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Topologically ordered states
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integer quantum Hall

fractional quantum Hall

* Topological ground state degeneracy; quasiparticles with
fractional quantum numbers and fractional statistics.
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Key properties of topologically ordered states

distance. Only topology matters.
*Fusiona X b = N5, c
*Braiding

fé\ :szb‘ K

a b a b

* Quasiparticles have no knowledge about i

*Braiding a, b and spinning a, b is equivalent to spinning
c. Topological spin of particles h,
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Examples of topologically ordered states
* 1. Laughlin state W({z;}) = l_[i<j(zl- — j)me_zdzi'z

: ) 1 2 1
* Quasiparticles labeled by g = 0,—,—, ..., 1 — =
m m m

* Fusion rule ¢, +g, braiding Rglz;qZ = exp [in Chqz]
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*2. Z, gauge theory (toric code)

* Quasiparticles include charge e, flux m and their
boundstate i = e X m.

* Nontrivial braiding R;pm =1

* Goal of this work: understanding 3D topological
states from 2D ones



Part |: Layer construction
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2D topological states can be constructed from
COUp'Ed 1D chains (Sondhi&Yang ‘01, Kane et al ‘02, Teo&Kane, ‘10)

* Weakly coupled chains as a controlled limit that can
realize these topological states.

* Both integer and fractional quantum Hall states can
be realized.



Layer construction of 2D topological states

v

* Example 1: integer quantum Hall
(Sondhi&Yang ‘01)
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* Electron tunneling between edge
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states of each strip: BRI
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* Electron tunneling can be Lt ’I
equivalently viewed as exciton
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condensation

e Condensation of the exciton (particle-hole pair) leads
to coherent tunneling between quasi-1D strips

* The strips are glued to a quantum Hall state



Layer construction of 2D topological states

*Example 2: Laughlin 1/3 state <

(Kane et al ‘02)

* Electron tunneling between

N

v =1/3 edges of chiral Luttinger !t it v i it
liquids e = 3 xg,
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* Electron tunneling effectively generates coherent
quasiparticle tunneling=2» 2D topological order.

* The coherent tunneling can be understood as a
“boson condensation” of the quasiparticle exciton

with charge (g, — g)

~



Generalization of the layer construction to 3D
* General principle: Inter-layer coupling by boson

condensation Wang&Senthil 2013
L %’k |
i boson ; % = /\\
L / L ly l
* Abelian states: Chern-Simons theory and K matrix (wen)
L= EK”a,ﬂe“Wava]T —Uay,j*

e Quasiparticles labeled by integer vectors [

. o 1
* Equation of motion jH*I! = EK”E“VTHVa]T

e A quasiparticle carries flux V x a! = 2n(K~11)!



Examples of K-matrix theory

e Mutual statistics of [, [, given by 8,, = 2rli K711,
* Local particles given by A = Kl (bosons or fermions)

* Examples:
e Laughlin 1/m state K = m. Quasiparticle braiding

2TT .
fnlqz. Local particle (electron) g = m
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*/y gauge theory K = (0 N) \\

*Charge e = ( ) ( ) Quasiparticle braldlng
T
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General setting of the layer construction

* . layers of 2D Abelian states, each with a K matrix

* Find quasiparticles p;, q; in each layer, so that the bound state
are bosonic and

mutually bosonic.
* In 2D language, p %'Eoi.o- -
(n+1) L2
. quuwementsT q; / o
‘TK pi+q/K™q; =0, 0
JK1 qj = 0.
. Number of condensed particles: i = 1,2, ..., N whendim K =
2N.

* This is an “almost complete” set of null vectors. (Haldane ‘95, Levin
‘13, Barkeshli et al ‘13) There may be remaining particles, responsible
for the topological order.

* With open boundary, g; at top surface is always deconfined.



Example 1: 3D Z,, gauge theories

* Starting from layers of 2D Z,, gauge theories

K= [p 0] L= %aueﬂwavbr + ayje + bujm,

* Coupling the neighbor layers by
condensation of ( ° ) pair

(1 (-1
'p_(o)’q_(o)
* Particles with nontrivial braiding

with the condensed particle
are confined.

* Particles different by a
condensed particle are identified

* Deconfined particles: e in 3D, and
m string (flux tube)=>» 3D Z,,
gauge theory
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Example 2: Surface and bulk topological order

* Z,, toric code with tri-layer coupling

e A variation of the construction
in Wang&Senthil '13

°p * 3n
All bulk particles are confined.
purely 2D topological order
 Surface central charge ¢ = 4 for

p = 3n — 1. (p = 2: surface theory
of a 3D bosonic Tl vishwanath&senthil ’13)

°p = 3n
Bulk deconfined particles coexisting

with surface particles. Z; bulk
topological order

* Surface central charge ¢ = 2
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General criteria of surface-only topological order
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*p;, q; expand all quasiparticles in a layer=>»

Zf) condensation leads to surface-only topological order.
l

Surface particles are g; at top surface, p; at bottom surface
. : _ [ Tp—-1,11

Surface K matrix K¢ = [qi K qj]
* The same topological order at the side surfaces

* Bulk has nontrivial particle when {p;} N {q;} # ¢

 Relation to Walker-Wang model (k walker & 7z wang, “12):
modular tensor category = Surface-only topological order
Pre-modular tensor category=>» Bulk nontrivial topological order



Example 3: String-String braiding

* Z 4y, toric code theories
with 4-layer coupling

* Condensed particles:
hybridization of the red

and blue layers

e Bulk deconfined

particles: 2 point particles,
2 strings

* String-particle braiding

e String-string braiding
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String-String braiding and dislocations

* Strings wraping around z direction have braiding
proportional to system size

/
* Contractible strings have / i
o " / Y4
trivial braiding 777 77
* The more fundamental ??? ,?//
process of string braiding %
can be defined at presence / é
of an edge dislocation
. Bhraiginlg at presence of /// > /??/
tccle islocation Yo i A
Wo, = —bZ, proportional //// b T

to the Bur ers vector b, / // //
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Topological field theory description

* A generalized BF theory can be written down to characterize
the string-particle braiding and string-string braiding
L

QU UvoT il 0 UvotT
=o€ by 0g al +ﬁR,]e 0,a4,0; a, + jlLa;
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* j,,: particle current; J/,,: string current
* (J;;: string-particle braiding Y
* Rj;: string-string braiding when strings

are linked with ® vortex loop.

* Difference from BF theory for Tl (cho&Moore 11, Vishwanath&Senthil 12,
Keyserlingk et al “13): © is @ dynamical field

* Winding number 2mn of =2 Chern-Simons term of a with
K = nR.=> String braiding w}} = Znn(Q‘lTRQ‘l)U



Topological field theory description

*Ordinary Z,, gauge theory: Q = p,R =0
A (2n O (0 1
Example3.Q—(O 2),R—(1 O)

* General structure of string braiding: two strings braid
nontrivially only if they are not contractible.

* Consistent with other recent works on 3-string

braiding (Wang&Levin 1403.7435, Jiang et al 1404.1062, Wang&Wen 1404.7854,
Moradi&Wen 1404.4618)

* The dislocation is described by a ® vortex string, which
is an extrinsic defect.

* Intrinsic 3-string braiding can possibly be realized by
deconfinement of the dislocations.



Part Il: General results on string-string braiding

* General structure of 3D topologically ordered states
are not understood yet.

*In 2D, we know the braiding phase Rffb is not arbitrary.
There are some identities satisfied by braiding and
fusion, such as the hexagon identity.
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*In 3D, some similar identities may exist as a property
of the general structure of topologically ordered states



General results on string-string braiding

- Wang&Levin 1403.7435 proposed an identity of the 3-string
braiding in twisted ZS) gauge theories

p(wsp + i, + w8;) = 0 (mod 27),

* Here we give a more general proof —
to a stronger identity \/ / \ c
wsy + wl. + w?, = 0 (mod 2m) )
a b

with the general conditions

1) Strings can fuse and split without additional phase;
2) Strings are Abelian;

3) Strings are not marked.




Step 1 of the proof: w&, = Qf,

String braiding wg,,

String-particle braiding Qg, between link of a, b and strmg C



Step 2 of the proof: @<, = Qf,

“linked” string braiding @¢,;,, for 3 mutually-linked strings

= — = = GD}

=00 U

String-particle braiding Q;, between link of a, b and string ¢



Step 3 of the proof: @5, + @%. + @2, =0

C

* ., 21 rotation of a and b around ¢
D¢, + @2, + @2, ~ global 47 rotation = trivial

@



String braiding identities

* Using this proof we obtain three
identities
6Cb + ﬁbc + Cl)ca —_ O

Cab+wbc+a)%a=0
Qop+ Q. +Q2, =0
* A new feature of 3D topological order
that is qualitatively distinct from 2D case

* Open question: In general, is it always
possible to require the strings to be
unmarked, i.e., translation invariant
along the string direction?




A non-Abelian example of string-string braiding

e Little is known about non-Abelian strings.

* However, an example can be found in 3D topological
superconductors

M *é é*
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left, C = 1 SC pairing _Aet

Majorana
Q mass
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right, C = —1 —Ag R

i i Superconducting pairing

Weyl fermions | ®x(8e'rpfoypl + Ae'ORpiay, i)
H=d’xv(yfo - pp,— ko pPr)



A non-Abelian example of string-string braiding

* Chiral vortex strings: vortex loops of 8; or 0,

* Each vortex string is an axion string, carrying a 1+1
Majorana-Weyl fermion (callan&Harvey ’85, XLQ&Witten&Zhang “12)

* Majorana zero modes carried by vortices with odd
linking number.

\\ /O"‘,,,. k

* Non-Abelian braiding of a, b similar to (p + ip)

vortices (Read&Green 2000) (see also M Sato, Physics Letters
B 575 (2003) 126—130)




A non-Abelian example of string-string braiding

* Key difference from Abelian string: splitting/fusion of

string is not adiabatic.

* Non-Abelian strings can fuse to
Abelian strings.

* Braiding depends on the fusion

channel.
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Ssummary

* Layer construction provides an explicit approach to
3D topological states.

* Different types of 3D topological states can be
generated, with surface-only topological order
and/or bulk topological order

* String-string braiding can be induced in system with
periodic boundary condition or dislocations

* General identity proved for Abelian string-string
braiding

* Non-Abelian 3D topological order: An example can
be found in topological superconductors. There are
a lot of open questions for more general cases.



