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Covariant Berry Connection

Anomalous Velocity

Luttinger, Blount, Niu, and others show that a Berry phase in the
equations of motion of a Bloch quasiparticle = anomalous velocity:

- 0e(k,x) .

k = o +e(x x B),
. Oekx)

x = Ik (k x Q).

B Many applications!
B Want to use for Dirac and Weyl particles
B Can we make these equations covariant?
k=e(E+%xxB) =k, =eF,i, p=0123

x=v.—(kx Q) —i;=v.+Quk), i=1,23 7



Covariant WKB for Dirac

Look for WKB solution of Dirac equation
(ihy" (Op + ieAy/h) —m)1p = 0.

as
Y(z) = a(x)e_w(x)/h, a=ag+ hay + Kag + ...,

where

ao(z) = ua(k(z))C(z)
and u, (k) (and later v, (k) ) are solutions to

(k
(Yky —m)ua(k) =
(Yuk" 4+ m)va (k)

covariantly normalized so that

Uqug = (5a5 = —UaVg



Spin Transport Equation

Plug WKB solution into Dirac. Find that

1 H 1 .
|:5ag (V“i + v > + ﬁSIWF#,, —iaa@yk‘” Oﬁ(:E) = 0.

dxt 2 Hah om, 8
where )
i€ u
o s h
gives Larmor precession, and
_ Ou
aag,yzwaa—kf, v=0,1,2,3

is an unconventional, but covariant Berry connection.



Covariant Berry Connection

Covariant Berry Curvature

Matrix-valued connection form

)
Uapy ARV =iTiq =l dk” .

okv
Curvature form
§ =da—ia’.
Use Dirac equation to find
1 " »
3aﬁ = W(Suy)ag dk? N dEY,

where .
_ ? .
(S;w)aﬁ = Uq <Z[’Yu77u]> Upg = U0y Ug-

Note that Dirac = k*S,, = 0.



Covariant Berry Connection

Pauli-Lubanski Tensor

Use mass-shell condition E? = k2 = k% + m? to eliminate ko and find that

gaﬁ o 2m2 <SZ ESOJ Sl E>aﬁ dk" A dk ’




Covariant Berry Connection

Pauli-Lubanski Tensor

Use mass-shell condition E? = k2 = k% + m? to eliminate ko and find that

E E

1 k; k. ) .
SaB = 53 <Sz" — —=S0j — SiO_]> dk* A dk?,
2m of

Expression in parentheses is a skew-symmetric tensor generalization of the
Pauli-Lubanski vector
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Covariant Berry Connection

Berry versus Llewellyn Thomas

Explicitly, in 3+1 dimensions we have

_ 27;27 {% <U+ﬂg‘(17‘1)l;)>} - (dk x dk).

What does this mean this physically? Look at connection

apt = ki) ()
= 2 @xp(3), B=KE=Km

(oa
= —WThomas * 5 ,3'
«a

Covariant Berry-transport is Thomas precession



Covariant Berry Connection
Nishina, Thomas, Hund
- "'— TR

Yoshio Nishina, Llewellyn Thomas, Friedrich Hund




Covariant Berry Connection

Thomas versus Lobachevsky
Thomas precession is parallel transport on the positive-energy mass-shell:

z

Embedding of three-dimensional Lobachevsky space into four-dimensional
Minkowski space. The arrow shows the sterographic parametrization of the
embedded space by the Poincaré ball 22 + 23 + 23 < R2.



Non-covariant WKB
With u&uﬂ' =00 = viwﬂ, have

{5 <§t+v V+ - leV)—I—Naﬁ}Cﬁ(X,t):O,

| e 1 1 (k-o)k ) .
Nag =i+ |B- {50+ 5 —iAnp ik,
’ Z(WF) {2<U+m2 v+1 )ag} Wat,

and

B 1 1 (k-o)k
Fop = 2m273{<0+m2 v+1 )aﬁ}'(dedk)'
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Non-covariant WKB
With u&uﬂ' =00 = viwﬂ, have

{5 <§t+v V+ - leV)—I—Naﬁ}Cﬁ(X,t):O,

5
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o)
—
N =

(o BT) Vi
ms y+1 /.5

0
-Aam':’iugﬁ, i=1,2,3

B 1 1 (k-o)k
Fop = 2m273{<0+m2 v+1 )aﬁ}'(dedk)'

Berry curvature has opposite sign!

Michael Stone (ICMT lllinois)
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Relativistic Mechanics of Spinning Particles

Classical action for spinning particle in GR

Let A be a Lorentz transformation in Dirac representation, e}, and e, a
frame and co-frame, and define

k, = tr{ﬁ)\_lfya)\}, k= k",
Sap = tr{E)\_laabA}, Z:%Zabaab

where [k, 3] = 0, so that k%S, = 0 (Tulczyjew-Dixon condition)
Action

Sla, A] = / [haedet — {8 A (d + w)A}} .

where
w = %O'ab w“budm‘“

is spin connection one-form.
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Relativistic Mechanics of Spinning Particles

Mathisson-Papapetrou-Dixon equations

B Varying x* gives us

Dk .
DTC + %SabRabcdl'd =0
B Varying X gives
DS
D;}” + daky — kady =0

B Need additional condition such as k¢S, = or n*S,, = 0 for closed
system.



Relativistic Mechanics of Spinning Particles

Anomalous velocity
Use k%S, = 0 to get
DEk®

- — 2, — .
Dr Sap = k*2p — kp(T - k).

or

m Dt

o= — <ka(j: )+ sacﬁ) .



Anomalous velocity
Use k%S, = 0 to get
DEk®

- — 2, — .
Dr Sap = k*2p — kp(T - k).

or
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Chose “time” so that 2 = 1, then
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Anomalous velocity
Use k%S, = 0 to get
DEk®

- — 2, — .
Dr Sap = k*2p — kp(T - k).

or

. 1 . Dk¢
Ty = W <ka([£ . l{}) + SaCD—7‘> .
Chose “time” so that 2 = 1, then
1 . Dk¢

Eliminate k0, then

&
5

YE T E°Y) Dt

: DkJ
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Meaning of conditions on spin tensor

B Lab frame energy centroid X};:

{ / TOOd%} X = / TP,
0=t 0=t

B Angular momentum about 2y :

M = / {(@ = 28)T™ = (2¥ = 25) T} o
0=t

B Therefore

M}P = / {(:L‘Z — fo)TOO — (xo — x%)TiO} d3x
0=t

= (X{ —2})E.
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Relativistic Mechanics of Spinning Particles

Meaning of conditions on spin tensor

B V" =0 when fo = ﬁ meaning that angular momentum is about
lab-frame energy centroid.

B 1, M =0 for angular momentum about centroid in frame where
n® = (1,0,0,0).

B Thus k,5% = 0 implies that S% is the intrinsic angular momentum,
meaning angular momentum about energy centroid in rest frame
where k% = (m,0,0,0).

W k,5% = 0 implies that 2 (7) in the M-P-D equation is trajectory of
“centre of mass” — j.e. energy centroid in rest frame.

B Also see that Pauli-Lubansky “Berry curvature”

k, k,
S/LV - S/LOE - E/SOV

is angular momentum about lab-frame centroid.
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Massless Case

Massless case

When m? = 0 bad things happen!
B Suppose that k2 = 0, and S, satisfies S,,k" = 0, then

Sab - Sab + (kaSpb - kbspa)@p

still satisfies S,k = 0.
B If S, and x, satisfy M-P-D equation for k* =0, and

Tg = Tq + Spa®p7

then gab, I, are also a solution of M-P-D for any time-dependent

Or(r).
A gauge invariance?



Massless Case

Wigner Translations

B Massless reference momentum % = (1,0,0,...,0,1).
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Massless Case

Wigner Translations

B Massless reference momentum % = (1,0,0,...,0,1).
B Little group: g with 0 < a,b, < d — 1. Generate SO(d — 2),
together with “translations”

Ty = KPOpy = 00a + Od-1)ay 0<a<d-—1

[ﬂ-aa 7Tb] =0, [O'ab’ 7rc] = MbcTa — NacTb-

B Wigner says that the m, must have no physical effect...

B . but
d—2 .
A — dexp (Z 9’7@-) , in Sy = tr{E/\_laab)\},
i=1
takes

Sab — Sap + (kaSpp — kpSpa)OP,  OF = AP;0".



Massless Case

Heisenberg, Wigner

Heisenberg and Eugene Wigner
" ESI Vienna, August 11th 2014 26



Massless Case

Physical Meaning of Wigner Translations

S S
— -

Head-on collision of massless spinning particles.
L=0,5=0=J=0.



Massless Case

Physical Meaning of Wigner Translations

Run towards collision, top view.

J=0,8#0
=L #0.



Massless Case

Physical Meaning of Wigner Translations

S

— - S
+

Boost towards collision, front view.
Miss by 6z = L/k




Massless Case

Huh!

It's not that weird:
B Any interaction that occurs in one frame still occurs when viewed
from another frame.
B Cross-sections depend on J = L + 5.
B For massless particles, cannot separate [ from 5.
B Means that particle “position” is frame dependent.

B A serious problem for any covariant mechanics!

Show some Mathematica™ plots to prove that frame dependence is a real
phenomenon
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Conclusions

Conclusions

B For massive particles, the Berry-phase equations of motion for
relativistic spinning particles are the 3-dimensional reduction of 3+1
Lorentz covariant equations

B The Berry phase equations of motion for massless particles are not
the m — 0 limit of the massive-particle equations

B The Berry phase equations of motion for massless particles are not
the 3-dimensional reduction of covariant equations

B The lack of covariance arises because the position ascribed to a
massless particle is the lab-frame centroid, and is frame-dependent
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