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Invariants of disordered topological insulators

What is a topological insulator?

• d-dimensional disordered system of independent Fermions with
a combination of basic symmetries

TRS, PHS, SLS = time reversal, particle hole, sublattice symmetry

• Fermi level in a Gap or Anderson localization regime

• Topology of bulk (e.g. of Bloch bundles):

winding numbers, Chern numbers, Z2-invariants, higher invariants

• Delocalized edge modes with non-trivial topology

• Bulk-edge correspondence

• Toy models: tight-binding

Aim: index theory for invariants also for disordered systems
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Examples of topological insulators in d = 2:

• Integer quantum Hall systems (no symmetries at all)

• Quantum spin Hall systems (Kane-Mele 2005, odd TRS)

dissipationless spin polarized edge currents, charge-spin separation

• Dirty superconductors (Bogoliubov-de Gennes BdG models):

Thermal quantum Hall effect (even PHS)

Spin quantum Hall effect (SU(2)-invariant, odd PHS)

Majorana modes at Landau-Ginzburg vortices (even PHS)

• Examples in d = 1 and d = 3: chiral unitary systems
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Menu for the talk

• Some standard background on Fredholm operators

• Review of quantum Hall systems (focus on topology)

• Classification of d = 2 topological insulators by index theory

• Needed: Fredholm operators with symmetries

• More physics of d = 2 systems: QSH and BdG

• Index theory for topological invariants in any dimension d

• General bulk-edge correspondence principle
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Fredholm operators and Noether indices

Definition T ∈ B(H) bounded Fredholm operator on Hilbert space

⇐⇒ TH closed, dim(Ker(T )) <∞, dim(Ker(T ∗)) <∞

Then: Ind(T ) = dim(Ker(T ))− dim(Ran(T )) Noether index

Theorem Ind(T ) compactly stable homotopy invariant

Noether Index Theorem f ∈ C (S1) invertible, Π Hardy on L2(S1)

=⇒ Wind(f ) =
∫
f −1df = − Ind(Πf Π)

Atiyah-Singer index theorems in differential topology

Alain Connes non-commutative geometry and topology

Applications in physics Anomalies in QFT, Defects, etc.

Solid state physics robust labelling of different phases

Problem determine Fredholm operator in concrete situation
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Review of quantum Hall system (no symmetries)

Toy model: disordered Harper Hamiltonian on Hilbert space `2(Z2)

H = U1 + U∗1 + U2 + U∗2 + λdisV

U1 = e iϕX2S1 and U2 = S2 with magnetic flux ϕ and S1,2 shifts

random potential V =
∑

n∈Z2 Vn|n〉〈n| with i.i.d. Vn ∈ R

Fermi projection P = χ(H ≤ µ) with µ in And. localization regime

Theorem (Connes, Bellissard, Kunz, Avron, Seiler, Simon ...)

PFP Fredholm operator , F =
X1 + iX2

|X1 + iX2|
Index equal to Chern number

Ind(PFP) = Ch(P) = 2πi E 〈0|P [[X1,P], [X2,P]]|0〉

=

∫
d2k

2πi
Trq(P [∂1P, ∂2P])
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Physical consequences

Theorem
(Thouless et.al. 1982, Avron, Seiler, Simon 1983-1994, Kunz 1987,
Bellissard, van Elst, S-B 1994, ...)

Kubo formula for zero temperature Hall conductivity σH(µ)

σH(µ) =
e2

h
Ch(P)

and µ ∈ ∆ 7→ σH(µ) constant if Anderson localization in ∆ ⊂ R

Theorem

(Rammal, Bellissard 1985, Resta 2010, S-B, Teufel 2013)

M(µ) = ∂Bp(T = 0, µ) orbital magnetization at zero temperature

∂µM(µ) = Ch(P) µ ∈ ∆



Invariants of disordered topological insulators

Link to spectral flow (Laughlin argument 1981)

Folk involves adiabatics; for Landau see Avron, Pnuelli (1992)

Theorem (Macris 2002, Nittis, S-B 2014 )

Hamiltonian H(α) with extra flux α ∈ [0, 1] through 1 cell of Z2

H(α)− H compact, so only discrete spectrum close to µ in gap

Ch(P) = Spectral Flow
(
α ∈ [0, 1] 7→ H(α) through µ

)
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Bulk-edge correspondence

Edge currents in periodic systems: Halperin 1982, Hatsugai 1993

Theorem (S-B, Kellendonk, Richter 2000, 2002)

µ ∈ ∆ gap of H and Ĥ restriction to half-space `2(Z× N)

With g : R→ [0, 1] increasing from 0 to 1 in ∆

T̂ (g ′(Ĥ) Ĵ1) = Ch(P)

where Ĵ1 = i [X1, Ĥ] = ∇1Ĥ current operator and

T̂ (Â) =
∑
x2≥0

E 〈0, x2| Â |0, x2〉 tracial state on edge ops

Moreover, link to winding number of V̂ = exp(2πi g(Ĥ))

Ch(P) = i T̂ (V̂ ∗∇1V̂ )

without gap condition: Elgart, Graf, Schenker 2005
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Macris’ argument for bulk-edge correspondence

Ch(P) = Ind(PFP) = −
∫ 1

0
dα Tr

(
g ′(H̃N

α ) ∂αH̃
N
α

)
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Tight-binding toy models in dimension d = 2

Hilbert space `2(Z2)⊗ CL

Fiber CL = C2s+1 ⊗ Cr with spin s and r internal degrees

e.g. Cr = C2
ph ⊗ C2

sl particle-hole space and sublattice space

Typical Hamiltonian

H =
4∑

i=1

(W ∗
i Ui + WiU

∗
i ) + λdis V

U1 = e iϕX2S1 and U2 = S2 with magnetic flux ϕ and S1,2 shifts

next nearest neighbor U3 = U∗1U2 and U4 = U1U2

Wi matrices L× L (e.g. for spin orbit coupling, pair creation)

Matrix potential V = V ∗ =
∑

n∈Z2 Vn|n〉〈n| random (i.i.d.)

P = χ(H ≤ µ) Fermi projection, PFP still Fredholm operator
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Implementing symmetries

Ksl unitary on fiber C2
sl with K 2

sl = 1

SLS (Chiral) : K ∗sl H Ksl = −H
TRS : I ∗s H Is = H

PHS : K ∗ph H Kph = −H

Is, Kph real unitaries on fibers C2s+1, C2
ph which are even/odd:

I 2
s = ±1 K 2

ph = ±1

Example: Is = e iπs
y

even/odd = integer/half-integer spin

Note: TRS + PHS =⇒ SLS with Ksl = IsKph or Ksl = i IsKph

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes, 2 complex and 8 real
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Classification of d = 2 topological insulators

Schnyder, Ryu, Furusaki, Ludwig 2008, reordering Kitaev 2008

Nittis, S-B 2014: classification with T = PFP (strong invariants)

CAZ TRS PHS SLS Phase/Ind System symmetry of T

A 0 0 0 Z QHE none
AIII 0 0 1 0 K ∗slTKsl = T c

D 0 +1 0 Z TQH none
DIII −1 +1 1 Z2 SCS two
AII −1 0 0 Z2 QSH I ∗s T

t Is = T
CII −1 −1 1 0 two
C 0 −1 0 2Z SQH Ker(T ) quat.
CI +1 −1 1 0 two
AI +1 0 0 0 I ∗s T

t Is = T
BDI +1 +1 1 0 two
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Z2 indices of odd symmetric Fredholm operators

I = Is real unitary on Hilbert space H with real structure, I 2 = −1

Definition T odd symmetric ⇐⇒ I ∗T t I = T with T t = (T )∗

Theorem (S-B 2013) Ind of odd symm. Fredholm vanishes, but:

F2(H) = {odd symmetric Fredholm operators} has 2 connected
components labeled by the compactly stable homotopy invariant:

Ind2(T ) = dim(Ker(T )) mod 2 ∈ Z2

Class AII (QSH): H odd TRS ⇐⇒ I ∗HI = H ⇐⇒ I ∗Ht I = H

So: H odd symmetric =⇒ Hn odd sym. =⇒ f (H) odd sym.

Fermi projection P odd sym. and PFP odd sym. Fredholm

Ind2(PFP) ∈ Z2 well-defined , F =
X1 + iX2

|X1 + iX2|
Also for Fermi level in region of dynamically localized states!
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Proofs for Z2 indices (S-B 2013)

Proposition Even degeneracies for odd symmetric matrices.

Proof: odd symmetry I ∗T t I = T =⇒ (IT )t = −IT
=⇒ det(T − z 1) = det(IT − z I ) = Pf(IT − z I )2 2

Similar to Kramers’ degeneracy, but no invariance under ψ 7→ Iψ

Proposition K compact odd symmetric

=⇒ 1 + K even degeneracies and Ind2(1 + K ) = 0

This is a weak form of compact stability, namely at T = 1

Theorem (Siegel) T odd symmetric ⇐⇒ T = I ∗At IA

Proof of connectedness:

Ind2(T ) = 0 =⇒ T invertible (mod K) =⇒ A invertible

s ∈ [0, 1] 7→ As homotopy to 1

=⇒ s ∈ [0, 1] 7→ Ts = I ∗(As)t IAs path to 1 in odd symmetrics
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Link to Atiyah-Singer classifying spaces (1969)

FR
k = skew-adjoint Freds on HR with ±i ∈ σess commuting Ck−1

Fact: FR
1 and O have same homotopy type and πk(O) = π0(FR

k )

Example: T ∈ FR
1 =⇒ σ(T ) = σ(T ) ⊂ i R , 0 6∈ σess(T )

=⇒ Ind1(T ) = dim(Ker(T )) mod 2 invariant

Only few index theorems in FR
1 (Kervaire invariant), none in FR

2

Theorem Identifications with Freds on complex Hilbert space:

FR
0
∼= {T ∈ F |T = T} FR

1
∼= {T = T ∗ ∈ F |T = −T}

FR
2
∼= {T ∈ F | I ∗T t I = T} FR

3
∼= {T = T ∗ ∈ F∗ | I ∗TI = T}

FR
4
∼= {T ∈ F | I ∗TI = T} FR

5
∼= {T = T ∗ ∈ F | I ∗TI = −T}

FR
6
∼= {T ∈ F |T t = T} FR

7
∼= {T = T ∗ ∈ F∗ |T = T}

Example QSH provides an index theorem in π0(FR
2 ) = Z2
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Quantum spin Hall system (odd TRS, Class AII)

Disordered Kane-Mele model on hexagon lattice and with s = 1
2

H = ∆hexagon + HSO + HRa + λdisV

Pseudo-gap at Dirac point opens non-trivially due to

HSO = i λSO

∑
i=1,2,3

(Snn
i − (Snn

i )∗) sz

No sz -conservation due to Rashba term HRa, but odd TRS

Non-trivial topology:

Kane-Mele (2005): Z2 invariant for periodic system from Pfaffians

Haldane et al. (2005): spin Chern numbers for sz invariant systems

Prodan (2009): spin Chern number from Ps = χ(|PszP − 1
2 | <

1
2 )

SCh(P) = Ch(Ps) ∈ Z

Systems periodic in one direction: Graf, Porta 2013
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Z2 invariant and spin-charge separation

Theorem Ind2(PFP) phase label for odd TRS

Theorem (Nittis, S-B, 2014) α ∈ [0, 1] 7→ H(α) inserted flux

Ind2(PFP) = 1 =⇒ H(α = 1
2 ) has TRS + Kramers pair in gap
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Spin filtered helical edge channels for QSH

Theorem (S-B 2013) Small Rashba term

Ind2(PFP) = 1 =⇒ spin Chern numbers SCh(P) 6= 0

Remark Non-trivial topology SCh(P) persists TRS breaking!

Theorem (S-B 2012)

Spin filtered edge currents in ∆ ⊂ gap stable w.r.t. perturbations
by magnetic field and disorder: g : ∆→ [0, 1] with

∫
g = 1

T̂
(
g(Ĥ) 1

2

{
Ĵ1, s

z
})

= SCh(P) + O(‖g‖C4‖[H, sz ]‖)

Resumé: Ind2(PFP) = 1 =⇒ no Anderson loc. for edge states

Rice group of Du (since 2011): QSH stable w.r.t. magnetic field

Here spin Chern number is relevant and not Z2 invariant!
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BdG Hamiltonian for dirty superconductor

Disordered one-electron Hamiltonian h on H = `2(Z2)⊗ C2s+1

c = (cn,l) anhilation operators on fermionic Fock space F−(H)

Hamilt. on F−(H) with mean field pair creation ∆∗ = −∆ ∈ B(H)

H− µN = c∗ (h − µ 1) c +
1

2
c∗∆ c∗ − 1

2
c∆ c

=
1

2

(
c
c∗

)∗(
h − µ ∆

−∆ −h + µ

)(
c
c∗

)
Hence BdG Hamiltonian on Hph = H⊗ C2

ph

Hµ =

(
h − µ ∆

−∆ −h + µ

)
Even PHS (Class D)

K ∗ph Hµ Kph = −Hµ , Kph =

(
0 1
1 0

)
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Class D systems (even PHS)

Proposition σ(Hµ) = −σ(Hµ)

Proposition Gibbs (KMS) state for observable Q = dΓ(Q)

1

Zβ,µ
TrF−(H)

(
Q e−β(H−µN)

)
= TrHph

(fβ(Hµ)Q)

Thus: P = χ(Hµ ≤ 0) can have Ch(P) = Ind(PFP) 6= 0

Example p + ip wave superconductor with H = `2(Z2)

h = S1 + S∗1 + S2 + S∗2 ∆p+ip = δ (S1 − S∗1 + i(S2 − S∗2 ))

Quantized Wiedemann-Franz (Sumiyoshi-Fujimoto 2013)

κH =
π

8
Ch(P) T + O(T 2)

Theorem Ind(PFP) odd =⇒ 0 ∈ σ(H(α = 1
2 )) Majorana state
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Spin quantum Hall effect in Class C (odd PHS)

Theorem (Altland-Zirnbauer 1997)

SU(2) spin rotation invariance [H, s] = 0

=⇒ H = Hred ⊗ 1 with odd PHS (Class C)

K ∗ph Hred Kph = −Hred , Kph =

(
0 −1
1 0

)
Theorem (Nittis, S-B 2014) H odd PHS =⇒ Ind(PFP) ∈ 2Z
Example d + id wave superconductor

∆d+id = δ
(
i(S1 + S∗1 − S2 − S∗2 ) + (S1 − S∗1 )(S2 − S∗2 )

)
s2

Then Ch(P) = Ind(PFP) = 2 for δ > 0 and µ > 0

Theorem (Nittis, S-B 2014) Spin Hall conductance

(given by Kubo formula) and spin edge currents quantized
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Periodic table (Schnyder et. al., Kitaev 2008)

Complex K -theory (2 periodic), Real K -theory (8-periodic)

CAZ TRS PHS SLS d = 1 d = 2 d = 3 d = 4

A 0 0 0 Z Z
AIII 0 0 1 Z Z
D 0 +1 0 Z2 Z

DIII −1 +1 1 Z2 Z2 Z
AII −1 0 0 Z2 Z2 Z
CII −1 −1 1 2Z Z2 Z2

C 0 −1 0 2Z Z2

CI +1 −1 1 2Z
AI +1 0 0 2Z

BDI +1 +1 1 Z

Focus on complex cases: chirality and bulk-edge correspondence
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Class A systems (dimension d even)

Given: covariant Hamiltonian (Hω)ω∈Ω on `2(Zd)⊗ CL

P = (Pω)ω∈Ω Fermi projection with localization condition

Eω ‖ 〈n|Pω|0〉 ‖ ≤ Aγ e
−γ|n|

Aim: Index theorem for strong invariant (generalizing QHE)

Construction: following Prodan, Leung, Bellissard (2013)

σ1, . . . , σd irrep of Clifford Cd on C2d/2
, Dirac phase:

D =
d∑

j=1

Xj ⊗ σj F =
D

|D|
on `2(Zd)⊗ CL ⊗ C2d/2

Grading γ = −i−d/2σ1 · · ·σd so that Fγ = −γF



Invariants of disordered topological insulators

Index theorem for even dimension d

Extend P on `2(Zd)⊗ CL to P ⊗ 1 on `2(Zd)⊗ CL ⊗ C2d/2

Theorem (Prodan, Leung, Bellissard 2013) In grading of γ,

upper right comp. (PωFPω)+,− Fredholm with index a.s. equal

Chd(P) =
(2iπ)

d
2

d
2 !

∑
ρ∈Sd

(−1)ρ E Tr 〈0|

P
d∏

j=1

[Xρj ,P]

 |0〉
Remark Real space formula of k-space version for periodic system

Chd(P) =
1

(−2iπ)
d
2

d
2 !

∫
Td

Tr
([

P(k)dP(k) ∧ dP(k)
] d

2

)
Proof: higher dimensional version of Connes’ triangle identity
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Chiral unitary systems (dimension d odd)

K ∗slHKsl = −H with Ksl =

(
1 0
0 −1

)
, thus H =

(
0 A
A∗ 0

)
K ∗sl f (H)Ksl = −f (H) for any odd function H, so f (H) off-diagonal

In particular, flat band Hamiltonian Q = 2P − 1 = sgn(H) is odd

As Q2 = 1 there is unitary U with Q =

(
0 U
U∗ 0

)
Resumé: Fermi projection P = χ(H ≤ 0) encoded in unitary U

Dirac phase F = D
|D| from D =

∑d
j=1 Xj ⊗ σj , and E = 1

2 (F + 1)

Theorem (Prodan, S-B 2014)

EUE Fredholm operator with almost sure index equal to

Chd(U) =
(iπ)

d−1
2

d!!

∑
ρ∈Sd

(−1)ρ E Tr 〈0|

 d∏
j=1

U−1[Xρj ,U]

 |0〉
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Chiral systems: comments and example

Remark k-space version (Schnyder, Ryu, Furusaki, Ludwig 2008)

Chd(U) =
( 1

2 (d − 1))!

d!

(
i

2π

) d+1
2
∫
Td

Tr
([

U−1dU
]d)

New phase label generalizing higher winding numbers

Remark Phase stable under small breaking of chiral symmetry

(as long as off-diagonal entry of Q invertible)

Example d = 1 (Mondragon-Shem, Song, Hughes, Prodan 2013):

H =
1

2
(σ1 + ıσ2) S∗ +

1

2
(σ1 − ıσ2) S + m σ2

Ch1(U) 6= 0 for |m| < 1, only localized states for random coeffs

Divergence of localization length at E = 0 at transition point
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General bulk-edge correspondence (Prodan S-B)

Hypothesis: gap in bulk system in dimension d (even or odd)

Exact sequence: edge — half space — bulk

0 −→ Ad−1 ⊗K −→ T (Ad) −→ Ad −→ 0

Crucial fact: Chd−1 extends to edge operators in Ad−1 ⊗K

K0(Ad−1) −→ K0(T (Ad−1)) −→ K0(Ad)

Ind ↑ ↓ exp

K1(Ad) ←− K1(T (Ad−1)) ←− K1(Ad−1)

Class A system in even d : Chd(P) = Chd−1(exp(P))

Chiral system in odd d : Chd(U) = Chd−1(Ind(U))
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Example in d = 3 (Schnyder et. al., Prodan S-B)

(σj)j=1,...,5 irrep of Clifford algebra C5 on C4, e.g. with Pauli mats

Hamiltonian on `2(Z3)⊗ C4

H =
3∑

j=1

1

2ı
(Sj − S∗j )⊗ σj +

m +
3∑

j=1

1

2
(Sj + S∗j )

⊗ σ4

Chiral symmetry σ5 H σ5 = −H

Closed gap at m = −3,−1, 1, 3, between Ch3(U) = 0,−1, 2,−1, 0

d = 2 surface state have Dirac points adding up to Ch3(U)

Split in magnetic field (as for Dirac or on honeycomb)

P̂ spectral projection on central band of surface states has QHE

Theorem Ind([U]1) = [P̂J]0 and Ch2(P̂J)=Ch3(U)
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Resumé

• Z2 indices of Fredholm operators

• Invariants and indices in higher dimesion

• General bulk-edge correspondence

• Non-trivial topology persists if symmetries slightly broken


