some exceptions
exist (Hopf insulator/superconductor)

e Only non-trivial maps from S are strong in general

Thank you!
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